[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0698108B2 - Metal vacuum double structure and manufacturing method thereof - Google Patents

Metal vacuum double structure and manufacturing method thereof

Info

Publication number
JPH0698108B2
JPH0698108B2 JP63098855A JP9885588A JPH0698108B2 JP H0698108 B2 JPH0698108 B2 JP H0698108B2 JP 63098855 A JP63098855 A JP 63098855A JP 9885588 A JP9885588 A JP 9885588A JP H0698108 B2 JPH0698108 B2 JP H0698108B2
Authority
JP
Japan
Prior art keywords
vacuum
wall
copper foil
container
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63098855A
Other languages
Japanese (ja)
Other versions
JPH01268521A (en
Inventor
明博 鎌田
顕弘 北畠
一浩 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zojirushi Corp
Original Assignee
Zojirushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zojirushi Corp filed Critical Zojirushi Corp
Priority to JP63098855A priority Critical patent/JPH0698108B2/en
Priority to KR1019890005198A priority patent/KR920009830B1/en
Priority to US07/340,644 priority patent/US4997124A/en
Publication of JPH01268521A publication Critical patent/JPH01268521A/en
Publication of JPH0698108B2 publication Critical patent/JPH0698108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Thermally Insulated Containers For Foods (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は魔法瓶,真空二重パイプ等の金属製真空二重構
造体及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a metal vacuum double structure such as a thermos and a vacuum double pipe, and a method for manufacturing the same.

(従来の技術) 金属製真空二重構造体、例えば魔法びん等の真空二重容
器の保温性を向上するには、内容器と外容器の間の真空
度を高くすることと、内容器から外容器へのふく射伝熱
を遮断することが重要である。
(Prior Art) In order to improve the heat retaining property of a metallic vacuum double structure, for example, a vacuum double container such as a thermos bottle, increase the degree of vacuum between the inner container and the outer container and remove it from the inner container. It is important to block radiant heat transfer to the container.

真空度を高めるには、真空排気処理能力を高めて高真空
に封止することはもちろんのこと、封止後の内容器外表
面又は外容器内表面からの吸蔵ガスの離脱を防止するこ
とが特に必要である。このため、従来、内容器外表面及
び外容器内表面を脱脂してさらに硝フッ酸等で酸洗いす
る方法、排気処理時に炉内で加熱して吸蔵ガスを空気と
ともに排出する方法、ゲッターを用いて金属表面から離
脱する吸蔵ガスを吸着させる方法があるが、通常これら
の方法をすべて使用することが行なわれている。
In order to increase the degree of vacuum, it is not only possible to enhance the vacuum evacuation processing capability and seal it to a high vacuum, but also to prevent the release of stored gas from the outer surface of the inner container or the inner surface of the outer container after sealing. It is especially necessary. Therefore, conventionally, a method of degreasing the outer surface of the inner container and the inner surface of the outer container and further pickling with nitric hydrofluoric acid, a method of heating in a furnace during exhaust treatment to discharge the stored gas together with air, and a getter are used. There is a method of adsorbing the occluded gas which is released from the metal surface, but usually all of these methods are used.

また、ふく射伝熱を防止する方法として、従来、少なく
とも内容器外表面に電解メッキあるいは銀鏡反応により
メッキ層を形成する方法、又は特開昭61−31111号公報
に示すように内容器外表面を銅又はアルミニウムの薄板
で覆う方法がある。
Further, as a method of preventing radiant heat transfer, conventionally, at least a method of forming a plating layer on the outer surface of the inner container by electrolytic plating or silver mirror reaction, or as shown in JP-A-61-31111, the outer surface of the inner container There is a method of covering with a thin plate of copper or aluminum.

一方、真空排気処理後の真空封じ込み方法としては、外
容器底面に形成した排気口に閉塞部材をろう接して閉塞
する方法(以下、ろい接法という。)と、外容器底面に
設けた排気用のチップ管を挟み切る方法(以下、チップ
管法という。)とがある。
On the other hand, as a vacuum sealing method after the vacuum evacuation process, a method of brazing a closing member to an exhaust port formed on the bottom surface of the outer container to close it (hereinafter, referred to as a loose welding method) and a method of providing the bottom surface of the outer container are provided. There is a method of sandwiching an exhaust tip tube (hereinafter referred to as a tip tube method).

前記ろう接法において、閉塞部材のろう接にフラックス
を使用すると、ガスが内外両容器の真空空間に流入して
真空度を低下させることから、フラックスを使用するこ
となくろう接する必要がある。
In the above brazing method, when flux is used for brazing of the closing member, gas flows into the vacuum spaces of both the inner and outer containers to lower the degree of vacuum, so it is necessary to braze without using flux.

このため、例えばステンレス鋼製真空二重容器では、高
温でその表面をフラッシュするとともに、ニッケルろう
等の約900〜1070℃の融点を有するろう材を使用しなけ
ればならない。しかも、ステンレス鋼は高温に加熱する
際、あるいは高温から冷却する際に、ある温度域(一般
には、約450〜850℃)で固溶炭素が炭化物となって析出
し、鋭敏化して粒界腐食が生じやすくなり、耐食性が低
下する性質を有するため、鋭敏化の危険温度域を避けて
850℃以上の温度で真空排気処理及びろう接を行ない、
かつ高温から冷却する際に真空加熱炉内に不活性ガスを
供給して急冷しなければならない。
For this reason, for example, in a vacuum double container made of stainless steel, it is necessary to flush the surface thereof at a high temperature and use a brazing material having a melting point of about 900 to 1070 ° C. such as nickel brazing. Moreover, when stainless steel is heated to a high temperature or cooled from a high temperature, solid solution carbon is precipitated as a carbide in a certain temperature range (generally about 450 to 850 ° C), and it is sensitized to cause intergranular corrosion. Is likely to occur and corrosion resistance is reduced, so avoid the dangerous temperature range for sensitization.
Perform vacuum exhaust treatment and brazing at a temperature of 850 ° C or higher,
In addition, when cooling from a high temperature, an inert gas must be supplied into the vacuum heating furnace for rapid cooling.

これに対し、チップ管法ではろう材を使用しないため、
鋭敏化領域より低い温度、すなわち400〜450℃で真空排
気処理が行なわれている。
On the other hand, since the brazing material is not used in the tip tube method,
The vacuum exhaust treatment is performed at a temperature lower than the sensitization region, that is, 400 to 450 ° C.

ところで、真空排気処理時には、金属表面の清浄化と吸
蔵ガスの放出のために二重容器を加熱する必要がある
が、排気処理中に加熱するとメッキ面等が酸化するた
め、従来加熱前に1×10-2Torr(1.33Pa)より高真空に
予備排気しておいてから、ろう接法では850〜950℃に、
チップ管法では400〜450℃に加熱するようになってい
る。
By the way, during the vacuum evacuation process, it is necessary to heat the double container for cleaning the metal surface and releasing the occluded gas. However, if the heating is performed during the evacuation process, the plating surface or the like is oxidized. After pre-evacuating to a vacuum higher than × 10 -2 Torr (1.33 Pa), the brazing method raises the temperature to 850-950 ° C.
The tip tube method is designed to heat to 400 to 450 ° C.

以上の真空度を高める方法,ふく射伝熱を防止する方法
及び真空封じ込み方法は、凍結防止用の給水パイプ等に
用いられる真空二重パイプの製造にも適用されている。
The above method for increasing the degree of vacuum, the method for preventing radiant heat transfer, and the method for vacuum containment are also applied to the production of a vacuum double pipe used as a water supply pipe for freeze prevention.

なお、一般に真空度については、圧力が、 10-3Torr以上を低真空、 10-5〜10-3Torrの範囲を高真空、 10-8〜10-5Torrの範囲を超高真空、 10-8Torr以下を極超高真空、と称されているので本明細
書においてもこれに従う。
Generally, regarding the degree of vacuum, when the pressure is 10 -3 Torr or more, low vacuum, 10 -5 to 10 -3 Torr range are high vacuum, 10 -8 to 10 -5 Torr range are ultra high vacuum, 10 Since -8 Torr or less is called an ultrahigh vacuum, it is also referred to in this specification.

(発明が解決しようとする課題) しかしながら、前記従来のように1×10-2Torrより高真
空に予備排気すると、対流伝熱媒体である空気が希薄に
なり、外容器と内容器の間の伝熱性が極めて悪くなって
いる。このため、予備排気後に加熱したとしても内容器
の昇温が炉熱を直接受ける外容器に比べて著しく遅れる
結果、真空排気処理時間が長くかかったり、内容器外表
面からの脱ガスが不十分となり、真空封じ込み後に残留
した吸蔵ガスが遊離して真空度が低下し、断熱性が経時
変化して保温性がしだいに低下してゆくことになる。
(Problems to be Solved by the Invention) However, when pre-evacuating to a vacuum higher than 1 × 10 -2 Torr as in the conventional case, air which is a convective heat transfer medium is diluted, and a space between the outer container and the inner container is reduced. The heat transfer is extremely poor. Therefore, even if the inner container is heated after preliminary evacuation, the temperature rise of the inner container is significantly delayed compared to the outer container that receives the furnace heat directly.As a result, the vacuum evacuation process takes a long time and degassing from the outer surface of the inner container is insufficient. Therefore, the occluded gas remaining after the vacuum containment is released, the degree of vacuum is lowered, the heat insulating property is changed with time, and the heat retaining property is gradually lowered.

そこで、従来、ゲッターを用いて真空封じ込み後に遊離
する吸蔵ガスを吸着するようにしている。かかるゲッタ
ーの使用は、保温性の完全化を図るうえで必要不可欠で
あるが、その反面、本来のゲッターやゲッター保持金具
等の材料費が増大するという問題点を有していた。
Therefore, conventionally, a getter is used to adsorb the occluded gas liberated after the vacuum containment. The use of such a getter is indispensable in order to complete heat retention, but on the other hand, there is a problem that the material cost of the original getter, getter holding metal fitting, etc. increases.

本発明は斯かる問題点に鑑みてなされたもので、断熱性
に優れ、かつ、安価な金属製真空二重構造体を提供する
こと、及び短い真空排気処理時間で内容器からの脱ガス
が十分に行なわれるとともに、本来のゲッターやゲッタ
ー保持金具を不要とすることができる金属製真空二重構
造体の製造方法を提供することを目的とする。
The present invention has been made in view of such problems, excellent thermal insulation, and to provide an inexpensive metal vacuum double structure, and degassing from the inner container in a short vacuum exhaust processing time. An object of the present invention is to provide a method for manufacturing a metal vacuum double structure, which is sufficiently performed and does not require an original getter or a getter holding metal fitting.

(課題を解決するための手段) ところで、真空二重構造体の内壁又は外壁から遊離する
ガスは多量の水素のほか少量の窒素が含まれている。従
って、真空二重構造体の真空度を高めるには、水素はも
ちろんのこと窒素も吸収する必要がある。
(Means for Solving the Problem) By the way, the gas released from the inner wall or the outer wall of the vacuum double structure contains a large amount of hydrogen and a small amount of nitrogen. Therefore, in order to increase the degree of vacuum of the vacuum double structure, it is necessary to absorb not only hydrogen but also nitrogen.

そこで、本発明は、まず、真空度と断熱性の関係におい
て、1×10-4Torr以下の高真空下では極めて優れた断熱
性が得られることは従来周知のことであるが、この断熱
性の変化は真空度が10-1〜10-3Torrのオーダーの間で急
激に変化する(日本機械学会編伝熱工学資料参照)こと
に着目し、断熱性が顕著に現われず、伝熱性がある程度
良好な真空下すなわち10-2Torrのオーダー以上の低真空
において加熱脱ガスを行なうこととしたものである。
Therefore, according to the present invention, it is well known that, in the relationship between the degree of vacuum and the heat insulating property, extremely excellent heat insulating property can be obtained under a high vacuum of 1 × 10 −4 Torr or less. Focusing on the fact that the degree of vacuum changes abruptly in the order of vacuum of 10 -1 to 10 -3 Torr (see Material for Heat Transfer Engineering, edited by the Japan Society of Mechanical Engineers), the heat insulation does not appear remarkably and the heat transfer The degassing was carried out by heating under a good vacuum, that is, in a low vacuum of the order of 10 -2 Torr or more.

さらに、内容器外表面に被覆した銅箔に、本来のふく射
伝熱防止作用以外にガス吸収作用、すなわちゲッター作
用を有効に発揮させるために、真空排気処理時に当該銅
箔を活性化させてその脱ガスを効果的に行なうととも
に、銅箔では収吸できないガスをチタン又はジルコニウ
ムで吸収するようにしたものである。
Further, in the copper foil coated on the outer surface of the inner container, in addition to the original radiation heat transfer prevention effect, in order to effectively exert a gas absorption function, that is, a getter function, the copper foil is activated by evacuating during vacuum exhaust treatment. The gas is effectively degassed, and titanium or zirconium absorbs a gas that cannot be absorbed by the copper foil.

一般に、金属と特定のガスが室温状態で化学吸着するな
らば、その金属の特定ガスの吸収量は、活性時の放出ガ
ス量に依存する。従って、例えば銅箔が特定のガスを化
学吸着でき、かつ、活性時の放出ガス量が一般のゲッタ
ー材と同等でれば、銅箔にゲッター材並のゲッター作用
を期待することができる。
Generally, if a metal and a specific gas chemisorb at room temperature, the amount of the specific gas absorbed by the metal depends on the amount of released gas at the time of activation. Therefore, for example, if the copper foil can chemically adsorb a specific gas and the amount of released gas at the time of activation is the same as that of a general getter material, the copper foil can be expected to have a getter action similar to that of the getter material.

そこで、本発明者らは、銅と水素が化学吸着することを
考慮し、銅箔の活性時の放出ガス分析を行ない、次の結
果を得た。
Therefore, in consideration of the fact that copper and hydrogen are chemically adsorbed, the present inventors analyzed the released gas when the copper foil was active, and obtained the following results.

ステンレス鋼製チャンバ内に銅箔を収容し、加熱排気し
つつ銅箔を活性化させると、銅箔から主に水蒸気(H
2O),二酸化炭素(CO2),一酸化炭素(CO)が放出さ
れ、水素(H2)がわずかに放出された。ここで、放出さ
れる水蒸気(H2O)は、120℃,240℃及び370℃の3つの
ピークがみられ、120℃のピークは銅箔の表面に物理的
に吸着していたものであり、240℃及び370℃のピークは
銅(Cu)とCuO又はCu2Oの形で結合していた酸素(O)
と拡散してきた水素(H)とが結合したものであると考
えられる。二酸化炭素(CO2)及び一酸化炭素(CO)
は、240℃と400℃の2つのピークがみられ、銅(Cu)と
結合していた酸素(O)と拡散したきた炭素(C)が表
面で結合したものであると考えられる。また、水素
(H2)は、水蒸気(H2O)の形で放出されずに残ったも
のがそのまま放出されたものであると考えられる。
When the copper foil is housed in a stainless steel chamber and activated while being heated and exhausted, water vapor (H
2 O), carbon dioxide (CO 2 ), carbon monoxide (CO) were released, and hydrogen (H 2 ) was slightly released. Here, the released water vapor (H 2 O) has three peaks at 120 ° C, 240 ° C, and 370 ° C, and the 120 ° C peak was physically adsorbed on the surface of the copper foil. , 240 ℃ and 370 ℃ peaks are oxygen (O) bound to copper (Cu) in the form of CuO or Cu 2 O.
It is considered that this is a combination of hydrogen (H) that has diffused with. Carbon dioxide (CO 2 ) and carbon monoxide (CO)
Is observed to have two peaks at 240 ° C. and 400 ° C., and it is considered that oxygen (O) bound to copper (Cu) and carbon (C) diffused are bound on the surface. Further, it is considered that hydrogen (H 2 ) is released as it is without being released in the form of water vapor (H 2 O).

また、この銅箔(約12g)の活性化により放出される水
素(H2)(水蒸気(H2O)の形で放出されるものを含
む)は、一般のゲッター材(SAES GETTERS S.P.A.製st
−707相当、約0.5g)の活性時に放出される水素(H2
と同等以上であった。
In addition, hydrogen (H 2 ) (including that released in the form of water vapor (H 2 O)) released by the activation of this copper foil (about 12 g) is used for general getter materials (SAES GETTERS SPA st
Equivalent to -707, about 0.5g) Hydrogen (H 2 ) released during activation
Was equal to or higher than.

さらに、空気中で強制酸化させた銅箔は、活性化時にそ
の表面で水素(H)酸素(O)の衝突確率が増えるた
め、水素(H2)が水蒸気(H2O)の形で放出されやす
く、酸化によりダメージも残らないことが確認されてい
る。
In addition, the copper foil that has been forcedly oxidized in air increases the probability of collision of hydrogen (H) and oxygen (O) on its surface during activation, so hydrogen (H 2 ) is released in the form of water vapor (H 2 O). It has been confirmed that it is easy to be damaged and does not leave damage due to oxidation.

また、本発明者らは、銅と物理吸着しても化学吸着しな
い窒素は、チタン又はジルコニウムとなら化学吸着する
ことを考慮し、チタン箔の活性時の放出ガス分析を行な
った結果、水素(H2)のピークは約700℃、窒素(N2
のピークは約400℃であった。また、ジルコニウム箔の
活生時の放出ガス分析を行なった結果、水素(H2)及び
窒素(N2)のピークはいずれも約300℃であった。さら
に、チタン箔(約0.8g)の窒素(N2)吸収能力は、前記
一般のゲッター材(約0.5g)の窒素(N2)に対する吸収
能力と同等であることも確認されている。なお、従来市
販されているチタン製のゲッターは、窒素(N2)よりも
水素(H2)を有効に吸収するために700℃以上で活性化
させ、高温用ゲッターとして使用されている。
Further, the present inventors considered that nitrogen, which is not chemically adsorbed even when physically adsorbed with copper, is chemically adsorbed if it is titanium or zirconium, and as a result of performing an emission gas analysis when the titanium foil is activated, hydrogen ( H 2 ) peak is about 700 ℃, nitrogen (N 2 )
Was about 400 ° C. Further, as a result of analysis of released gas during activation of the zirconium foil, the peaks of hydrogen (H 2 ) and nitrogen (N 2 ) were both about 300 ° C. Further, nitrogen (N 2) absorption capacity of titanium foil (about 0.8 g) has also been confirmed that equivalent to the absorption capacity for nitrogen (N 2) of the general of the getter material (about 0.5 g). Incidentally, a titanium getter commercially available in the past is activated at 700 ° C. or higher in order to effectively absorb hydrogen (H 2 ) rather than nitrogen (N 2 ), and is used as a high temperature getter.

本第1発明は、以上の見識に基づいてなされたもので、
内壁と外壁とで二重壁構造を形成し、内壁と外壁の間の
空間を排気処理して真空封じ込みした金属製真空二重構
造体において、 内壁の表面を活性化された銅箔で覆うとともに、内壁表
面と銅箔の間に活性化されたチタン又はジルコニウムを
介装したものである。
The first invention is made based on the above insight,
In a metal vacuum double structure in which a double wall structure is formed by an inner wall and an outer wall, and the space between the inner wall and the outer wall is exhausted to be vacuum-sealed, the inner wall surface is covered with activated copper foil. In addition, activated titanium or zirconium is interposed between the inner wall surface and the copper foil.

また、第2発明は、内壁と外壁とで二重壁構造を形成
し、内壁と外壁の間の空間を排気処理して真空封じ込み
する金属製真空二重構造体の製造方法において、 内壁の表面を銅箔で覆うとともに、内壁表面と銅箔の間
にチタン又はジルコニウムを介装して、第6図に示すよ
うに、第1工程Iで10-2Torrのオーダー以上の抵真空に
予備排気し、第2工程IIで略400℃以上の温度で所定時
間加熱して脱ガスを行なった後、第3工程IIIで当該加
熱温度を維持したまま10-4Torrのオーダー以下の高真空
に排気処理して、第4工程で真空封じ込みするものであ
る。
Further, the second invention is a method for manufacturing a metal vacuum double structure, in which a double wall structure is formed by an inner wall and an outer wall, and a space between the inner wall and the outer wall is exhausted to be vacuum-sealed. While covering the surface with copper foil and interposing titanium or zirconium between the inner wall surface and the copper foil, as shown in FIG. 6, in the first step I, a preliminary vacuum of 10 -2 Torr or more was prepared. After evacuation and degassing by heating at a temperature of about 400 ° C. or higher for a predetermined time in the second step II, a high vacuum of the order of 10 −4 Torr or less is maintained in the third step III while maintaining the heating temperature. Exhaust treatment is performed and vacuum sealing is performed in the fourth step.

前記チタン材又はジルコニウム材としては、例えばチタ
ン材ならチタン箔,チタンペレット又は市販のチタンゲ
ッター等を使用することができるが、ゲッター保持部が
不要で、かつ、表面積をできるだけ確保する点から、チ
タン箔又はジルコニウム箔を使用するのが好ましい。ま
た、内壁又は外壁の材質がSUS304等のオーステナイト系
ステンレス鋼の場合は、当該ステンレス鋼の鋭敏化領域
より低い温度又は当該領域を越える温度で加熱脱ガスを
行なうのが好ましい。
As the titanium material or zirconium material, for example, a titanium foil, titanium pellets, or a commercially available titanium getter can be used if it is a titanium material, but a titanium getter holding part is unnecessary, and titanium is used in order to secure the surface area as much as possible. Preference is given to using foils or zirconium foils. Further, when the material of the inner wall or the outer wall is austenitic stainless steel such as SUS304, it is preferable to perform the heat degassing at a temperature lower than or above the sensitization region of the stainless steel.

なお、真空封じ込み方法としては、従来のチップ管法又
はろう接法いずれでも可能であるが、内壁又は外壁の材
質がオーステナイト系ステンレス鋼の場合は、チップ管
法では当該ステンレス鋼の鋭敏化領域より低い温度で加
熱脱ガスを行ない、ろう接法では当該鋭敏化領域を越え
る温度で加熱脱ガスを行なうべきである。
The vacuum sealing method can be either a conventional tip tube method or a brazing method. However, when the material of the inner wall or the outer wall is austenitic stainless steel, the tip tube method is a sensitized region of the stainless steel. The hot degassing should be performed at a lower temperature, and the brazing method should be performed at a temperature above the sensitization region.

また、内壁と外壁の間の空間には、空気のほか窒素
(N2),アルゴン(Ar)等の不活性ガスを封入しておく
ことができる。ただ、空気の場合は、空気中の酸素
(O2)により銅箔が酸化されるが、酸素(O2)と脱ガス
の主成分である水素(H2)との衝突確率が増えることに
より、酸素と水素とが結合して水蒸気(H2O)となって
放出されやすく、活性化の観点からみると、経済的であ
るという利点を有している。
In addition to the air, an inert gas such as nitrogen (N 2 ) or argon (Ar) can be sealed in the space between the inner wall and the outer wall. However, in the case of air, the copper foil is oxidized by oxygen (O 2 ) in the air, but the probability of collision between oxygen (O 2 ) and hydrogen (H 2 ) which is the main component of degassing increases. , And oxygen and hydrogen are easily combined to be released as water vapor (H 2 O), which has the advantage of being economical from the viewpoint of activation.

(作用) 前記第1発明の構成によれば、内壁と外壁の間の真空空
間に残留するガス又は内壁若しくは外壁から遊離するガ
スのうち、水素(H2)は内壁の表面を覆う活性化された
銅箔に吸収され、窒素(N2)は内壁表面と銅箔の間に介
装されたチタン又はジルコニウムに吸収されるため、当
該真空空間は高真空に保たれて断熱性が維持される。ま
た、チタン又はジルコニウムは内壁表面と銅箔の間に介
装されているため、何等保持部材を必要としない。
(Operation) According to the configuration of the first invention, hydrogen (H 2 ) of the gas remaining in the vacuum space between the inner wall and the outer wall or the gas liberated from the inner wall or the outer wall is activated to cover the surface of the inner wall. Is absorbed by the copper foil, and nitrogen (N 2 ) is absorbed by titanium or zirconium interposed between the inner wall surface and the copper foil, so that the vacuum space is kept at a high vacuum and the heat insulation is maintained. . Further, since titanium or zirconium is interposed between the inner wall surface and the copper foil, no holding member is required.

一方、前記第2発明によれば、第1工程Iで10-2Torrの
オーダー以上の低真真空に予備排気すると、内壁と外壁
の間の伝熱性が低下し断熱性が生じてくるが、10-2Torr
のオーダー程度では、伝熱性はさほど損なわれない。
On the other hand, according to the second aspect of the present invention, when pre-evacuating to a low true vacuum of the order of 10 -2 Torr or more in the first step I, the heat transfer between the inner wall and the outer wall is reduced, and heat insulation occurs. 10 -2 Torr
In the order of, the heat conductivity is not so much impaired.

このため、第2工程IIで略400℃以上に加熱する、炉熱
を直接受ける外壁の熱はふく射,伝導,対流によりすみ
やかに内壁に伝わり、内壁は短時間で昇温する。従っ
て、外壁はもちろん内壁の壁面より吸蔵ガスが遊離して
脱ガスが十分に、しかも短時間に行なわれる。また、内
壁が加熱されるに伴い、銅箔及びチタン又はジルコニウ
ムも加熱されて吸蔵ガスが放出され、活性化する。
For this reason, the heat of the outer wall, which is heated to approximately 400 ° C. or higher in the second step II and directly receives the heat of the furnace, is quickly transferred to the inner wall by radiation, conduction, and convection, and the inner wall is heated in a short time. Therefore, the occluded gas is liberated from the wall surface of the inner wall as well as the outer wall, and the degassing is sufficiently performed in a short time. Further, as the inner wall is heated, the copper foil and titanium or zirconium are also heated, and the stored gas is released and activated.

そして、さらに第3工程IIIで10-4Torrのオーダー以下
に排気処理すると、前記内壁又は外壁からの遊離ガス及
び銅箔,チタン又はジルコニウムからの放出ガスは残留
空気とともに外部に排出される。
Then, in the third step III, when the exhaust treatment is performed to the order of 10 −4 Torr or less, the free gas from the inner wall or the outer wall and the released gas from the copper foil, titanium or zirconium are exhausted to the outside together with the residual air.

この排出処理を終えた後、第4工程IVでチップ管法又は
ろう接法により真空封じ込みを行なうと、高真空の真空
二重構造体が得られるとともに、銅箔およびチタン又は
ジルコニウムがゲッターとして作用し、内壁と外壁の間
の真空空間に残留するガス、又は内壁若しくは外壁から
遊離するガスのうち、水素(H2)は銅箔に吸収され、窒
素(N2)はチタン又はジルコニウムに吸収されて断熱性
が維持される。
After completion of this discharging process, vacuum sealing is performed by the tip tube method or the brazing method in the fourth step IV to obtain a high vacuum vacuum double structure, and copper foil and titanium or zirconium as a getter. Of the gas that acts and remains in the vacuum space between the inner and outer walls, or the gas released from the inner or outer wall, hydrogen (H 2 ) is absorbed by the copper foil, and nitrogen (N 2 ) is absorbed by titanium or zirconium. The thermal insulation is maintained.

内壁又は外壁がSUS304等のオーステナイト系ステンレス
鋼であり、チップ管法により真空封じ込みを行なう場合
は、第2工程IIで当該ステンレス鋼の鋭敏化領域より低
い温度で加熱脱ガスを行なうことにより、鋭敏化による
耐食性の低下の虞れがなくなる。
When the inner wall or the outer wall is austenitic stainless steel such as SUS304 and vacuum sealing is performed by the tip tube method, by heating degassing at a temperature lower than the sensitization region of the stainless steel in the second step II, There is no risk of deterioration of corrosion resistance due to sensitization.

また、内壁又は外壁がオーステナイト系ステンレス鋼で
あり、ろう接法により真空封じ込みを行なう場合は、第
2工程IIで当該ステンレス鋼の鋭敏化領域を越える温度
で加熱脱ガスを行なうことにより、前記チップ管法と同
様耐食性の低下の虞れがなくなる。
Further, when the inner wall or the outer wall is austenitic stainless steel and vacuum sealing is performed by a brazing method, heating degassing is performed at a temperature exceeding the sensitization region of the stainless steel in the second step II, As with the tip tube method, there is no risk of deterioration in corrosion resistance.

(実施例) 次に、本発明の実施例を添付図面に従って説明する。(Example) Next, the Example of this invention is described according to an accompanying drawing.

i)第1発明の実施例 第1実施例 第1図は、本発明に係る魔法瓶用の真空二重容器1で、
上部2aと下部2bの2分割に形成しておいたステンレス鋼
製の外容器2に、外表面を厚さ16.5μ,重量12gの銅箔3
aで覆うとともに、厚さ25μ,重量0.8gのチタン箔3bを
巻き込んでステンレス鋼製の内容器3を挿入して、内容
器3と外容器2の上部2aを口部Yで接合し、さらに、外
容器2の上部2aと下部2bをX部で接合して、二重壁構造
に形成するとともに、外容器2の底部に排気用のチップ
管4を設けたものである。
i) Example of First Invention First Example FIG. 1 shows a vacuum double container 1 for a thermos bottle according to the present invention.
An outer container 2 made of stainless steel, which was formed by dividing the upper part 2a and the lower part 2b into two parts, had a copper foil with an outer surface of 16.5μ and a weight of 12g.
Along with covering with a, a titanium foil 3b having a thickness of 25 μm and a weight of 0.8 g is rolled up, the inner container 3 made of stainless steel is inserted, the inner container 3 and the upper part 2a of the outer container 2 are joined at the mouth portion Y, and The upper part 2a and the lower part 2b of the outer container 2 are joined at the X portion to form a double wall structure, and the tip pipe 4 for exhaust is provided at the bottom of the outer container 2.

なお、チップ管4と対抗する内容器3の底外面の中央部
は銅箔3aで覆われないで露出されている。
The central portion of the bottom outer surface of the inner container 3 facing the tip tube 4 is exposed without being covered with the copper foil 3a.

そして、外容器2と内容器3の間の空間部は、チップ管
4を介して加熱排気処理するとともに、銅箔3a及びチタ
ン箔3bを活性化させた後、チップ管4を挟み切ることに
より真空封じ込みされている。
Then, the space between the outer container 2 and the inner container 3 is heated and exhausted through the chip tube 4, and after activating the copper foil 3a and the titanium foil 3b, the chip tube 4 is sandwiched. It is vacuum-sealed.

以上の構成からなる真空二重容器1において、製造時に
チップ管4より排気されないで外容器2と内容器3の間
の真空空間5に残留するガス、又は真空封じ込み後に外
容器2若しくは内容器3から遊離するガスのうち、水素
(H2)は活性化された銅箔3aのゲッター作用により銅箔
3aに吸収される。また、窒素(N2)は活性化されたチタ
ン箔3bのゲッター作用によりチタン箔3bに吸収される。
このため、外容器2と内容器3の間の真空空間5は高真
空に保たれ、断熱性が維持される。
In the vacuum double container 1 having the above structure, the gas that is not exhausted from the tip tube 4 during manufacturing and remains in the vacuum space 5 between the outer container 2 and the inner container 3, or the outer container 2 or the inner container after vacuum sealing Hydrogen (H 2 ) in the gas released from 3 is a copper foil due to the getter action of the activated copper foil 3a.
It is absorbed by 3a. Further, nitrogen (N 2 ) is absorbed by the titanium foil 3b by the getter action of the activated titanium foil 3b.
Therefore, the vacuum space 5 between the outer container 2 and the inner container 3 is maintained at a high vacuum, and the heat insulation is maintained.

第2実施例 第2図,第3図は、本発明の実施例に係る魔法瓶用の二
重容器1aで、前記二重容器1の外容器2のチップ管4の
替わりに、開口部4aを形成して、該開口部4aに中央に排
気口6を有する排気口縁部材7を嵌合して接合し、当該
排気口6に排気口閉塞部材8をろう材9を介して設置
し、外容器2と内容器3の間の空間部は開口部4aを介し
て加熱排気処理した後、ろう材9を溶融させて開口部4a
を排気口閉塞部材8で閉塞することにより真空封じ込み
した以外は実質的に同一であり、対応する部分には同一
番号を付して説明を省略する。
Second Embodiment FIGS. 2 and 3 show a double container 1a for a thermos bottle according to an embodiment of the present invention. Instead of the tip tube 4 of the outer container 2 of the double container 1, an opening 4a is provided. An exhaust port edge member 7 having an exhaust port 6 in the center is fitted and joined to the opening 4a, and an exhaust port closing member 8 is installed on the exhaust port 6 via a brazing material 9 The space between the container 2 and the inner container 3 is heated and exhausted through the opening 4a, and then the brazing filler metal 9 is melted to form the opening 4a.
Are substantially the same except that they are vacuum-sealed by closing with the exhaust port closing member 8, and corresponding parts are given the same numbers and their explanations are omitted.

以上の構成からなる真空二重容器1aにおいて、銅箔3a及
びチタン箔3bは、前記第1実施例と同様、ゲッターとし
て作用するため、外容器2と内容器3の間の真空空間5
は高真空に保たれ、断熱性が維持される。
In the vacuum double container 1a having the above structure, the copper foil 3a and the titanium foil 3b act as getters as in the first embodiment, so that the vacuum space 5 between the outer container 2 and the inner container 3 is formed.
Is kept in a high vacuum and the heat insulation is maintained.

第3実施例 第4図は凍結防止用の給水パイプ等に用いられる真空二
重パイプを示し、概略、給水パイプ10と、外筒11と、連
結部材13,14とで構成されている。
Third Embodiment FIG. 4 shows a vacuum double pipe used as an antifreezing water supply pipe and the like, which is roughly composed of a water supply pipe 10, an outer cylinder 11, and connecting members 13 and 14.

給水パイプ10は内径22mm、厚さ1mmのステンレスパイプ
で、外筒11が外装される部分は銅箔10aにより被覆され
るとともに、給水パイプ10と銅箔10aの間にチタン箔10b
が巻き込まれている。なお、外筒11とのギャップを一定
に保持するとともに、外筒11と給水パイプ10との熱接触
をできるだけ防止するようにした適宜スペーサを設けて
もよい。外筒11は内径42mm、厚さ1.2mmのステンレスパ
イプで、給水パイプ10に外装されるようになっており、
上流側の外周部には銅製のチップ管12が取り付けてあ
る。連結部材13,14はステンレス材で形成された断面コ
字状のリング部材で、給水パイプ10に挿通されて給水パ
イプ10の外面と外筒11の端部に全周溶接され、給水パイ
プ10と外筒11の間の空間部を蓋するようになっている。
The water supply pipe 10 is a stainless pipe having an inner diameter of 22 mm and a thickness of 1 mm, and a portion where the outer cylinder 11 is externally covered is covered with a copper foil 10a, and a titanium foil 10b is provided between the water supply pipe 10 and the copper foil 10a.
Is involved. An appropriate spacer may be provided to keep the gap with the outer cylinder 11 constant and prevent thermal contact between the outer cylinder 11 and the water supply pipe 10 as much as possible. The outer cylinder 11 is a stainless steel pipe with an inner diameter of 42 mm and a thickness of 1.2 mm, which is designed to be fitted on the water supply pipe 10.
A copper tip tube 12 is attached to the outer peripheral portion on the upstream side. The connecting members 13 and 14 are ring members having a U-shaped cross section formed of a stainless material, which are inserted into the water supply pipe 10 and welded all around the outer surface of the water supply pipe 10 and the end of the outer cylinder 11 to form the water supply pipe 10. A space between the outer cylinders 11 is covered.

そして、この空間部はチップ管12を介して加熱排気処理
するとともに、銅箔10a及びチタン箔10bを活性化させた
後、チップ管12を挟み切ることにより真空封じ込みされ
ている。
Then, this space is heated and exhausted through the chip tube 12, and after the copper foil 10a and the titanium foil 10b are activated, the chip tube 12 is sandwiched and vacuum-sealed.

また、外筒11の両端及び連結部材13,14の外側にステン
レス材からなるキャップ15,16が夫々装着され、該キャ
ップ15,16と連結部材13,14との間にシール剤17,17が夫
々注入されるとともに、キャップ16の下流側と別のキャ
ップ18とで前記チップ管12を覆い、適宜シール剤等で封
止されている。なお、図示するように、チップ管12をキ
ャップ19で覆い、その内部にシール剤17を充填してもよ
い。
Further, caps 15 and 16 made of stainless steel are attached to both ends of the outer cylinder 11 and outside of the connecting members 13 and 14, respectively, and sealing agents 17 and 17 are provided between the caps 15 and 16 and the connecting members 13 and 14, respectively. Each chip tube 12 is injected, and the tip tube 12 is covered with the downstream side of the cap 16 and another cap 18 and is appropriately sealed with a sealant or the like. As shown in the drawing, the tip tube 12 may be covered with the cap 19 and the inside thereof may be filled with the sealant 17.

以上の構成からなる真空二重パイプにおいて、銅箔10a
及びチタン箔10bは前記第1実施例と同様、ゲッターと
して作用するため、給水パイプ10と外筒11の間の真空空
間20は高真空に保たれ、断熱性が維持される。
In the vacuum double pipe configured as above, the copper foil 10a
Since the titanium foil 10b and the titanium foil 10b act as a getter as in the first embodiment, the vacuum space 20 between the water supply pipe 10 and the outer cylinder 11 is kept at a high vacuum and the heat insulation is maintained.

第4実施例 前記第3実施例に係る真空二重パイプにおいて、チップ
管12を挟み切って真空封じ込みする替わりに、前記第2
実施例のように開口部を形成し、該開口部を閉塞部材で
閉塞してろう接した。
Fourth Embodiment In the vacuum double pipe according to the third embodiment, instead of sandwiching the tip tube 12 and vacuum-sealing it, the second tube is used.
An opening was formed as in the example, and the opening was closed with a closing member and brazed.

この場合においても、銅箔10a及びチタン箔10bのゲッタ
ー作用により給水パイプ10と外筒11の間の真空空間20は
高真空に保たれ、断熱性が維持される。
Even in this case, the vacuum space 20 between the water supply pipe 10 and the outer cylinder 11 is kept at a high vacuum by the gettering action of the copper foil 10a and the titanium foil 10b, and the heat insulating property is maintained.

ii)第2発明の実施例 第1実施例 前記第1図に示すような真空二重容器1を製造するに
は、まず、外容器2と、外表面を銅箔3aで覆うとともに
チタン箔3bを巻き込んだ内容器3とで二重壁構造に形成
し、この二重容器1を加熱炉に入れてチップ管4を真空
ポンプに接続する。
ii) Example of the Second Invention First Example To manufacture the vacuum double container 1 as shown in FIG. 1, first, the outer container 2 and the outer surface are covered with the copper foil 3a and the titanium foil 3b. Is formed into a double-walled structure with the inner container 3 in which is wound, the double container 1 is put into a heating furnace, and the tip tube 4 is connected to a vacuum pump.

そして、第7図に示すように、第1工程21で、内容器3
と外容器2の間の空間5を予備排気して1×10-2Torrの
低真空にする。このとき、チップ管4と対向する内容器
3の底外面には銅箔3aで覆われていないので、排気処理
中当該銅箔3aが吸い上げられることはない。
Then, as shown in FIG. 7, in the first step 21, the inner container 3
The space 5 between the outer container 2 and the outer container 2 is pre-evacuated to a low vacuum of 1 × 10 -2 Torr. At this time, since the outer surface of the bottom of the inner container 3 facing the tip tube 4 is not covered with the copper foil 3a, the copper foil 3a is not sucked up during the exhaust treatment.

この低真空状態のまま第2工程22で、400〜450℃に加熱
する。このとき、炉熱を直接受けて加熱された外容器2
の熱は、ふく射熱と、口部Yの熱伝達と、空間5内の残
留ガスを介して行なわれる対流伝熱とにより内容器3に
伝わる。第1工程21で1×10-2Torrの低真空に排気され
てはいるが、この程度の真空度では空間5内の残留ガス
による対流伝熱が支配的となり、外容器2から内容器3
への伝熱性はさほど損なわれない。このため、外容器2
の熱はすみやかに内容器3に伝わり、内容器3は10〜20
分程度で昇温する。従って、外容器2はもちろん内容器
3の外表面より、吸蔵ガスが空間5内に遊離して脱ガス
が十分に、しかも短時間に行なわれる。また、この内容
器3が加熱されると同時に銅箔3a及びチタン箔3bも加熱
されて活性化し、水蒸気(H2O),窒素(N2),二酸化
炭素(CO2),一酸化炭素(CO)等が銅箔3a及びチタン
箔3bの表面より放出される。
In the second step 22 in this low vacuum state, heating is performed at 400 to 450 ° C. At this time, the outer container 2 directly heated by the furnace heat
Is transmitted to the inner container 3 by the radiant heat, the heat transfer of the mouth portion Y, and the convective heat transfer performed via the residual gas in the space 5. Although exhausted to a low vacuum of 1 × 10 -2 Torr in the first step 21, convective heat transfer due to residual gas in the space 5 becomes dominant at this degree of vacuum, and the outer container 2 to the inner container 3
The heat transfer to is not so bad. Therefore, the outer container 2
The heat of is quickly transferred to the inner container 3, and the inner container 3 is
The temperature is raised in about a minute. Therefore, the occluded gas is released into the space 5 from the outer surface of the outer container 2 as well as the outer surface of the inner container 3, so that degassing is sufficiently performed in a short time. Further, at the same time when the inner container 3 is heated, the copper foil 3a and the titanium foil 3b are also heated and activated, and steam (H 2 O), nitrogen (N 2 ), carbon dioxide (CO 2 ), carbon monoxide ( CO) is released from the surfaces of the copper foil 3a and the titanium foil 3b.

なお、この第2工程22における加熱はステンレス鋼の鋭
敏化領域より低い温度で行なわれるため、鋭敏化による
耐食性の低下の虞れはない。
Since the heating in the second step 22 is performed at a temperature lower than that of the sensitized region of stainless steel, there is no fear of deterioration of corrosion resistance due to sensitization.

そして、この第2工程22の温度を維持したまま、第3工
程23でさらに排気して1×10-4Torrの高真空にする。こ
のとき、空間5内の残留ガス,内容器3又は外容器2か
らの遊離ガス及び銅箔3a若しくはチタン箔3bからの放出
ガスは、チップ管4を通って外部に排出される。
Then, while maintaining the temperature of the second step 22, the gas is further evacuated in the third step 23 to obtain a high vacuum of 1 × 10 −4 Torr. At this time, the residual gas in the space 5, the free gas from the inner container 3 or the outer container 2 and the released gas from the copper foil 3a or the titanium foil 3b are discharged to the outside through the tip tube 4.

次に、この高真空状態を維持したまま第4工程24で冷却
し、第5工程25でチップ管4をピンチオフして真空封じ
込みを行なう。
Next, while maintaining this high vacuum state, it is cooled in the fourth step 24, and in the fifth step 25, the chip tube 4 is pinched off and vacuum sealed.

以上の工程により製造された真空二重容器は、第2工程
22で外容器2はもちろん内容器3からも十分に脱ガスが
行なわれているため、真空封じ込み後の吸蔵ガスの遊離
が少なく、断熱性が安定化する。
The vacuum double container manufactured by the above process is the second process.
At 22, the outer container 2 as well as the inner container 3 is sufficiently degassed, so that the stored gas is less released after the vacuum containment, and the heat insulation is stabilized.

また、第2工程22で、銅箔3aの活性化により水蒸気(H2
O)の形で水素(H2)等が放出され、またチタン箔3bの
活性化により窒素(N2)が放出されているため、真空封
じ込み後の銅箔3a及びチタン箔3bはガス吸収作用すなわ
ちゲッター作用を有する。従って、真空封じ込み後に空
間5内に残留するガス、又は内容器3若しくは外容器2
から遊離するガスのうち、水素(H2)は銅箔3aに吸収さ
れ、窒素(N2)はチタン箔3bに吸収されるため、断熱性
が低下することはない。
In addition, in the second step 22, steam (H 2
Hydrogen (H 2 ) is released in the form of O), and nitrogen (N 2 ) is released due to the activation of the titanium foil 3b, so the copper foil 3a and titanium foil 3b after vacuum containment absorb gas. It has an action, that is, a getter action. Therefore, the gas remaining in the space 5 after the vacuum containment, or the inner container 3 or the outer container 2
Hydrogen (H 2 ) of the gas released from the is absorbed by the copper foil 3a and nitrogen (N 2 ) is absorbed by the titanium foil 3b, so that the heat insulating property does not deteriorate.

なお、この銅箔3aは内容器3aからのふく射伝熱を防止す
る作用を奏することは言うまでもない。また、チタン箔
3bは銅箔3aにより内容器3の外表面に巻き込まれている
ため、脱落することはなく、何等保持部材を必要としな
い。
Needless to say, the copper foil 3a has a function of preventing radiation heat transfer from the inner container 3a. Also titanium foil
Since 3b is wrapped around the outer surface of the inner container 3 by the copper foil 3a, it does not fall off and no holding member is required.

第2実施例 前記第2図に示すような真空二重容器1aを製造するに
は、まず二重容器1aを倒立させて、第3図に示すよう
に、排気口6の外周縁に環状波形のろう材9を設置し、
このろう材9の上に排気口閉塞部材8を載せた後、真空
加熱炉中にセットする。
Second Example In order to manufacture the vacuum double container 1a as shown in FIG. 2, first, the double container 1a is inverted, and as shown in FIG. Install brazing material 9 of
The exhaust port closing member 8 is placed on the brazing material 9 and then set in a vacuum heating furnace.

そして、第8図に示すように、第1工程31で前記第1実
施例に係る製造方法の第1工程21と同様、1×10-2Torr
の低真空に予備排気し、第2工程32で850〜950℃に加熱
して銅箔3a及びチタン箔3bを活性化するとともに脱ガス
を行なった後、第3工程33で1×10-4Torrの高真空に排
気する。次に、この高真空状態を保ったまま第4工程34
で1000℃前後に加熱すると、ろう材9が溶融して排気口
閉塞部材8が重力の作用により排気口縁部材7の上に降
下して排気口6を閉塞する。続いて、第5工程35で急冷
するとろう材9が急激に凝固し、内外両容器間の空間5
を高真空に維持したまま排気口縁部材7と排気口閉塞部
材8の間が、第5図に示すように完全に封止される。
Then, as shown in FIG. 8, 1 × 10 −2 Torr is used in the first step 31 as in the first step 21 of the manufacturing method according to the first embodiment.
Pre-evacuated to a low vacuum and heated to 850-950 ° C in the second step 32 to activate the copper foil 3a and the titanium foil 3b and degas, and then in the third step 33, 1 × 10 -4 Evacuate to high Torr vacuum. Next, while maintaining this high vacuum state, the fourth step 34
When heated to around 1000 ° C., the brazing filler metal 9 melts and the exhaust port closing member 8 descends onto the exhaust port edge member 7 due to the action of gravity to close the exhaust port 6. Then, when it is rapidly cooled in the fifth step 35, the brazing filler metal 9 is rapidly solidified, and the space 5 between the inner and outer containers is
While maintaining a high vacuum, the space between the exhaust port edge member 7 and the exhaust port closing member 8 is completely sealed as shown in FIG.

この第2実施例に係る製造方法では、第1工程31で1×
10-2Torrの低真空に予備排気されているため、前記第1
実施例に係る製造方法と同様、第2工程32における加熱
脱ガスが十分に、しかも短時間に行なわれるとともに、
第3工程33における真空排気処理時間も短くて済む。
In the manufacturing method according to the second embodiment, 1 × is used in the first step 31.
Since it was evacuated to a low vacuum of 10 -2 Torr,
Similar to the manufacturing method according to the embodiment, the heating degassing in the second step 32 is sufficiently performed in a short time, and
The vacuum exhaust processing time in the third step 33 can be shortened.

また、第2工程32における加熱により銅箔3a及びチタン
箔3bが活性化して前記第1実施例に係る製造方法と同
様、水蒸気(H2O),窒素(N2)等が放出されるため、
銅箔3a及びチタン箔3bは真空封じ込み後にゲッターとし
て作用し、空間5内の残留ガス及び内容器3又は外容器
2から遊離するガスが吸収され、断熱性が低下すること
はない。
Further, since the copper foil 3a and the titanium foil 3b are activated by the heating in the second step 32 and water vapor (H 2 O), nitrogen (N 2 ) and the like are released as in the manufacturing method according to the first embodiment. ,
The copper foil 3a and the titanium foil 3b act as getters after the vacuum sealing, and the residual gas in the space 5 and the gas released from the inner container 3 or the outer container 2 are absorbed, and the heat insulating property is not deteriorated.

さらに、第2工程32でステンレス鋼の鋭敏化領域を越え
る温度で加熱して第5工程35で急冷するため、ステンレ
ス鋼が鋭敏化領域にさらされる時間が著しく短く、鋭敏
化して耐食性が低下する虞れはない。
Further, in the second step 32, heating is performed at a temperature exceeding the sensitization region of the stainless steel and quenching is performed in the fifth step 35, so that the time period during which the stainless steel is exposed to the sensitization region is extremely short, and the sensitization reduces corrosion resistance. There is no fear.

なお、前記第1,第2実施例では、第1工程21,31におい
て1×10-2Torrに予備排気したが、この数値に限定され
るものではなく、10-2Torrのオーダーから100Torr程度
の低真空に排気すればよい。また、第3工程23,33にお
ける真空度も、1×10-4Torrに限定されるものではな
く、10-4Torrのオーダーあるいはそれ以下の高真空領域
であればよい。
In addition, in the first and second embodiments, preliminary evacuation to 1 × 10 -2 Torr was performed in the first steps 21 and 31, but the number is not limited to this value, and is in the order of 10 -2 Torr to about 100 Torr. It may be evacuated to a low vacuum. Also, the degree of vacuum in the third steps 23 and 33 is not limited to 1 × 10 −4 Torr and may be in the high vacuum region of the order of 10 −4 Torr or less.

第3実施例 前記第4図に示すような真空二重パイプを製造するに
は、まず第5図に示すように、給水パイプ10の下流側に
連結部材13をそのコ字状内面を下流側に向けて外装し、
矢印Aで指し示す点を全周溶接し、外筒11の上流側端部
に連結部材14をそのコ字状内面を上流側に向けて内装
し、矢印Bで指し示す点を全周溶接する。
Third Embodiment In order to manufacture a vacuum double pipe as shown in FIG. 4, first, as shown in FIG. 5, a connecting member 13 is provided on the downstream side of the water supply pipe 10 and its U-shaped inner surface is provided on the downstream side. Exterior,
The point indicated by the arrow A is welded on the entire circumference, the connecting member 14 is internally mounted at the upstream end of the outer cylinder 11 with its U-shaped inner surface facing the upstream side, and the point indicated by the arrow B is welded on the entire circumference.

そして、給水パイプ10の外表面を銅箔10aで覆い、この
銅箔10aと給水パイプ10の間にチタン箔10bを巻き込んで
おく。次に、吸水パイプ10の上流側から外筒11を外装
し、矢印C,Dで指し示す点を全周溶接し、給水パイプ10
の外側に、外筒11と連結部材13,14で囲まれて空間部を
形成する。なお、給水パイプ10に外筒11を外装する際、
最終位置近くまで給水パイプ10、外筒11の先端は夫々連
結部材14,13と接触しないため、無理なく容易に行なう
ことができる。また、給水パイプ10の外面に設けた銅箔
10aを損傷することもない。
Then, the outer surface of the water supply pipe 10 is covered with the copper foil 10a, and the titanium foil 10b is wound between the copper foil 10a and the water supply pipe 10. Next, the outer cylinder 11 is sheathed from the upstream side of the water absorption pipe 10, and the points indicated by arrows C and D are welded all around to form the water supply pipe 10.
A space is formed on the outer side of the space surrounded by the outer cylinder 11 and the connecting members 13 and 14. In addition, when the outer cylinder 11 is mounted on the water supply pipe 10,
Since the tips of the water supply pipe 10 and the outer cylinder 11 do not come into contact with the connecting members 14 and 13, respectively, up to near the final position, they can be easily performed without difficulty. Also, copper foil provided on the outer surface of the water supply pipe 10.
It also does not damage 10a.

次に、給水パイプ10と外筒11の間の空間部の加熱排気処
理及び真空封じ込み処理を行なうが、その方法は前記第
1実施例における方法と同一であり、その作用,効果も
同一であるため、説明を省略する。
Next, the heating / exhausting process and the vacuum sealing process of the space between the water supply pipe 10 and the outer cylinder 11 are performed. The method is the same as the method in the first embodiment, and the operation and effect are also the same. Therefore, the description thereof will be omitted.

この製造過程において、常温状態から炉内に入れて加熱
すると、まず、外筒11の温度が上がり、その後給水パイ
プ10の温度が後を追って上昇していくため、加熱時にあ
っては、外筒11の膨張量が大きく、連結部材13,14の外
側,内側は第4図中夫々矢印a,b方向に力を受けて変形
する。
In this manufacturing process, when the material is put into the furnace from room temperature and heated, first, the temperature of the outer cylinder 11 rises, and then the temperature of the water supply pipe 10 rises later. The expansion amount of 11 is large, and the outside and the inside of the connecting members 13 and 14 are deformed by receiving forces in the directions of arrows a and b in FIG. 4, respectively.

逆に冷却に移ると、外筒11の方が給水パイプ10よりも早
く冷却されるため、冷却時にあっては、外筒11の収縮量
が大きく、前記加熱時とは逆に、連結部材13,14は夫々
矢印a′,b′方向に力を受けて変形する。
On the contrary, when the cooling is started, the outer cylinder 11 is cooled faster than the water supply pipe 10, so that the contraction amount of the outer cylinder 11 is large at the time of cooling. , 14 are deformed by receiving forces in the directions of arrows a'and b ', respectively.

このように、連結部材13,14は加熱時と冷却時とでは全
く逆方向に力を受けることになるが、連結部材13,14
は、その内リング部及び外リング部に対して中間の連結
部が略直角を為し、両方向に自由度を有するため、変形
時に無理な応力がかからず破損するようなことはない。
In this way, the connecting members 13 and 14 receive forces in completely opposite directions during heating and cooling, but the connecting members 13 and 14
Since the intermediate connecting portion forms a substantially right angle with respect to the inner ring portion and the outer ring portion and has a degree of freedom in both directions, it is free from excessive stress during deformation and is not damaged.

iii)確認テスト 本発明者らは、本第2発明に係る方法により製造したス
テンレス鋼製真空二重容器の保温性を確認するためのテ
ストを行なった。
iii) Confirmation test The present inventors conducted a test for confirming the heat retaining property of the stainless steel vacuum double container manufactured by the method according to the second invention.

この保温性テストにおいては、表1に示す条件で、本発
明に係る方法により製造したステンレス鋼製真空二重容
器で、内容器を異なる肉厚を有する銅箔で覆うとともに
チタン箔を巻き込んだものと各々5本づつテスト試料と
した。
In this heat retention test, under the conditions shown in Table 1, a stainless steel vacuum double container manufactured by the method according to the present invention, in which the inner container was covered with copper foils having different wall thicknesses, and titanium foil was rolled up 5 samples each were used as test samples.

また、これと比較するため、従来の方法により製造した
ステンレス鋼製真空二重容器の試料として、表2−1,表
2−2に示すものを用意した。
For comparison with this, as a sample of a stainless steel vacuum double container manufactured by a conventional method, those shown in Table 2-1 and Table 2-2 were prepared.

なお、いずれの試料もゲッターは使用されていない。 No getter was used in any of the samples.

そして、各試料について、 初期:製造直後、 製造後1週間95℃雰囲気下に置いた後、 製造後2週間(よりさらに1週間) 95℃雰囲気下に置いた後、 製造後4週間(よりさらに2週間) 95℃雰囲気下に置いた後、 製造後3月(よりさらに2月) 95℃雰囲気下に置いた後、 製造後4月(よりさらに1月) 95℃雰囲気下においた後、 の6段階において、95℃の熱湯を内容器1に入れて20℃
雰囲気中での24時間後のその湯の温度を測定することに
より、保温性をテストした。
For each sample, initial: immediately after production, after 1 week of production at 95 ° C atmosphere, then 2 weeks of production (more 1 week), after being placed at 95 ° C atmosphere, 4 weeks after production (more 2 weeks) After placing in a 95 ° C atmosphere, in March after manufacturing (more February) After placing in a 95 ° C atmosphere, in April after manufacturing (more January) After placing in a 95 ° C atmosphere, In 6 steps, put hot water of 95 ℃ in the inner container 1 and 20 ℃
Thermal retention was tested by measuring the temperature of the hot water after 24 hours in the atmosphere.

このテスト結果のうち、本発明のテスト試料のものを表
3に、従来の比較試料のものを第9a図〜第9d図及び第10
a図〜第10d図に示す。第9a図〜第9d図,第10a図〜第10d
図において、温度曲線の上下によって95℃の熱湯の24時
間保温後の温度降下、すなわち24時間保温力の大小を知
ることができ、温度曲線の減少勾配によってエージング
による真空度の低下、すなわち真空維持力の大小を知る
ことができる。また、同一種類の材料、例えA2,A3,A4
ついて各図を比較することによって製造時の排気時間の
長短の影響を知ることができる。
Of these test results, those of the test sample of the present invention are shown in Table 3, and those of the conventional comparative sample are shown in FIGS. 9a to 9d and FIG.
Shown in Figures a-10d. 9a to 9d, 10a to 10d
In the figure, it is possible to know the temperature drop of 95 ° C hot water after 24 hours of warming, that is, the magnitude of the 24-hour heat retention, by the upper and lower sides of the temperature curve. You can know the magnitude of your strength. In addition, by comparing the figures of the same type of material, for example, A 2 , A 3 , and A 4 , it is possible to know the influence of the length of the exhaust time during manufacturing.

本テスト結果により保温性及び排気時間に関する次の事
項が確認された。
The results of this test confirmed the following items regarding heat retention and exhaust time.

表3中の各試料I,IIの平均値から明らかなように、
真空維持力は、試料Iでは1週間後に1℃低下し、試料
IIでは1週間後に0.8℃低下、2週間後にさらに0.2℃以
下するだけで、その後は上昇傾向にある。従って、本発
明に係る方法によれば、真空維持力は横這いで、ほとん
ど低下することはない。
As is clear from the average value of each sample I and II in Table 3,
The vacuum holding power decreased by 1 ° C after 1 week in Sample I,
In II, the temperature decreases by 0.8 ° C after 1 week, further decreases to 0.2 ° C or less after 2 weeks, and thereafter tends to increase. Therefore, according to the method of the present invention, the vacuum maintaining force is flat and hardly decreases.

また、試料IIは試料Iより温度が若干高いことから、銅
箔が薄いほど初期においては24時間保温力がよいことを
示している。これは、両者の排気時間が同一であること
からすると、銅箔が薄いほど内容器3との密着度が高く
て熱の吸収が早く、真空排気処理時の活性化によるガス
の放出が十分に行なわれ、真空封じ込み後のガス吸収能
力が高くなっているものと推測される。
Further, since the temperature of Sample II is slightly higher than that of Sample I, it is shown that the thinner the copper foil, the better the heat retention for 24 hours in the initial stage. This is because the exhaust time of both is the same, the thinner the copper foil, the higher the degree of adhesion with the inner container 3 and the faster the absorption of heat, and the sufficient release of gas due to activation during vacuum exhaust processing. It is presumed that the gas absorption capacity after vacuum containment is high.

表3中試料Iと排気方式及びチタン箔を除き、同条件
である第9c図の試料B3とを比較すると明らかなように、
試料Iの真空維持力の低下は1℃程度であるのに対し、
試料B3の真空維持力は2週間後に約3℃低下している。
従って、本発明に係る方法によれば、従来の方法と比べ
て真空維持力が向上している。
As is clear from a comparison between Sample I in Table 3 and Sample B 3 of FIG. 9c under the same conditions except for the exhaust method and titanium foil,
While the decrease in the vacuum maintaining power of Sample I is about 1 ° C,
The vacuum maintaining power of the sample B 3 is reduced by about 3 ° C. after 2 weeks.
Therefore, according to the method of the present invention, the vacuum maintaining power is improved as compared with the conventional method.

また、試料Iでは曲線の底ピークが1週間後にあるのに
対し、試料A3では2週間後である。このように、早期に
ピークが来るのは、吸蔵ガスの遊離が少ないこと及び/
又は銅箔及びチタン箔のゲッター作用が大であることを
示している。
Further, the bottom peak of the curve is after 1 week in the sample I, whereas it is after 2 weeks in the sample A 3 . Thus, an early peak is due to less liberation of stored gas and / or
Alternatively, it shows that the getter action of the copper foil and the titanium foil is large.

表3中試料Iと第9a図の試料B1との比較すると明らか
なように、両者は同程度の24時間保温力を有し、かつ、
真空維持力も横這い傾向にあるが、試料Iの排気時間が
50(10+40)分であるのに対し、試料B1の排気時間は10
0分である。従って、本発明に係る方法によれば、従来
の方法に比べて50分の排気時間の短縮が可能である。
As is clear from a comparison between sample I in Table 3 and sample B 1 in FIG. 9a, both have the same 24-hour heat retention, and
The vacuum maintaining power also tends to level off, but the evacuation time of sample I
50 (10 + 40) minutes, whereas sample B 1 exhaust time is 10
0 minutes. Therefore, the method according to the present invention can shorten the exhaust time by 50 minutes as compared with the conventional method.

第9a図〜第9d図は、本発明とは異なる製造方法により
製造した試料のものではあるが、内容器を銅箔で覆った
試料A2〜A4,B1〜B4があるため、銅箔のゲッター作用に
よる効果を知ることができる。すなわち、 イ.内容器を銅箔で覆ったものは、その他のものに比べ
て24時間保温力,真空維持力共に格段に優れている。
Since the 9a view, second 9d figure, different from the present invention is intended for samples prepared by the manufacturing method, but there is a sample A 2 ~A 4, B 1 ~B 4 covering the inner container with copper foil, It is possible to know the effect of the getter action of the copper foil. That is, a. The one in which the inner container is covered with copper foil is far superior to the others in terms of 24-hour heat retention and vacuum retention.

ロ.排気時間が長いと真空維持力は横這いとなり、低下
の度合が少ない。また、拝気時間が短いと、真空維持力
は不安定となり、製造後2週間までは低下し、その後は
向上する傾向にある。これは、排気時間が短いときは内
容器又は外容器及び銅箔の壁面の脱ガスが不十分である
ため、真空封じ込み直後に吸蔵ガスの遊離量がゲッター
としての銅箔のガス吸収量より大きく、ゲッター作用が
追り付かないからであり、その後吸蔵ガスが離脱してし
まうと銅箔のゲッター作用が優位となりガス吸収が加速
されるからである。
B. If the evacuation time is long, the vacuum maintenance power will level off and the degree of decrease will be small. Further, when the worship time is short, the vacuum maintaining power becomes unstable, and it tends to decrease until 2 weeks after the production and then improve. This is because the degassing of the inner container or outer container and the wall surface of the copper foil is insufficient when the exhaust time is short, so the amount of stored gas released immediately after vacuum sealing is greater than the amount of gas absorbed by the copper foil as a getter. This is because the getter action is large and the getter action cannot be followed up, and if the occluded gas is subsequently desorbed, the getter action of the copper foil becomes dominant and gas absorption is accelerated.

第10a図〜第10d図は、本発明とは異なる製造方法によ
り製造した試料のものではあるが、この試料F2〜F4,G1
〜G4は内容器をアルミ箔で覆ったものであるため、第9a
図〜第9d図に示す内容器を銅箔で覆った試料A2〜A4,B1
〜B4と比較することにより、銅箔のゲッター作用による
効果を知ることができる。すなわち、 イ.同じ排気時間のもの、例えば第9a図中の試料B1と第
10a図中の試料B2とを比べると、明らかなように、内容
器を銅箔で覆ったものはアルミ箔で覆ったものより24時
間保温力が良く、また真空維持力も安定している。
Figure 10a, second 10d figure, although the present invention is intended for samples prepared by different manufacturing methods, the sample F 2 ~F 4, G 1
~ G 4 is the inner container covered with aluminum foil, so
Sample A 2 to A 4 of the inner vessel was covered with copper foil shown in FIGS., Second 9d FIG, B 1
By comparing with ~ B 4 , it is possible to know the effect of the getter action of the copper foil. That is, a. For the same evacuation time, for example sample B 1 and
As is clear from a comparison with Sample B 2 in Fig. 10a, the one in which the inner container is covered with copper foil has a better 24-hour heat retention than the one covered with aluminum foil, and the vacuum maintaining power is also stable.

ロ.第9a図〜第9d図の試料C2〜C4,D2〜D4はブランク品
(メッキも箔もない)を示すものでこれらの1ケ月以降
の復帰傾向は、内容器3からの遊離ガスの量に対し、外
容器2のガス吸収能力が逆転したことを示唆し、その後
の傾きの大きさは、その量の大きさを示唆している。
B. Samples C 2 to C 4 and D 2 to D 4 in FIGS. 9a to 9d represent blank products (no plating or foil), and the tendency of recovery after one month was It is suggested that the gas absorption capacity of the outer container 2 is reversed with respect to the amount of gas, and the magnitude of the inclination thereafter indicates the magnitude of that amount.

そこで、第10a図〜第10d図のアルミ箔における逆転のポ
イントと傾きの大きさを見ると、前記試料C2〜C4,D2〜D
4と大差ないので、この条件でのアルミ箔の活性化は、
ほとんどないと言える。アルミ箔のゲッター作用は期待
できない。
Therefore, looking at the points of reversal and the magnitude of inclination in the aluminum foils of FIGS. 10a to 10d, the samples C 2 to C 4 and D 2 to D were examined.
Since it is not much different from 4 , activation of aluminum foil under these conditions is
It can be said that it is rare. The getter action of aluminum foil cannot be expected.

一方、本発明者らは、さらに真空二重パイプについても
確認テストを行なったが、その結果、凍結防止パイプの
上部及び下部を摂氏5℃の雰囲気に保ち、それらの間を
摂氏−30℃の低温状態にさらしても、内部の水は約80時
間凍結しないという結果を得た。
On the other hand, the present inventors further conducted a confirmation test on a vacuum double pipe, and as a result, kept the upper and lower portions of the antifreezing pipe at an atmosphere of 5 ° C and kept a temperature of -30 ° C between them. The result shows that the water inside does not freeze for about 80 hours even when exposed to low temperature conditions.

(発明の効果) 以上の説明から明らかなように、本第1発明によれば、
活性化された銅箔及びチタン又はジルコニウムのゲッタ
ー作用により内壁と外壁の間の真空空間は高真空に保た
れ、断熱性を維持することができる。また、チタン材又
はジルコニウム材は銅箔と内壁との間に介装されている
ため、脱落することはなく、何等保持部材等を必要とし
ない。
(Effects of the Invention) As is clear from the above description, according to the first invention,
The activated copper foil and the gettering action of titanium or zirconium keep the vacuum space between the inner wall and the outer wall at a high vacuum and maintain the heat insulating property. Further, since the titanium material or the zirconium material is interposed between the copper foil and the inner wall, the titanium material or the zirconium material does not fall off and no holding member is required.

一方、第2発明によれば、高真空に排気する前に、伝熱
性の損なわれない低真空下で加熱して内壁をすみやかに
昇温させるものであるから、特に内壁からの脱ガスが十
分に、しかも短時間に行なわれ、全体的な加熱排気処理
時間が短縮されて製造工程の短縮が図れるとともに、断
熱性が安定化する。
On the other hand, according to the second aspect of the invention, before exhausting to a high vacuum, the inner wall is quickly heated by heating under a low vacuum that does not impair the heat transfer property, so that degassing from the inner wall is particularly sufficient. In addition, it is performed in a short time, the heating and exhaust treatment time is shortened as a whole, the manufacturing process can be shortened, and the heat insulating property is stabilized.

また、加熱脱ガス時に内壁の外表面を覆う銅箔及びチタ
ン又はジルコニウムが活性化して吸蔵ガスを放出し、真
空封じ込み後にそれぞれ水素,窒素を吸収するゲッター
として作用するため、高度の断熱性が維持されるととも
に、本来のゲッター材やゲッター材を保持する金具を不
要とすることができ、材料費の低減を図ることができ
る。
Further, when heated and degassed, the copper foil covering the outer surface of the inner wall and titanium or zirconium are activated to release the occluded gas, which acts as a getter that absorbs hydrogen and nitrogen after vacuum containment, respectively, and therefore has a high degree of heat insulation. While being maintained, the original getter material and the metal fitting for holding the getter material can be eliminated, and the material cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はチップ管法で製造される本第1発明に係る二重
容器の断面図、第2図はろう接法で製造される本第1発
明に係る二重容器の断面図、第3図は第2図の部分拡大
断面図、第4図はチップ管法で製造される本第1発明に
係る真空二重パイプの半断面図、第5図は真空二重パイ
プの製造途中の状態を示す半断面図、第6図は本第2発
明に係る金属製真空二重構造体の製造方法による製造工
程を示す図、第7図,第8図は本第2発明のそれぞれチ
ップ管法、ろう接法によるステンレス鋼製真空二重容器
の製造工程を示す図、第9a図〜第9d図,第10a図〜第10d
図は従来の方法により製造された真空二重容器の保温性
に関するテスト結果を示す図である。 1……二重容器、2……外容器、3a……銅箔、3b……チ
タン箔、3……内容器、5……空間。
FIG. 1 is a sectional view of a double container according to the present first invention manufactured by a tip tube method, and FIG. 2 is a sectional view of a double container according to the first invention manufactured by a brazing method. FIG. 4 is a partially enlarged sectional view of FIG. 2, FIG. 4 is a half sectional view of the vacuum double pipe according to the first invention manufactured by the tip tube method, and FIG. 5 is a state in the middle of manufacturing the vacuum double pipe. FIG. 6 is a half sectional view showing the manufacturing process of the metallic vacuum double structure according to the second aspect of the present invention, and FIGS. 7 and 8 are the tip tube method according to the second aspect of the present invention. , Fig. 9a to Fig. 9d, Fig. 10a to Fig. 10d showing the manufacturing process of a stainless steel vacuum double container by the brazing method.
The figure is a diagram showing a test result regarding heat retention of a vacuum double container manufactured by a conventional method. 1 ... double container, 2 ... outer container, 3a ... copper foil, 3b ... titanium foil, 3 ... inner container, 5 ... space.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内壁と外壁とで二重壁構造を形成し、内壁
と外壁の間の空間を排気処理して真空封じ込みした金属
製真空二重構造体において、 内壁の表面を活性化された銅箔で覆うとともに、内壁表
面と銅箔の間に活性化されたチタン又はジルコニウムを
介装したことを特徴とする金属製真空二重構造体。
1. A metal vacuum double structure in which a double wall structure is formed by an inner wall and an outer wall, and a space between the inner wall and the outer wall is exhausted to be vacuum-sealed, and the surface of the inner wall is activated. A metallic vacuum double structure characterized in that it is covered with a copper foil and activated titanium or zirconium is interposed between the inner wall surface and the copper foil.
【請求項2】内壁と外壁とで二重壁構造を形成し、内壁
と外壁の間の空間を排気処理して真空封じ込みする金属
製真空二重構造体の製造方法において、 内壁の表面を銅箔で覆うとともに、内壁表面と銅箔の間
にチタン又はジルコニウムを介装して、内壁と外壁との
間の空間を10-2Torrのオーダー以上の低真空に予備排気
し、略400℃以上の温度で所定時間加熱して脱ガスを行
なった後、当該加熱温度を維持したまま10-4Torrのオー
ダー以下の高真空に排気処理して真空封じ込みすること
を特徴とする金属製真空二重構造体の製造方法。
2. A method for manufacturing a metal vacuum double structure, wherein a double wall structure is formed by an inner wall and an outer wall, and a space between the inner wall and the outer wall is exhausted to be vacuum-sealed. While covering with copper foil, titanium or zirconium is interposed between the inner wall surface and copper foil, and the space between the inner wall and outer wall is pre-evacuated to a low vacuum of the order of 10 -2 Torr or more, approximately 400 ° C. After performing degassing by heating at the above temperature for a predetermined time, a metal vacuum characterized by exhausting to a high vacuum of the order of 10 -4 Torr or less while keeping the heating temperature and vacuum-sealing. Method for manufacturing double structure.
JP63098855A 1988-04-20 1988-04-20 Metal vacuum double structure and manufacturing method thereof Expired - Fee Related JPH0698108B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63098855A JPH0698108B2 (en) 1988-04-20 1988-04-20 Metal vacuum double structure and manufacturing method thereof
KR1019890005198A KR920009830B1 (en) 1988-04-20 1989-04-20 Vacuum-insulated, double walled metal structure and method for its production
US07/340,644 US4997124A (en) 1988-04-20 1989-04-20 Vacuum-insulated, double-walled metal structure and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63098855A JPH0698108B2 (en) 1988-04-20 1988-04-20 Metal vacuum double structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01268521A JPH01268521A (en) 1989-10-26
JPH0698108B2 true JPH0698108B2 (en) 1994-12-07

Family

ID=14230847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63098855A Expired - Fee Related JPH0698108B2 (en) 1988-04-20 1988-04-20 Metal vacuum double structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0698108B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533824Y2 (en) * 1991-02-26 1997-04-23 象印マホービン株式会社 Metal vacuum insulation double wall structure
BR9902607B1 (en) * 1999-06-23 2010-08-24 biomass pre-hydrolysis apparatus and process.
JP2003065490A (en) * 2001-08-29 2003-03-05 Zojirushi Corp Method of manufacturing heat insulator
US20220042641A1 (en) * 2018-11-30 2022-02-10 Concept Group Llc Joint configurations
CN113996929B (en) * 2021-11-30 2022-07-22 天津渤化工程有限公司 Large-diameter high-pressure zirconium coating pressure vessel and manufacturing method and application thereof

Also Published As

Publication number Publication date
JPH01268521A (en) 1989-10-26

Similar Documents

Publication Publication Date Title
KR920009830B1 (en) Vacuum-insulated, double walled metal structure and method for its production
US5826780A (en) Vacuum insulation panel and method for manufacturing
JPH0698108B2 (en) Metal vacuum double structure and manufacturing method thereof
FR2504044A1 (en) METHOD FOR MANUFACTURING A COMPOSITE TUBULAR FITTING TO SUPPORT NON-WELDING METAL TUBES BETWEEN THEM AND A COUPLING THUS OBTAINED
JPH0698109B2 (en) Metal vacuum double structure and manufacturing method thereof
JPH08501622A (en) Especially latent heat regenerator
JP2003065490A5 (en)
JPH0753137B2 (en) Method for manufacturing metallic vacuum double structure
JP2774748B2 (en) Metal vacuum double container and method of manufacturing the same
JPH01268520A (en) Manufacture of titanium thermos bottle
JPH0443649B2 (en)
JP4185690B2 (en) Metal vacuum structure
JPH01317413A (en) Vacuum heat insulating double vessel and manufacture
JP3520180B2 (en) Manufacturing method of vacuum structure
JP2818430B2 (en) Manufacturing method of metal thermos
KR820000649B1 (en) Process for producing a metall vacuum bottle
JPH0443648B2 (en)
JPH06260121A (en) Vacuum container using beryllium foil for window
JPH0314112Y2 (en)
JPH05176846A (en) Production of heat-insulated vessel
JPH0517001Y2 (en)
JPS6133568B2 (en)
JPH01135317A (en) Method for manufacturing vacuum double container of metal
JPS63129297A (en) Heat pipe
JPH0629000A (en) High-pressure discharge lamp

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees