[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4185690B2 - Metal vacuum structure - Google Patents

Metal vacuum structure Download PDF

Info

Publication number
JP4185690B2
JP4185690B2 JP2002008862A JP2002008862A JP4185690B2 JP 4185690 B2 JP4185690 B2 JP 4185690B2 JP 2002008862 A JP2002008862 A JP 2002008862A JP 2002008862 A JP2002008862 A JP 2002008862A JP 4185690 B2 JP4185690 B2 JP 4185690B2
Authority
JP
Japan
Prior art keywords
getter
outer cylinder
inner cylinder
temperature
getters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002008862A
Other languages
Japanese (ja)
Other versions
JP2003207092A (en
JP2003207092A5 (en
Inventor
隆 東野
武男 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zojirushi Corp
Original Assignee
Zojirushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zojirushi Corp filed Critical Zojirushi Corp
Priority to JP2002008862A priority Critical patent/JP4185690B2/en
Publication of JP2003207092A publication Critical patent/JP2003207092A/en
Publication of JP2003207092A5 publication Critical patent/JP2003207092A5/ja
Application granted granted Critical
Publication of JP4185690B2 publication Critical patent/JP4185690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Thermally Insulated Containers For Foods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空断熱パイプ等の金属製真空構造体に関するものである。
【0002】
【従来の技術】
従来の金属製魔法瓶等の真空構造体は、内側に位置する第1金属部材と外側に位置する第2金属部材とからなる構成部材により閉じられた空間を真空排気し、第1金属部材の内部と第2金属部材の外部との間を断熱している。そして、この断熱性を長期間にわたって保持するために、第1金属部材と第2金属部材との間の真空空間には、金属部材から放出されて遊離するガスを吸収するゲッターを設置している。
【0003】
前記ゲッターは、ペレット状、線状、板状をなし、第1金属部材または第2金属部材における空間内に位置する面に留め具によって固定したり、熱輻射防止用の銅またはアルミニウム箔により押え付けたり、巻き込んだりするようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記金属製真空構造体は、使用するゲッターの性能により使用可能な用途が限定されるという問題がある。即ち、ゲッターを配設した金属部材がゲッターの活性化温度より高温になると、その伝熱により前記ゲッターは、吸着したガスを放出する。そうすると、放出されたガスにより空間の真空度が低下し、断熱性能が低下する。そのため、この種の金属製真空構造体は、使用する環境(温度)に応じた活性化温度を有するゲッターを使用する必要がある。しかし、高温(800〜900℃)の条件下で使用可能なゲッターは、活性化させる工程で高い加熱温度を加える必要があるとともに、その時間を要するため、真空構造体がコスト高になるという問題がある。
【0005】
そこで、本発明では、活性化温度が高い高価なゲッターを使用することなく、高温の環境下に耐え得る金属製真空構造体を提供するものである。
【0006】
【課題を解決するための手段】
前記課題を解決するため、本発明の金属製真空構造体は、内筒および外筒により閉じられた空間内に、該空間内に遊離するガスを吸収するゲッターを配設し、前記空間内を排気孔より排気した後、該排気孔を封止してなり、前記内筒および外筒のうち、一方に前記ゲッターの活性化温度より低い低温物が触接し、他方に前記ゲッターの活性化温度より高い高温物が触接する金属製真空構造体において、前記内筒および外筒の両方の長手方向の略中央に、前記ゲッターをそれぞれ配設した構成としている。
【0007】
前記金属製真空構造体では、内筒外筒のいずれかの側にはゲッターの活性化温度より低い低温物が触接するため、反対側にゲッターの活性化温度より高い高温物が触接し、その高温側の内筒または外筒やゲッターが水素などのガスを放出しても、そのガスは低温側のゲッターで吸収させることができる。そのため、内筒外筒との間の空間の真空度が低下することを防止でき、断熱性能が低下することを防止できる。また、使用する環境に応じた活性化温度が高いゲッターを使用する必要はないため、真空構造体自体がコスト高になることを防止できる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。
図1は、本発明の第1実施形態に係る金属製真空構造体である真空断熱パイプ1を示す。この真空断熱パイプ1は、第1金属部材である内筒2と、該内筒2を内部に配設する第2金属部材である外筒3と、これらを連結する連結部材5とからなる。そして、本実施形態では、これらの構成部材により閉じられた空間6において、内筒2の外面および外筒3の内面に、それぞれゲッター10A,10Bを配設している。
【0010】
前記内筒2および外筒3は、使用する環境(温度)に耐える耐熱性を有する金属材料を円筒状としたもので、本実施形態では、ステンレス(SUS304)を使用している。なお、前記外筒3の両端縁には、所定間隔をもって取付穴4aを設けた接続フランジ4が溶接により固着されている。
【0011】
前記連結部材5は、前記内筒2および外筒3と同一の金属材料により形成した断面J字形状の環状リングからなる。この連結部材5は、その内面が前記内筒2の外面に溶接されるとともに、外面が前記外筒3の内面に溶接される。そして、これら内筒2と外筒3に加わる温度の違いによる伸びの相違量を吸収するように設定されている。
【0012】
前記内筒2、外筒3および連結部材5により閉じられた空間6は、チップ管7を介して真空状態に排気され、このチップ管7は封じ切られている。このチップ管7は、外筒3に設けた排気孔3aにベース部材8を介して固着されている。このベース部材8にはカバー9が取り付けてられている。
【0013】
前記ゲッター10A,10Bは、金属製の前記構成部材2,3,5から放出され、前記空間6内に遊離するガスを吸収するもので、従来と同様の留め具11により、内筒2の外面および外筒3の内面における長手方向の略中央位置に固着されている。ここで、この中央位置は、熱伝導により熱が伝わるのに最も離れ、最も低温となる位置である
【0014】
具体的には、本実施形態のゲッター10A,10Bは、400℃から500℃の温度で活性化し、900℃以上の温度で溶融するものを使用している。このような特性を有するゲッター10A,10Bとしては、例えば、純度90%以上、好ましくは99%以上、のジルコニウムまたはチタンを水素化粉砕し、水素を10000ppm以上含有するものが適用される。
【0015】
ここで、前記ジルコニウムまたはチタンは、スタンプミルやボールミル等の機械的手段により、ArやHe等の不活性ガス雰囲気下で微粉砕し、粉末の粒度を30〜250メッシュとされている。なお、30メッシュ以下では、粉の流動性が悪く、成形が困難になり、250メッシュ以上では、比表面積が小さくなり、ゲッター性能が著しく低下するからである。そして、この微粉砕されたジルコニウム粉またはチタン粉は、潤滑材として炭素を0.5〜1.0%添加し、所望形状のダイ中でプレスしたり、金型に詰めて、ArやHe等の不活性ガス雰囲気下で所望の形状に成形し、焼結される。なお、成形後のかさ比重は4から5が好ましい。
【0016】
次に、前記真空断熱パイプ1の製造方法について説明する。なお、前記ゲッター10A,10Bは、その製造工程における水素化により10000ppm以上の十分な水素を吸収しているので、このままでは、内筒2や外筒3から遊離する水素等の遊離ガスを受け入れることができない。そこで、この真空断熱パイプ1の製造工程中にゲッター10A,10Bの脱水素等を行なう。
【0017】
具体的には、まず、内筒2とチップ管7を固着した外筒3をそれぞれ形成し、内筒2の外面および外筒3の内面の所定位置に留め具11を介してゲッター10A,10Bを固着する。そして、内筒2の両端縁外面に連結部材5を配置してこれらを接合した後、接合した内筒2および連結部材5を外筒3内に挿入し、外筒3の両端縁内面と連結部材5とを接合し、二重構造の筒を形成する。
【0018】
次に、この二重筒を250〜600℃で3分以上加熱しつつ、外筒3に固着した排気孔3aを通して、内筒2と外筒3の間の真空にすべき空間6から空気を排出して減圧しつつ、ゲッター10A,10Bの脱水素を行なう。この際、内筒2、外筒3、連結部材5および留め具11からは、水素(H)、一酸化炭素(CO)および水(HO)が放出される。また、ゲッター10A,10Bからは、含有した水素が放出される。
【0019】
そして、前記ゲッター10A,10Bは、やや遅れて400〜600℃に加熱されると活性化する。この後、排気孔3a(チップ管7)を封止し、この封止後に、内筒2と外筒3の間の空間6に残留して遊離している水素、一酸化炭素および水は、活性化したゲッター10A,10Bに吸収される。この結果、内筒2と外筒3の間の空間6は、真空に維持され、高真空の断熱パイプ1が得られる。
【0020】
次に、製造した真空断熱パイプ1の使用について説明する。この真空断熱パイプ1は、例えば、自動車や自動二輪車等の内燃機関から排気される排気ガスの排気管や、加熱炉内の所定部位に冷却水を導入するための配管として使用される。
【0021】
内燃機関の排気管として使用した場合、前記真空断熱パイプ1には、内筒2の内部に高温の排気ガスが通過する一方、外筒3の外部に低温の外気が触接し、これらに加わる温度差は400℃以上となる。そして、これらの排気ガスおよび外気の温度(熱)は、それぞれ内筒2および外筒3に伝わり、これらに配設したゲッター10A,10Bに伝熱される。
【0022】
ここで、排気ガスの温度は、ゲッター10A,10Bの活性化温度および製造時の加熱温度より高い。そのため、内筒2は、更に含有した水素、一酸化炭素および水を放出するとともに、ゲッター10Aは、封止後に吸収した水素は勿論、自身が含有した水素も更に放出する。
【0023】
しかし、本実施形態の真空断熱パイプ1では、ゲッター10A,10Bの活性化温度より低い外気が触接する外筒3に別のゲッター10Bを配設しているため、内筒2およびゲッター10Aが放出した水素は、ゲッター10Bが吸収する。また、内筒2が放出した一酸化炭素および水は、両方のゲッター10A,10Bが吸収する。
【0024】
一方、加熱炉の冷却水導入配管として使用した場合、前記真空断熱パイプ1には、外筒3の外部に炉内の高温雰囲気ガスが触接する一方、内筒2の内部に低温の冷却水が通過し、これらに加わる温度差は前記と同様に400℃以上となる。
【0025】
そして、炉内の温度がゲッター10A,10Bを活性化した温度より高い場合、外筒3は、更に含有した水素、一酸化炭素および水を放出するとともに、ゲッター10Bは、封止後に吸収した水素は勿論、自身が含有した水素も更に放出する。
【0026】
しかし、内筒2の内部には、ゲッター10A,10Bの活性化温度より低い冷却水が触接するため、外筒3およびゲッター10Bが放出した水素は、内筒2に配設したゲッター10Aが吸収する。また、外筒3が放出した一酸化炭素および水は、両方のゲッター10A,10Bが吸収する。
【0027】
このように、本発明の真空断熱パイプ1では、内筒2と外筒3の両方にゲッター10A,10Bを配設する構成としているため、使用するゲッター10A,10Bの活性化温度が低く、その活性化温度より高温となる環境で使用されても、低温側に配設したゲッター10A,10Bが、高温側の金属部材および該金属部材に配設したゲッター10A,10Bから放出した水素等のガスを吸収することができる。この結果、内筒2と外筒3との間の空間6の真空度が低下することを防止でき、断熱性能が低下することを防止できる。具体的には、本実施形態の真空断熱パイプ1では、ゲッター10A,10Bの活性化温度は400℃から500℃であるが、高温側のゲッター10A,10Bが溶融する900℃の温度まで、真空状態を維持した状態で使用することができる。
【0028】
また、本実施形態の真空断熱パイプ1では、内部と外部のいずれの側が高温な環境になっても、断熱性能を低下させることがない。そのため、あらゆる使用環境においても1つのパイプ1で対応できる。
【0029】
なお、内筒2または外筒3に加わる高温の熱は、その内筒2または外筒3から連結部材5を介して低温側の外筒3または内筒2に伝わる。しかし、本実施形態の真空断熱パイプ1では、その熱源から最も離れた中央部分にゲッター10A,10Bを配設しているため、低温側に配設したゲッター10A,10Bに熱が伝わるには長い時間を要する。そのため、高温側のゲッター10A,10Bが放出した水素を低温側のゲッター10A,10Bが吸収できないという状況になることを抑制できる。
【0030】
本発明の金属製真空構造体は前記実施形態の構成に限定されるものではない
【0031】
【発明の効果】
以上の説明から明らかなように、本発明の金属製真空構造体は、内筒外筒のいずれかの側にはゲッターの活性化温度より低い低温物が触接するものにおいて、両方にゲッターを配設している。そのため、一方にゲッターの活性化温度より高い高温物が触接する環境で使用し、その高温側の内筒または外筒、および、該内筒または外筒に配設したゲッターが水素などのガスを放出しても、そのガスを低温側のゲッターで吸収することができる。そのため、内筒外筒との間の空間の真空度が低下することを防止でき、断熱性能が低下することを防止できる。また、使用する環境に応じた活性化温度が高いゲッターを使用する必要はないため、真空構造体自体がコスト高になることを防止できる。
【図面の簡単な説明】
【図1】 本発明の金属製真空構造体である真空断熱パイプを示す断面図である。
【図2】 図1の要部分解斜視図である。
【符号の説明】
1…真空断熱パイプ(金属製真空構造体)
2…内筒(第1金属部材)
3…外筒(第2金属部材)
3a…排気孔
5…連結部材
6…空間
7…チップ管
10A,10B…ゲッター
11…留め具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal vacuum structure such as a vacuum heat insulating pipe .
[0002]
[Prior art]
A conventional vacuum structure such as a metal thermos evacuates a space closed by a constituent member composed of a first metal member located on the inner side and a second metal member located on the outer side. And the outside of the second metal member are insulated. And in order to hold | maintain this heat insulation over a long period, the getter which absorbs the gas discharge | released and liberated from a metal member is installed in the vacuum space between a 1st metal member and a 2nd metal member. .
[0003]
The getter has a pellet shape, a linear shape, or a plate shape, and is fixed to a surface located in the space of the first metal member or the second metal member with a fastener, or pressed with copper or aluminum foil for preventing heat radiation. It is designed to be attached or engulfed.
[0004]
[Problems to be solved by the invention]
However, the metal vacuum structure has a problem that usable applications are limited by the performance of the getter used. That is, when the metal member provided with the getter becomes higher than the activation temperature of the getter, the getter releases the adsorbed gas by the heat transfer. If it does so, the vacuum degree of space will fall with the emitted gas, and heat insulation performance will fall. For this reason, this type of metal vacuum structure needs to use a getter having an activation temperature corresponding to the environment (temperature) to be used. However, a getter that can be used under conditions of high temperature (800 to 900 ° C.) needs to apply a high heating temperature in the step of activating, and it takes time, so that the vacuum structure is expensive. There is.
[0005]
Therefore, the present invention provides a metal vacuum structure that can withstand a high temperature environment without using an expensive getter having a high activation temperature.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a metal vacuum structure according to the present invention includes a getter that absorbs a gas released in the space in a space closed by an inner cylinder and an outer cylinder , after evacuating the exhaust hole, it seals the exhaust pores of the inner tube and the outer tube, the lower the low temperature thereof than the activation temperature of the getter is Shokusetsu one, activation of said the other getter In the metal vacuum structure in which a high-temperature object higher than the temperature comes into contact , the getters are arranged at substantially the center in the longitudinal direction of both the inner cylinder and the outer cylinder .
[0007]
In the metal vacuum structure, since a low-temperature object lower than the activation temperature of the getter is in contact with either side of the inner cylinder and the outer cylinder, a high-temperature object higher than the activation temperature of the getter is in contact with the opposite side , Even if the inner cylinder or outer cylinder on the high temperature side or the getter releases a gas such as hydrogen, the gas can be absorbed by the getter on the low temperature side. Therefore, it can prevent that the vacuum degree of the space between an inner cylinder and an outer cylinder falls, and can prevent that heat insulation performance falls. Further, since it is not necessary to use a getter having a high activation temperature according to the environment in which it is used, it is possible to prevent the vacuum structure itself from increasing in cost.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a vacuum heat insulating pipe 1 which is a metal vacuum structure according to the first embodiment of the present invention. The vacuum heat insulating pipe 1 includes an inner cylinder 2 that is a first metal member, an outer cylinder 3 that is a second metal member in which the inner cylinder 2 is disposed, and a connecting member 5 that connects them. In this embodiment, getters 10 </ b> A and 10 </ b> B are disposed on the outer surface of the inner cylinder 2 and the inner surface of the outer cylinder 3 in the space 6 closed by these components.
[0010]
The inner cylinder 2 and the outer cylinder 3 are made of a metal material having heat resistance that can withstand the environment (temperature) to be used, and stainless steel (SUS304) is used in this embodiment. In addition, the connection flange 4 which provided the attachment hole 4a with the predetermined space | interval is fixed to the both ends edge of the said outer cylinder 3 by welding.
[0011]
The connecting member 5 is an annular ring having a J-shaped cross section formed of the same metal material as the inner cylinder 2 and the outer cylinder 3. The connecting member 5 has an inner surface welded to the outer surface of the inner cylinder 2 and an outer surface welded to the inner surface of the outer cylinder 3. And it sets so that the difference amount of the elongation by the difference in the temperature added to the inner cylinder 2 and the outer cylinder 3 may be absorbed.
[0012]
The space 6 closed by the inner cylinder 2, the outer cylinder 3 and the connecting member 5 is evacuated to a vacuum state via the tip tube 7, and the tip tube 7 is sealed off. The tip tube 7 is fixed to an exhaust hole 3 a provided in the outer cylinder 3 via a base member 8. A cover 9 is attached to the base member 8.
[0013]
The getters 10A and 10B absorb the gas released from the metallic component members 2, 3, and 5 and released into the space 6, and the outer surface of the inner cylinder 2 by the fastener 11 similar to the conventional one. And, it is fixed at a substantially central position in the longitudinal direction on the inner surface of the outer cylinder 3. Here, this center position is the position where the heat is most distant and the lowest temperature is reached by heat conduction .
[0014]
Specifically, the getters 10A and 10B of the present embodiment are activated at a temperature of 400 ° C. to 500 ° C. and melted at a temperature of 900 ° C. or higher. As the getters 10A and 10B having such characteristics, for example, those obtained by hydrocrushing zirconium or titanium having a purity of 90% or more, preferably 99% or more, and containing 10,000 ppm or more of hydrogen are applied.
[0015]
Here, the zirconium or titanium is finely pulverized in an inert gas atmosphere such as Ar or He by mechanical means such as a stamp mill or a ball mill, so that the particle size of the powder is 30 to 250 mesh. In addition, if it is 30 mesh or less, the fluidity | liquidity of powder will be bad and shaping | molding will become difficult, and if it is 250 mesh or more, a specific surface area will become small and getter performance will fall remarkably. The finely pulverized zirconium powder or titanium powder is added with 0.5 to 1.0% of carbon as a lubricant , pressed in a die having a desired shape, or packed in a mold, and Ar, He, etc. Are molded into a desired shape under an inert gas atmosphere and sintered. The bulk specific gravity after molding is preferably 4 to 5.
[0016]
Next, the manufacturing method of the said vacuum heat insulation pipe 1 is demonstrated. Note that the getters 10A and 10B absorb sufficient hydrogen of 10,000 ppm or more due to hydrogenation in the manufacturing process, so that they accept free gas such as hydrogen released from the inner cylinder 2 and the outer cylinder 3 as they are. I can't. Therefore, dehydrogenation of the getters 10A and 10B is performed during the manufacturing process of the vacuum heat insulating pipe 1.
[0017]
Specifically, first, the outer cylinder 3 to which the inner cylinder 2 and the tip tube 7 are fixed is formed, respectively, and getters 10A and 10B are placed at predetermined positions on the outer surface of the inner cylinder 2 and the inner surface of the outer cylinder 3 via fasteners 11. To fix. And after arrange | positioning the connection member 5 to the outer surface of both ends of the inner cylinder 2, and joining these, the joined inner cylinder 2 and the connection member 5 are inserted in the outer cylinder 3, and it connects with the inner surface of both ends of the outer cylinder 3. The member 5 is joined to form a double-structured cylinder.
[0018]
Next, air is heated from the space 6 to be evacuated between the inner cylinder 2 and the outer cylinder 3 through the exhaust hole 3 a fixed to the outer cylinder 3 while heating the double cylinder at 250 to 600 ° C. for 3 minutes or more. The getters 10A and 10B are dehydrogenated while being discharged and decompressed. At this time, hydrogen (H), carbon monoxide (CO), and water (H 2 O) are released from the inner cylinder 2, the outer cylinder 3, the connecting member 5, and the fastener 11. The contained hydrogen is released from the getters 10A and 10B.
[0019]
The getters 10A and 10B are activated when heated to 400 to 600 ° C. with a slight delay. Thereafter, the exhaust hole 3a (chip tube 7) is sealed, and after this sealing, hydrogen, carbon monoxide and water remaining in the space 6 between the inner cylinder 2 and the outer cylinder 3 are released. Absorbed by the activated getters 10A and 10B. As a result, the space 6 between the inner cylinder 2 and the outer cylinder 3 is maintained in a vacuum, and a high vacuum heat insulating pipe 1 is obtained.
[0020]
Next, use of the manufactured vacuum heat insulation pipe 1 is demonstrated. The vacuum heat insulating pipe 1 is used, for example, as an exhaust pipe for exhaust gas exhausted from an internal combustion engine such as an automobile or a motorcycle, or as a pipe for introducing cooling water to a predetermined part in a heating furnace.
[0021]
When used as an exhaust pipe of an internal combustion engine, high-temperature exhaust gas passes through the inside of the inner cylinder 2 through the vacuum insulation pipe 1, while low-temperature outside air comes into contact with the outside of the outer cylinder 3 and is applied to these temperatures. The difference is 400 ° C. or higher. The temperatures (heat) of the exhaust gas and the outside air are transmitted to the inner cylinder 2 and the outer cylinder 3, respectively, and are transmitted to the getters 10A and 10B disposed on them.
[0022]
Here, the temperature of the exhaust gas is higher than the activation temperature of the getters 10A and 10B and the heating temperature during manufacture. Therefore, the inner cylinder 2 releases further contained hydrogen, carbon monoxide and water, and the getter 10A further releases hydrogen contained therein as well as hydrogen absorbed after sealing.
[0023]
However, in the vacuum heat insulating pipe 1 of the present embodiment, another getter 10B is disposed in the outer cylinder 3 in contact with the outside air lower than the activation temperature of the getters 10A and 10B, so that the inner cylinder 2 and the getter 10A are released. The obtained hydrogen is absorbed by the getter 10B. Further, the carbon monoxide and water released by the inner cylinder 2 are absorbed by both getters 10A and 10B.
[0024]
On the other hand, when used as the cooling water introduction pipe of the heating furnace, the vacuum heat insulation pipe 1 is in contact with the high temperature atmosphere gas in the furnace outside the outer cylinder 3, while low temperature cooling water is inside the inner cylinder 2. The temperature difference which passes and is added to these is 400 degreeC or more like the above.
[0025]
When the temperature in the furnace is higher than the temperature at which the getters 10A and 10B are activated, the outer cylinder 3 releases further contained hydrogen, carbon monoxide and water, and the getter 10B absorbs hydrogen absorbed after sealing. Of course, the hydrogen contained therein is further released.
[0026]
However, since cooling water lower than the activation temperature of the getters 10A and 10B comes into contact with the inside of the inner cylinder 2, hydrogen released from the outer cylinder 3 and the getter 10B is absorbed by the getter 10A disposed in the inner cylinder 2. To do. Further, both the getters 10A and 10B absorb the carbon monoxide and water released by the outer cylinder 3.
[0027]
Thus, in the vacuum heat insulation pipe 1 of the present invention, since the getters 10A and 10B are arranged in both the inner cylinder 2 and the outer cylinder 3, the activation temperature of the getters 10A and 10B to be used is low. Even when used in an environment where the temperature is higher than the activation temperature, the getters 10A and 10B disposed on the low temperature side release the gas such as hydrogen released from the metal member on the high temperature side and the getters 10A and 10B disposed on the metal member. Can be absorbed. As a result, it is possible to prevent the vacuum degree of the space 6 between the inner cylinder 2 and the outer cylinder 3 from being lowered, and to prevent the heat insulation performance from being lowered. Specifically, in the vacuum heat insulating pipe 1 of this embodiment, the activation temperature of the getters 10A and 10B is 400 ° C. to 500 ° C., but the vacuum is reduced to a temperature of 900 ° C. at which the getters 10A and 10B on the high temperature side melt. It can be used while maintaining the state.
[0028]
Further, in the vacuum heat insulating pipe 1 of the present embodiment, the heat insulating performance is not deteriorated even when either the inside or the outside becomes a high temperature environment. For this reason, the single pipe 1 can cope with any use environment.
[0029]
The high temperature heat applied to the inner cylinder 2 or the outer cylinder 3 is transmitted from the inner cylinder 2 or the outer cylinder 3 to the outer cylinder 3 or the inner cylinder 2 on the low temperature side via the connecting member 5. However, in the vacuum heat insulating pipe 1 of the present embodiment, the getters 10A and 10B are disposed in the central portion farthest from the heat source, so that it is long for heat to be transmitted to the getters 10A and 10B disposed on the low temperature side. It takes time. Therefore, it is possible to suppress the situation where the low-temperature getters 10A and 10B cannot absorb the hydrogen released by the high-temperature getters 10A and 10B.
[0030]
The metal vacuum structure of the present invention is not limited to the configuration of the above embodiment .
[0031]
【The invention's effect】
As apparent from the above description, the metallic vacuum structure of the present invention, in those on either side of the inner cylinder and the outer cylinder is a low low-temperature material than the activation temperature of the getter is Shokusetsu, the getter both It is arranged. Therefore, while the use in environments where high hot product than the activation temperature of the getter is Shokusetsu, the hot side of the inner cylinder or the outer cylinder, and, getter disposed in the inner cylinder or the outer cylinder is a gas such as hydrogen Even when released, the gas can be absorbed by the low-temperature getter. Therefore, it can prevent that the vacuum degree of the space between an inner cylinder and an outer cylinder falls, and can prevent that heat insulation performance falls. Further, since it is not necessary to use a getter having a high activation temperature according to the environment in which it is used, it is possible to prevent the vacuum structure itself from increasing in cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a vacuum heat insulating pipe which is a metal vacuum structure of the present invention.
FIG. 2 is an exploded perspective view of the main part of FIG.
[Explanation of symbols]
1 ... Vacuum insulation pipe (metal vacuum structure)
2 ... Inner cylinder (first metal member)
3 ... Outer cylinder (second metal member)
3a ... exhaust hole 5 ... connecting member 6 ... space 7 ... tip tubes 10A, 10B ... getter 11 ... fastener

Claims (1)

内筒および外筒により閉じられた空間内に、該空間内に遊離するガスを吸収するゲッターを配設し、前記空間内を排気孔より排気した後、該排気孔を封止してなり、前記内筒および外筒のうち、一方に前記ゲッターの活性化温度より低い低温物が触接し、他方に前記ゲッターの活性化温度より高い高温物が触接する金属製真空構造体において、
前記内筒および外筒の両方の長手方向の略中央に、前記ゲッターをそれぞれ配設したことを特徴とする金属製真空構造体。
In the space closed by the inner cylinder and the outer cylinder, a getter that absorbs the gas liberated in the space is disposed, and after exhausting the space from the exhaust hole, the exhaust hole is sealed, In the metal vacuum structure in which one of the inner cylinder and the outer cylinder is in contact with a low temperature object lower than the activation temperature of the getter, and the other is in contact with a high temperature object higher than the activation temperature of the getter ,
A metal vacuum structure characterized in that each of the getters is disposed at substantially the center in the longitudinal direction of both the inner cylinder and the outer cylinder .
JP2002008862A 2002-01-17 2002-01-17 Metal vacuum structure Expired - Fee Related JP4185690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008862A JP4185690B2 (en) 2002-01-17 2002-01-17 Metal vacuum structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008862A JP4185690B2 (en) 2002-01-17 2002-01-17 Metal vacuum structure

Publications (3)

Publication Number Publication Date
JP2003207092A JP2003207092A (en) 2003-07-25
JP2003207092A5 JP2003207092A5 (en) 2005-06-23
JP4185690B2 true JP4185690B2 (en) 2008-11-26

Family

ID=27647016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008862A Expired - Fee Related JP4185690B2 (en) 2002-01-17 2002-01-17 Metal vacuum structure

Country Status (1)

Country Link
JP (1) JP4185690B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626173B2 (en) * 2004-04-06 2011-02-02 タイガー魔法瓶株式会社 Vacuum double structure heating vessel
CN100424402C (en) * 2006-10-23 2008-10-08 厦门高特高新材料有限公司 Method for producing vacuum heat insulation plate for high temperature degasser
US20220042641A1 (en) * 2018-11-30 2022-02-10 Concept Group Llc Joint configurations
CN109956122B (en) * 2019-04-18 2021-01-22 上海电缆研究所有限公司 Tearing mechanism for vacuum heat-insulating pipe adsorbent sealed package

Also Published As

Publication number Publication date
JP2003207092A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
US9278334B2 (en) Non-evaporable getter compositions which can be reactivated at low temperature after exposure to reactive gases at a higher temperature
CN102361679B (en) Fabrication method for gas-adsorbing device, gas-adsorbing device, and method of using the same
CN104871284B (en) The non-evaporable getter alloys can being re-activated after being exposed to reactant gas
JP4185690B2 (en) Metal vacuum structure
JP2009241030A (en) Package, vacuum container and reaction apparatus
JP5962357B2 (en) Heat storage and dissipation device
JP5049468B2 (en) Insulated container and manufacturing method thereof
CN215138368U (en) Self-vacuum composite getter convenient to use
JPH0524843B2 (en)
JPH01297022A (en) Metallic vacuum double structure body and manufacture
JPH01317413A (en) Vacuum heat insulating double vessel and manufacture
JPH01268521A (en) Metallic vacuum double structure and manufacture thereof
JPS635164Y2 (en)
JPH0443649B2 (en)
JP5078720B2 (en) Vacuum triple metal container
JP2577038Y2 (en) Vacuum insulation container made of synthetic resin
JPH04183419A (en) Manufacture of synthetic resin vacuum insulation vessel
JP4746899B2 (en) Method for manufacturing an insulated container
JP3613837B2 (en) Metal vacuum insulated container
JPH03740B2 (en)
JPS6244185B2 (en)
JPH0622865A (en) Vacuum heat-insulating vessel and its production
JP2004344971A (en) Soldering iron with corrosion resisting heater chamber
JP2002125867A (en) Metal vacuum structure and device to produce the same
JPS5940456B2 (en) Manufacturing method of metal vacuum insulation container

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees