[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0693430A - Gas deposition method for superfine particle and device therefor - Google Patents

Gas deposition method for superfine particle and device therefor

Info

Publication number
JPH0693430A
JPH0693430A JP26967592A JP26967592A JPH0693430A JP H0693430 A JPH0693430 A JP H0693430A JP 26967592 A JP26967592 A JP 26967592A JP 26967592 A JP26967592 A JP 26967592A JP H0693430 A JPH0693430 A JP H0693430A
Authority
JP
Japan
Prior art keywords
evaporation material
gas
ultrafine particles
ultrafine
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26967592A
Other languages
Japanese (ja)
Other versions
JP3563083B2 (en
Inventor
Chikara Hayashi
主税 林
Seiichirou Kashiyuu
誠一郎 賀集
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP26967592A priority Critical patent/JP3563083B2/en
Publication of JPH0693430A publication Critical patent/JPH0693430A/en
Application granted granted Critical
Publication of JP3563083B2 publication Critical patent/JP3563083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Glanulating (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit the thin film of superfine particles on a substrate by heating and melting a material to be evaporated by high-frequency induction current in a vacuum chamber, cooling the evaporated matter from the surface thereof with an inert gas in the state of suspending the material in the space in the vacuum chamber and transporting the substrate into a film forming chamber. CONSTITUTION:The inside of the superfine particle forming chamber 2 is evacuated to a vacuum and the high-frequency current of 50kHz is passed from a power source 18 to a circular conical high-frequency coil 6 mounted on the outer periphery of a cylinder 5 contg. the work (m), such as iron, to heat and melt the work (m) by the induction current. The melt is suspended in the form of the spherical melt in the space by the magnetic flux generated by the induction current and the magnetic repulsion force of the magnetic flux generated by the high-frequency current. The atoms of the work (m) evaporated from the surface thereof are rapidly cooled by the gaseous Ar flow 2 a high velocity from below to above from a cylinder 17 to be made into a superfine particle form. The superfine particles are mixed with gaseous Ar and are made into an aerosol form. The aerosol is transported from a transporting pipe 9 into the film forming chamber 21 and is injected on the substrate 25, by which the deposited film having the dense structure is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超微粒子のガスデポジシ
ョン方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for gas deposition of ultrafine particles.

【0002】[0002]

【従来の技術】従来の超微粒子を使用したガスデポジシ
ョン装置は、図5に示される特許第1531607号
(平成1年11月24日登録)の「超微粒子の混合法並
びに装置」に開示されているように、第1生成室30で
は蒸発原料Aをグラファイトるつぼ31内に収容し、生
成室30内を真空排気装置34で排気した後、ガス供給
口35から搬送ガス(主にヘリウム、アルゴンなどの不
活性ガスや水素などの還元性ガス)を生成室30内に導
入し、タンタルやタングステンからなるヒータ32に、
電源34を供給してるつぼ31を加熱することにより、
蒸発原料Aを加熱する間接加熱で蒸発原料Aを蒸発させ
ている。また、第2生成室37では蒸発原料Bを酸化ア
ルミニウムなどの耐熱性のある部材でコーティングされ
た、タングステン製のバスケット容器38に収容し、生
成室37内を真空排気装置40で排気した後、ガス供給
口41からアルゴンガスを導入し、バスケット容器38
に電源39を供給して、直接加熱で蒸発原料を加熱、蒸
発させている。これら生成室30、37で生成された超
微粒子A、Bは、蒸発原料Aの超微粒子がノズル42、
及びノズル42の一部が内部に挿通されているノズル4
3を通り膜形成室44に搬送され、他方、蒸発原料Bの
超微粒子がノズル42と43の隙間に導入され、ノズル
43内で蒸発原料Aと混合して膜形成室43に搬送され
る。膜形成室43内に搬送された蒸発原料A、Bの混合
超微粒子は基板45上に超微粒子膜を作成する。
2. Description of the Related Art A conventional gas deposition apparatus using ultrafine particles is disclosed in "Mixing method and apparatus for ultrafine particles" of Japanese Patent No. 1531607 (registered November 24, 1991) shown in FIG. As described above, in the first generation chamber 30, the evaporation raw material A is housed in the graphite crucible 31, the inside of the generation chamber 30 is exhausted by the vacuum exhaust device 34, and then the carrier gas (mainly helium and argon is supplied from the gas supply port 35. An inert gas such as hydrogen or a reducing gas such as hydrogen) is introduced into the generation chamber 30, and the heater 32 made of tantalum or tungsten
By heating the crucible 31 by supplying the power source 34,
The evaporation raw material A is evaporated by indirect heating for heating the evaporation raw material A. In the second generation chamber 37, the evaporation raw material B is housed in a tungsten basket container 38 coated with a heat-resistant material such as aluminum oxide, and the inside of the generation chamber 37 is evacuated by a vacuum exhaust device 40. Argon gas is introduced from the gas supply port 41, and the basket container 38
Is supplied with a power source 39 to heat and evaporate the evaporation raw material by direct heating. In the ultrafine particles A and B produced in the production chambers 30 and 37, the ultrafine particles of the evaporation raw material A are the nozzle 42,
And the nozzle 4 in which a part of the nozzle 42 is inserted inside
3, the ultrafine particles of the evaporation raw material B are introduced into the gap between the nozzles 42 and 43, mixed with the evaporation raw material A in the nozzle 43, and conveyed to the film formation chamber 43. The mixed ultrafine particles of the evaporation raw materials A and B transported into the film forming chamber 43 form an ultrafine particle film on the substrate 45.

【0003】また、超微粒子の作成には図6に示される
ように、真空槽50内にタングステン製のボート状のヒ
ータ51に蒸発原料Cを収容し、真空槽50内を真空排
気装置53で排気した後、ガス供給口54からアルゴン
ガスを導入し、ヒータ51に電源52からの電力を供給
し、直接加熱で蒸発原料Cを加熱、蒸発させている簡便
な方法もある。
Further, as shown in FIG. 6, in the production of ultrafine particles, the evaporation raw material C is accommodated in the boat-shaped heater 51 made of tungsten in the vacuum tank 50, and the inside of the vacuum tank 50 is evacuated by the vacuum exhaust device 53. After exhausting, there is also a simple method of introducing argon gas from the gas supply port 54, supplying electric power from the power source 52 to the heater 51, and heating and evaporating the evaporation raw material C by direct heating.

【0004】[0004]

【発明が解決しようとする課題】上述した超微粒子の生
成法では、例えば蒸発原料を鉄とすると、蒸発時の鉄の
温度は1650℃〜1700℃(鉄の融点は1530
℃)に加熱が必要であり、るつぼ又はコーティング材料
は〜1800℃にヒータは1900℃〜2000℃の高
温に加熱する必要がある。この場合、るつぼやヒータの
コーティング材から高温加熱による放出ガスが発生し、
これが搬送ガスに混合して、搬送ガスの純度が低下し、
蒸発超微粒子の純度も低下させる。また、ヒータの材料
にタングステンが使用された場合、放出ガスに酸素や水
分が含まれると高温のタングステンと反応して酸化タン
グステン(例えば、WO3 )となって蒸発し、蒸発原料
の超微粒子中にこれが混入する。いずれの場合もガスデ
ポジションされた超微粒子堆積膜中に不純物が混入し、
その特性が低下する原因となる。
In the method of producing ultrafine particles described above, when the evaporation raw material is iron, the temperature of iron during evaporation is 1650 ° C to 1700 ° C (the melting point of iron is 1530).
C.) and the crucible or coating material should be heated to ~ 1800 C and the heater to a high temperature of 1900-2000 C. In this case, release gas is generated from the crucible and heater coating material due to high temperature heating,
This mixes with the carrier gas, reducing the purity of the carrier gas,
It also reduces the purity of evaporated ultrafine particles. Also, when tungsten is used as the material of the heater, when oxygen or water is contained in the released gas, it reacts with high temperature tungsten to evaporate into tungsten oxide (for example, WO 3 ), which evaporates in the ultrafine particles. This is mixed in. In any case, impurities are mixed in the gas-deposited ultrafine particle deposition film,
This causes the characteristics to deteriorate.

【0005】本発明は上記問題に鑑みてなされ、超微粒
子を用いたガスデポジション装置において、超微粒子及
び搬送ガスを高純度のレベルに保持することにより、純
度の高い超微粒子膜を作成することを目的とする。
The present invention has been made in view of the above problems, and in a gas deposition apparatus using ultrafine particles, an ultrafine particle film having high purity is produced by maintaining ultrafine particles and carrier gas at a high purity level. With the goal.

【0006】[0006]

【課題を解決するための手段】以上の目的は、超微粒子
生成室内に置かれた蒸発材料が加熱されることにより、
前記蒸発材料から蒸発した超微粒子が搬送ガスと共に搬
送管内を通り膜形成室に搬送され、該膜形成室内に配設
された基板上に前記超微粒子の膜を作成する超微粒子の
ガスデポジション方法において、前記加熱はコイルに高
周波電流を流すことにより金属塊でなる前記蒸発材料中
に誘導電流を流して加熱し、該誘導電流により前記蒸発
材料に生じる磁束と、前記高周波電流による磁束との間
の磁気反発力により、前記蒸発材料を前記搬送ガス中に
浮遊させた状態で加熱、蒸発させ、この蒸発した前記超
微粒子を前記搬送ガスと共に前記膜形成室内に搬送させ
ることを特徴とする超微粒子のガスデポジション方法に
よって達成される。
[Means for Solving the Problems] The above objects are achieved by heating the evaporation material placed in the ultrafine particle generation chamber,
Ultrafine particle gas deposition method in which ultrafine particles evaporated from the evaporation material are conveyed together with a carrier gas into a film forming chamber to a film forming chamber, and a film of the ultrafine particles is formed on a substrate arranged in the film forming chamber. In the heating, heating is performed by causing an induction current to flow in the evaporation material formed of a metal block by applying a high frequency current to a coil, and between the magnetic flux generated in the evaporation material by the induction current and the magnetic flux caused by the high frequency current. The magnetic repulsive force causes the evaporation material to be heated and evaporated in a state of being suspended in the carrier gas, and the evaporated ultrafine particles are conveyed together with the carrier gas into the film forming chamber. This is achieved by the gas deposition method of.

【0007】または以上の目的は、超微粒子生成室内に
設けられた蒸発材料を加熱する加熱装置と、該加熱装置
により加熱されて前記蒸発材料から蒸発した超微粒子を
前記超微粒子生成室内から膜形成室へ導入させるための
搬送管と、前記超微粒子を前記膜形成室内に搬送するた
めの搬送ガスの導入配管とを備えた超微粒子のガスデポ
ジション装置において、前記加熱装置は高周波電源に電
気的に接続されたコイルで成り、前記導入配管の直上方
に開口が形成された支持部材を設け、該支持部材上で、
且つ前記コイルの内方に筒状部材を設け、該筒状部材内
の上部に前記搬送管のガス導入口を配設し、前記筒状部
材内で金属塊からなる前記蒸発材料を誘導加熱させたこ
とを特徴とする超微粒子のガスデポジション装置によっ
て達成される。
For the above-mentioned purpose, a heating device provided in the ultrafine particle generation chamber for heating the evaporation material, and ultrafine particles heated by the heating device and evaporated from the evaporation material are formed into a film from the ultrafine particle generation chamber. In a gas deposition apparatus for ultrafine particles, which comprises a transport pipe for introducing the ultrafine particles into the chamber, and a pipe for introducing a carrier gas for transporting the ultrafine particles into the film forming chamber, the heating device is electrically connected to a high frequency power source. And a support member having an opening formed immediately above the introduction pipe, the support member comprising:
Further, a tubular member is provided inside the coil, and a gas inlet of the carrier pipe is provided in an upper portion of the tubular member to induce and heat the evaporation material made of a metal block in the tubular member. It is achieved by an ultrafine particle gas deposition apparatus characterized in that

【0008】または以上の目的は、超微粒子生成室内に
置かれた蒸発材料が加熱されることにより、前記蒸発材
料から蒸発した超微粒子が搬送ガスと共に搬送管内を通
り膜形成室に搬送され、該膜形成室内に配設された基板
上に前記超微粒子の膜を作成する超微粒子のガスデポジ
ション方法において、前記蒸発材料はセラミックスで成
り、前記搬送ガスを所定の温度に加熱することにより前
記セラミックスでなる前記蒸発材料を前記搬送ガスで昇
温して導電体とし、コイルに高周波電流を流すことによ
り前記セラミックスでなる前記蒸発材料中に誘導電流を
流して加熱し、該誘導電流により前記蒸発材料に生じる
磁束と、前記高周波電流による磁束との間の磁気反発力
により、前記蒸発材料を前記搬送ガス中に浮遊させた状
態で加熱、蒸発させ、該蒸発材料から蒸発した前記超微
粒子を前記搬送ガスと共に前記膜形成室内に搬送させる
ことを特徴とする超微粒子のガスデポジション方法によ
って達成される。
The above-mentioned object is to heat the evaporation material placed in the ultrafine particle generation chamber, so that the ultrafine particles evaporated from the evaporation material are conveyed to the film forming chamber together with the carrier gas into the film forming chamber. In the ultrafine particle gas deposition method for forming a film of the ultrafine particles on a substrate arranged in a film forming chamber, the evaporation material is ceramics, and the ceramics are obtained by heating the carrier gas to a predetermined temperature. The evaporative material consisting of is heated by the carrier gas to become a conductor, and a high-frequency current is passed through a coil to cause an induction current to flow in the evaporative material made of the ceramics to heat the vaporized material. Due to the magnetic repulsive force between the magnetic flux generated in the carrier and the magnetic flux generated by the high-frequency current, the vaporized material is heated and vaporized in a state of being suspended in the carrier gas. It is accomplished by a gas deposition method fine particles, characterized in that for transporting the ultrafine particles evaporated from the evaporation material to the film forming chamber together with the carrier gas.

【0009】または以上の目的は、超微粒子生成室内に
設けられた蒸発材料を加熱する加熱装置と、該加熱装置
により加熱されて前記蒸発材料から蒸発した超微粒子を
前記超微粒子生成室から膜形成室へ導入させるための搬
送管と、前記超微粒子を膜形成室内に搬送するための搬
送ガスの導入配管とを備えた前記超微粒子のガスデポジ
ション装置において、前記加熱装置は高周波電源に電気
的に接続されたコイルで成り、前記導入配管の直上方に
開口が形成された支持部材を設け、該支持部材上で且つ
前記コイルの内方に筒状部材を設け、該筒状部材内の上
部に前記搬送管のガス導入口を配設し、前記搬送ガスを
所定の温度に加熱する加熱手段を設け、前記筒状部材内
でセラミックスからなる前記蒸発材料を誘導加熱させた
ことを特徴とする超微粒子のガスデポジション装置によ
って達成される。
For the above objects, a heating device provided in the ultrafine particle generation chamber for heating the evaporation material, and ultrafine particles heated by the heating device and evaporated from the evaporation material are formed into a film from the ultrafine particle generation chamber. In the gas deposition apparatus for ultrafine particles, which comprises a transport pipe for introducing the ultrafine particles into the chamber, and a pipe for introducing a carrier gas for transporting the ultrafine particles into the film forming chamber, the heating device is electrically connected to a high frequency power source. A support member having an opening formed immediately above the introduction pipe, a tubular member provided on the support member and inside the coil, and an upper portion inside the tubular member. And a heating means for heating the carrier gas to a predetermined temperature is provided, and the evaporation material made of ceramics is induction-heated in the tubular member. It is accomplished by a gas deposition apparatus of the microparticles.

【0010】または以上の目的は、超微粒子生成室内に
置かれた蒸発材料が加熱されることにより、前記蒸発材
料から蒸発した超微粒子が搬送ガスと共に搬送管内を通
り膜形成室に搬送され、該膜形成室内に配設された基板
上に前記超微粒子の膜を作成する超微粒子のガスデポジ
ション方法において、前記加熱はコイルに高周波電流を
流すことにより極性有機高分子材料で成る前記蒸発材料
を誘電損により加熱し、前記搬送ガスで浮遊させた状態
で加熱、蒸発させ、前記蒸発材料から蒸発した前記超微
粒子を前記搬送ガスと共に前記膜形成室内に搬送させる
ことを特徴とする超微粒子のガスデポジション方法によ
って達成される。
Further, the above object is to heat the evaporating material placed in the ultrafine particle generating chamber, so that the ultrafine particles evaporated from the evaporating material are conveyed to the film forming chamber together with the conveying gas through the conveying pipe, In the ultrafine particle gas deposition method for forming a film of the ultrafine particles on a substrate arranged in a film forming chamber, the heating is performed by passing a high frequency current through a coil to remove the evaporation material made of a polar organic polymer material. Ultrafine particle gas heated by dielectric loss, heated and evaporated in a state of being suspended by the carrier gas, and carrying the ultrafine particles evaporated from the evaporation material into the film forming chamber together with the carrier gas. Achieved by the deposition method.

【0011】または以上の目的は、超微粒子生成室内に
設けられた蒸発材料を加熱する加熱装置と、該加熱装置
により加熱されて前記蒸発材料から蒸発した超微粒子を
前記超微粒子生成室内から膜形成室へ導入させるための
搬送管と、前記超微粒子を前記膜形成室内に搬送するた
めの搬送ガスの導入配管とを備えた超微粒子のガスデポ
ジション装置において、前記加熱装置は高周波電源に電
気的に接続されたコイルで成り、前記導入配管の直上方
に開口が形成された支持部材を設け、該支持部材上で且
つ前記コイルの内方に筒状部材を設け、該筒状部材内の
上部に前記搬送管のガス導入口を配設し、前記筒状部材
内で極性有機高分子材料で成る前記蒸発材料を誘電損に
より加熱させ、かつ搬送ガスを下方から噴出させて浮遊
させたことを特徴とする超微粒子のガスデポジション装
置によって達成される。
For the above-mentioned object, a heating device for heating an evaporation material provided in the ultrafine particle generation chamber, and ultrafine particles heated by the heating device and evaporated from the evaporation material are formed into a film from the ultrafine particle generation chamber. In a gas deposition apparatus for ultrafine particles, which comprises a transport pipe for introducing the ultrafine particles into the chamber, and a pipe for introducing a carrier gas for transporting the ultrafine particles into the film forming chamber, the heating device is electrically connected to a high frequency power source. A support member having an opening formed immediately above the introduction pipe, a tubular member provided on the support member and inside the coil, and an upper portion inside the tubular member. The gas inlet of the carrier pipe is provided in the cylindrical member, the evaporation material made of a polar organic polymer material is heated in the tubular member by dielectric loss, and the carrier gas is jetted from below to float. Characteristic It is accomplished by a gas deposition apparatus ultrafine particles.

【0012】または以上の目的は、超微粒子生成室内に
置かれた蒸発材料が加熱されることにより、前記蒸発材
料から蒸発した超微粒子が搬送ガスと共に搬送管内を通
り膜形成室に搬送され、該膜形成室内に配設された基板
上に前記超微粒子の膜を作成する超微粒子のガスデポジ
ション方法において、前記蒸発材料は極性有機高分子材
料で成り、前記搬送ガスを加熱手段により所定の温度に
することにより前記極性有機高分子材料でなる前記蒸発
材料を前記搬送ガスで加温して、かつ該搬送ガスを前記
蒸発材料の下方から上方に流出させることにより前記蒸
発材料を浮遊させた状態で加熱、蒸発させ、該蒸発材料
から蒸発した前記超微粒子を前記搬送ガスと共に前記膜
形成室内に搬送させることを特徴とする超微粒子のガス
デポジション方法によって達成される。
The above-mentioned object is to heat the evaporation material placed in the ultrafine particle generation chamber, so that the ultrafine particles evaporated from the evaporation material are conveyed to the film forming chamber together with the carrier gas into the film forming chamber. In the gas deposition method of ultrafine particles for forming a film of the ultrafine particles on a substrate arranged in a film forming chamber, the evaporation material is a polar organic polymer material, and the carrier gas is heated to a predetermined temperature by a heating means. The state in which the evaporation material made of the polar organic polymer material is heated by the carrier gas, and the carrier gas is caused to flow upward from below to float the evaporation material. Gas deposition method for ultra-fine particles, characterized in that the ultra-fine particles evaporated from the evaporation material are carried into the film forming chamber together with the carrier gas. Thus it is achieved.

【0013】または以上の目的は、超微粒子生成室内に
設けられた蒸発材料を加熱する加熱装置と、該加熱装置
により加熱されて前記蒸発材料から蒸発した超微粒子を
膜形成室に導入させるための搬送管と、前記超微粒子生
成室内に前記超微粒子を前記膜形成室内に搬送するため
の搬送ガスの導入配管とを備えた前記超微粒子のガスデ
ポジション装置において、前記導入配管の直上方に開口
が形成された支持部材を設け、該支持部材上に筒状部材
を設け、該筒状部材内の上部に前記搬送管のガス導入口
を配設し、前記搬送ガスを所定の温度に加熱する加熱手
段を設け、これにより前記筒状部材内で極性有機高分子
材料から成る前記蒸発材料を加熱させかつ前記支持部材
から浮上させたことを特徴とする超微粒子のガスデポジ
ション装置によって達成される。
Further, the above objects are to provide a heating device for heating the evaporation material provided in the ultrafine particle generation chamber, and to introduce the ultrafine particles heated by the heating device and evaporated from the evaporation material into the film forming chamber. In the gas deposition apparatus for the ultrafine particles, which is provided with a transport pipe and a carrier gas introduction pipe for transporting the ultrafine particles into the film formation chamber in the ultrafine particle generation chamber, an opening is provided immediately above the introduction pipe. Is provided, a tubular member is provided on the support member, the gas introduction port of the carrier pipe is provided in the upper part of the tubular member, and the carrier gas is heated to a predetermined temperature. A heating means is provided, whereby the evaporation material made of a polar organic polymer material is heated in the cylindrical member and is floated from the supporting member. It is achieved.

【0014】[0014]

【作用】金属や導電性を持たせたセラミックスの導電体
からなる蒸発材料を、コイルに高周波電流を流すことに
より、蒸発材料に生じる磁束と高周波電流による磁束と
の間の磁気反発力により蒸発材料を浮遊させ、かつ蒸発
材料中に誘導電流を流して加熱、蒸発しているので、蒸
発材料の蒸発面積が大きくなり、蒸発材料から超微粒子
を効率良く蒸発させることができ、不純ガスが発生しな
いので超微粒子の純度も高くなる。また、極性有機高分
子材料で成る蒸発材料を、コイルに高周波電流を流すこ
とにより誘電損により加熱し、この搬送ガスで蒸発材料
を浮遊させた状態で加熱、蒸発させているので、蒸発材
料の蒸発面積が大きくなり、蒸発材料から超微粒子を効
率良く蒸発させることができ、不純ガスが発生しないの
で超微粒子の純度も高くなる。更にまた、極性有機高分
子材料で成る蒸発材料を搬送ガスで加熱し、この搬送ガ
スで蒸発材料を浮遊させた状態で加熱、蒸発させている
ので、蒸発材料の蒸発面積が大きくなり、蒸発材料から
超微粒子を効率良く蒸発させることができ、超微粒子の
純度も高くなる。
[Function] By evaporating a high-frequency current through a coil, a vaporization material made of a metal or a ceramic conductor having conductivity, a magnetic repulsion force is generated between the magnetic flux generated in the vaporization material and the magnetic flux generated by the high-frequency current. Is suspended, and an induced current is passed through the evaporation material to heat and evaporate, so the evaporation area of the evaporation material is large, and ultrafine particles can be efficiently evaporated from the evaporation material, and no impure gas is generated. Therefore, the purity of ultrafine particles is also increased. Further, the evaporation material made of a polar organic polymer material is heated by dielectric loss by passing a high-frequency current through the coil, and the evaporation material is heated and evaporated by the carrier gas in a suspended state. The evaporation area is increased, the ultrafine particles can be efficiently evaporated from the evaporation material, and the purity of the ultrafine particles is increased because no impure gas is generated. Furthermore, since the evaporation material composed of the polar organic polymer material is heated by the carrier gas, and the evaporation material is heated and evaporated by the carrier gas in a suspended state, the evaporation area of the evaporation material becomes large and Therefore, the ultrafine particles can be efficiently evaporated, and the purity of the ultrafine particles is increased.

【0015】[0015]

【実施例】以下、本発明の実施例によるガスデポジショ
ン装置について図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A gas deposition apparatus according to an embodiment of the present invention will be described below with reference to the drawings.

【0016】図1は本発明のガスデポジション装置1を
示し、ガスデポジション装置1は超微粒子生成室2と膜
形成室21からなり、これらの室2、21は各々の上壁
部を貫通して配設されている搬送管9により連通してい
る。超微粒子生成室2の右側壁部には超微粒子生成室2
内を排気する真空ポンプ12が真空バルブ11を介在さ
せて配設され、上壁部にはこの超微粒子生成室2内の圧
力を計測する圧力計13が取り付けられている。超微粒
子生成室2内にはこの外部に配設されている高周波電源
18から電力が供給される高周波コイル6が導線7a、
7bを介して接続されている。高周波コイル6は巻数が
5巻ですり鉢状に形成され、上方から下方に向かって、
漸次径が小さくなっている。最下端のコイルは内径30
mm、最上端のコイルの径は50mmである。高周波電
源18は50kHzの真空管発振方式で出力は5kWの
ものが用いられている。
FIG. 1 shows a gas deposition apparatus 1 of the present invention. The gas deposition apparatus 1 comprises an ultrafine particle generation chamber 2 and a film forming chamber 21, and these chambers 2 and 21 penetrate through the upper wall portions of each. They are communicated with each other by a transfer pipe 9 that is arranged. The ultrafine particle generation chamber 2 is provided on the right side wall of the ultrafine particle generation chamber 2.
A vacuum pump 12 for evacuating the inside is arranged with a vacuum valve 11 interposed, and a pressure gauge 13 for measuring the pressure in the ultrafine particle generation chamber 2 is attached to the upper wall portion. In the ultrafine particle generation chamber 2, a high frequency coil 6 to which electric power is supplied from a high frequency power source 18 arranged outside the conductive wire 7a,
It is connected via 7b. The high frequency coil 6 is formed in a mortar shape with five turns, and from the top to the bottom,
Gradually the diameter is decreasing. The bottom coil has an inner diameter of 30
mm, the diameter of the uppermost coil is 50 mm. The high frequency power supply 18 is a vacuum tube oscillation system of 50 kHz and has an output of 5 kW.

【0017】超微粒子生成室2の底壁部にはガス導入配
管4からなる搬送ガス導入室が設けられ、この側壁部
にはガス導入用の配管14が搬送ガスのアルゴンガス供
給源であるガスボンベ17に接続されている。ガス導入
管14とガスボンベ17との間にはガスの流量を自在に
調節できる真空バルブ16とガスボンベ17からのガス
の流量を計測できるガス流量計とが接続されている。ガ
ス導入配管4の上部には石英(アルミナでもよい。石英
については以下同様にアルミナが使用できる。)からな
る環状の支持部材3が取り付けられ、支持部材3の開口
3aは4mmであり、支持部材3の上面上には支持部材
3と同心的に円筒5が取り付けられている。支持部材3
上には超微粒子の原料となる鉄塊mが載置されている。
また、支持部材3の内孔の直下方、且つガス導入配管4
内には超微粒子の原料と同部材の鉄からなる原料棒19
が収容されている。原料棒19は直径3mmの円柱形で
あり、超微粒子生成室2の底壁部に設けられている供給
棒19の押上装置20に取り付けられ、この押上装置2
0により支持部材3の内孔の中心を垂直方向に押上られ
る。
A carrier gas introduction chamber E consisting of a gas introduction pipe 4 is provided at the bottom wall of the ultrafine particle generation chamber 2, and a gas introduction pipe 14 is an argon gas supply source of the carrier gas at this side wall. It is connected to the gas cylinder 17. A vacuum valve 16 capable of freely adjusting the flow rate of gas and a gas flow meter capable of measuring the flow rate of gas from the gas cylinder 17 are connected between the gas introduction pipe 14 and the gas cylinder 17. An annular supporting member 3 made of quartz (alumina may be used; similarly, alumina may be used hereinafter) is attached to the upper portion of the gas introducing pipe 4, and the opening 3a of the supporting member 3 is 4 mm. A cylinder 5 is mounted concentrically with the support member 3 on the upper surface of 3. Support member 3
An iron ingot m, which is a raw material of ultrafine particles, is placed on the top.
In addition, immediately below the inner hole of the support member 3 and the gas introduction pipe 4
A raw material rod 19 made of iron, which is the same material as the raw material for the ultrafine particles
Is housed. The raw material rod 19 has a cylindrical shape with a diameter of 3 mm, and is attached to the push-up device 20 of the supply rod 19 provided on the bottom wall portion of the ultrafine particle generation chamber 2.
0 pushes up the center of the inner hole of the support member 3 in the vertical direction.

【0018】円筒5は高周波コイル6の径内方にこれと
同心的に配置され、その実寸は内径22mm、外径26
mm、高さ40mmであり、材質は支持部材3と同じく
石英からなる。また、円筒5の内方にはこの内周壁と支
持部材3とで区画された蒸発空間が設けられ、この蒸
発空間の上方には搬送管9の一端部である超微粒子の
導入口8が配設されている。図に示されるように、搬送
管9の導入口8は裾拡がりに形成されている。
The cylinder 5 is arranged concentrically with the inside of the high-frequency coil 6 and has an actual size of 22 mm inside diameter and 26 outside diameter.
The height is 40 mm and the height is 40 mm. The material of the support member 3 is quartz. An evaporation space F defined by the inner peripheral wall and the support member 3 is provided inside the cylinder 5. Above the evaporation space F, an inlet 8 for ultrafine particles, which is one end of the transfer tube 9, is provided. Is provided. As shown in the figure, the introduction port 8 of the carrier pipe 9 is formed so as to be widened at the bottom.

【0019】搬送管9の他端側が配設されている膜形成
室21はこの上壁部に室21内の圧力を計測する圧力計
22が取り付けられ、底壁部には真空バルブ23を介在
させて真空ポンプ24が接続されている。また膜形成室
21の内部には超微粒子の膜を作成させるためのSi基
板25が配設される。
The film forming chamber 21 in which the other end of the transfer pipe 9 is disposed has a pressure gauge 22 for measuring the pressure in the chamber 21 attached to the upper wall thereof, and a vacuum valve 23 interposed in the bottom wall thereof. The vacuum pump 24 is connected. In addition, a Si substrate 25 for forming a film of ultrafine particles is provided inside the film forming chamber 21.

【0020】以上、本発明の実施例によるガスデポジシ
ョン装置1の構成について説明したが、次にその作用に
ついて説明する。
The configuration of the gas deposition apparatus 1 according to the embodiment of the present invention has been described above. Next, its operation will be described.

【0021】本実施例では生成室2内にるつぼやボート
などの蒸発源は存在せず、超微粒子の原料となる鉄塊m
は支持部材3の内孔を塞ぐようにして支持部材3上に載
置され、16gの鉄が用いられる。真空バルブ11、2
3が開かれると、真空ポンプ12、24を作動させ、超
微粒子生成室2内と膜形成室21内を排気する。生成室
2が0.003Torr(0.4Pa)まで排気した
後、真空バルブ11を閉じ、真空ポンプ12の作動を停
止する。ガス流量調節バルブ16を開きガスボンベ17
からアルゴンガスを2.4l/min(大気圧換算)流
し込む。他方、膜形成室21側の真空ポンプ24は常に
作動させた状態を維持させる。これにより生成室2内の
圧力は560Torr(74kPa)で平衡状態とな
る。
In this embodiment, there is no evaporation source such as a crucible or a boat in the production chamber 2, and an iron ingot m which is a raw material of ultrafine particles is used.
Is placed on the support member 3 so as to close the inner hole of the support member 3, and 16 g of iron is used. Vacuum valve 11, 2
When 3 is opened, the vacuum pumps 12 and 24 are operated to exhaust the inside of the ultrafine particle generation chamber 2 and the inside of the film forming chamber 21. After exhausting the production chamber 2 to 0.003 Torr (0.4 Pa), the vacuum valve 11 is closed and the operation of the vacuum pump 12 is stopped. Open the gas flow control valve 16 and open the gas cylinder 17.
Argon gas is flown in from 2.4 l / min (atmospheric pressure conversion). On the other hand, the vacuum pump 24 on the film forming chamber 21 side is always maintained in the operated state. As a result, the pressure in the generation chamber 2 is 560 Torr (74 kPa), and the equilibrium state is reached.

【0022】次に、加熱用電源18の出力を2kWに保
持して、高周波コイル6に電流を流す。蒸発原料の鉄塊
mは高周波コイル6と鉄塊mに生じる磁束の鎖交による
渦電流の誘導で渦電流間の磁気反発力により鉄塊は図2
に示すように自重が支えられ、空中に浮上して加熱され
る。その後、加熱用電源18の出力を3kWに上昇させ
ると、鉄塊mは溶融して球に近い形(この時点では図2
に示されているような球形となっていない。また、以後
溶融した鉄塊を溶融球Mとする。)となって支持部材3
の上面から1〜2mmに間隔を保って浮上し続ける。ガ
スボンベ17から供給されているアルゴンガスはガス導
入用の配管14から搬送ガス導入室に供給され、ここ
から上方の支持部材3の開口3aを通過する際に溶融球
Mの浮上を助成する。加熱用電源18の出力を3kWに
してから3分後に浮上した溶融球Mの表面は1650℃
となり、溶融した鉄の表面張力により直径約7mmの球
状となり、この形を保つ。これ以上、溶融球Mの温度を
上昇させると溶融した鉄の粘性が低下し、球状の形が崩
れ、液滴となって支持部材3の開口3aを通りガス導入
に落ちるので注意が必要である。
Next, the output of the heating power source 18 is maintained at 2 kW, and a current is passed through the high frequency coil 6. The iron ingot m, which is the evaporation raw material, is formed by the magnetic repulsion between the eddy currents due to the induction of the eddy current due to the interlinkage of the magnetic flux generated between the high frequency coil 6 and the iron ingot m.
As shown in, its own weight is supported, and it floats in the air and is heated. After that, when the output of the heating power source 18 is increased to 3 kW, the iron ingot m is melted and has a shape close to a sphere (Fig.
It does not have the spherical shape shown in. Further, hereinafter, the molten iron ingot is referred to as a molten ball M. ) Becomes a supporting member 3
Continue to float at a distance of 1 to 2 mm from the top surface of the. The argon gas supplied from the gas cylinder 17 is supplied to the carrier gas introducing chamber E from the gas introducing pipe 14 and assists the floating of the molten sphere M when passing through the opening 3a of the upper supporting member 3 from here. The surface of the molten ball M that floated 3 minutes after the output of the heating power source 18 was set to 3 kW was 1650 ° C.
Then, due to the surface tension of the molten iron, it becomes a spherical shape with a diameter of about 7 mm, and this shape is maintained. If the temperature of the molten sphere M is further increased, the viscosity of the molten iron decreases, the spherical shape collapses, and droplets pass through the opening 3a of the support member 3 and fall into the gas introduction chamber E. Is.

【0023】図2に示すように蒸発原料の溶融球Mとそ
の周りの円筒5及びその蒸発空間上の搬送管9の導入
口8の配置は溶融球Mの表面から蒸発した鉄の原子が下
方から上方に高速で流れるほぼ室温のアルゴンガスで急
冷され、超微粒子が生成する。搬送ガスは溶融球Mの表
面から鉄原子の蒸発を促進し、鉄の超微粒子の形成に役
立つ。蒸発した超微粒子は円筒5の上部の導入口8でア
ルゴンガス中に混合してエアロゾル状となり、アルゴン
ガスの流れが絞られて搬送管9に吸い込まれ、このアル
ゴンガスの流れとともに生成された超微粒子の殆どが搬
送管9の流れの中に入り込む。もし生成した超微粒子が
その流れから外れて生成室2内に浮遊しても、再び蒸発
空間の中に入り込むことはない(このような状態の超
微粒子は凝集する場合が多い。)。従って、超微粒子の
生成直後の且つ凝集の殆ど無い超微粒子が搬送管9を通
り膜形成室21に搬送され、細いノズルからのエアロゾ
ルの高速噴射で基板25に緻密な組織の堆積膜が作成さ
れる。
As shown in FIG. 2, the arrangement of the molten sphere M of the evaporation raw material, the cylinder 5 around it, and the inlet 8 of the carrier pipe 9 on the evaporation space F is such that the iron atoms evaporated from the surface of the molten sphere M are Ultra-fine particles are generated by quenching with argon gas flowing at a high temperature from the bottom to the top at a high speed. The carrier gas promotes the evaporation of iron atoms from the surface of the molten sphere M and serves to form ultrafine iron particles. The evaporated ultrafine particles are mixed with argon gas in the inlet 8 at the upper part of the cylinder 5 to form an aerosol, and the flow of the argon gas is throttled and sucked into the carrier pipe 9, and the ultrafine particles generated together with the flow of the argon gas are generated. Most of the fine particles enter the flow of the transfer pipe 9. Even if the generated ultrafine particles float out of the flow and float in the generation chamber 2, they do not re-enter the evaporation space F (the ultrafine particles in such a state often aggregate). Therefore, the ultrafine particles immediately after the generation of the ultrafine particles and having almost no agglomeration are conveyed to the film forming chamber 21 through the conveying pipe 9, and the deposition film having a dense structure is formed on the substrate 25 by the high speed injection of the aerosol from the thin nozzle. It

【0024】ガスデポジション法ではこのようにすれば
蒸発した原子の99%を膜形成室21に搬送してデポジ
ション(コーティング)に使えるので、例えば電子回路
の配線やコンデンサの形成に使う場合に、膜厚が10μ
mの桁よりも小さいコーティングであれば、ほんの1g
〜3gの原料でも数千個〜数万個の製品を製造できる。
In the gas deposition method, 99% of the vaporized atoms can be transported to the film forming chamber 21 and used for deposition (coating) in this way, so that, for example, when used for wiring of an electronic circuit or forming a capacitor. , Film thickness is 10μ
If the coating is smaller than m digit, only 1g
Thousands to tens of thousands of products can be produced with ~ 3g of raw material.

【0025】また、膜の作成を連続して行う場合は図3
に示すように支持部材3の直下方の搬送ガス導入室
配設されている原料鉄である原料棒19を押上装置20
により直上方に押上、支持部材3の開口3aを挿通させ
て溶融球Mの下部に接触させ、溶融した原料棒19を溶
融球Mに吸収させる。本実施例のように原料棒19の直
径が3mmの場合では原料棒19を20mm押し上げる
と1gの原料の供給となる。
Further, in the case where the film formation is continuously carried out, FIG.
As shown in FIG. 3, the raw material rod 19 made of raw material iron disposed in the carrier gas introduction chamber E immediately below the support member 3 is pushed up by the push-up device 20.
Thus, the material is pushed up immediately above and is inserted into the opening 3a of the support member 3 to be brought into contact with the lower portion of the molten sphere M so that the molten raw material bar 19 is absorbed by the molten sphere M. When the diameter of the raw material rod 19 is 3 mm as in this embodiment, pushing up the raw material rod 19 by 20 mm supplies 1 g of raw material.

【0026】蒸発の終了時では高周波電源18の出力を
下げると浮上力が小さくなり、重力の作用で溶融球Mは
支持部材3上に落下する。溶融球Mの大きさが支持部材
3の開口3aよりも小さければ、溶融球Mはガス導入室
に落下する。
At the end of evaporation, if the output of the high frequency power source 18 is lowered, the levitation force becomes smaller, and the molten balls M fall on the support member 3 due to the action of gravity. If the size of the molten sphere M is smaller than the opening 3a of the support member 3, the molten sphere M is not
Fall to E.

【0027】本実施例によるガスデポジション方法及び
装置により作成された鉄の超微粒子の堆積膜と従来のガ
スデポジション法により作成された鉄の超微粒子の堆積
膜の純度を下記の表1に示す。
Table 1 below shows the purities of the deposited film of ultrafine iron particles prepared by the gas deposition method and apparatus according to this example and the deposited film of ultrafine iron particles prepared by the conventional gas deposition method. Show.

【0028】[0028]

【表1】 [Table 1]

【0029】本実施例によるガスデポジション方法及び
装置により作成された鉄の超微粒子の堆積膜と従来のガ
スデポジション法により作成された鉄の超微粒子の堆積
膜のSi基板上の付着強度を下記の表2に示す。尚、付
着強度は本実施例、従来法のいずれの膜も膜内で破断
し、基板界面での剥離ではない。
The adhesion strength of the deposited film of ultrafine iron particles prepared by the gas deposition method and apparatus according to this embodiment and the deposited film of ultrafine iron particles prepared by the conventional gas deposition method on the Si substrate was measured. It is shown in Table 2 below. Incidentally, the adhesion strength is not the peeling at the substrate interface, because the films of both the present example and the conventional method break in the film.

【0030】[0030]

【表2】 [Table 2]

【0031】本実施例によるガスデポジション方法及び
装置により作成された鉄の超微粒子の堆積膜と従来のガ
スデポジション法により作成された鉄の超微粒子の堆積
膜の電気抵抗を下記の表3に示す。
The electric resistances of the deposited film of ultrafine iron particles prepared by the gas deposition method and apparatus according to this embodiment and the deposited films of ultrafine iron particles prepared by the conventional gas deposition method are shown in Table 3 below. Shown in.

【0032】[0032]

【表3】 [Table 3]

【0033】以上の表1〜表3で分かるように本実施例
では鉄の超微粒子膜の純度は非常に高く、Si基板上の
付着強度は従来法に比べて約30%向上している。更に
それの電気抵抗は本実施例では大巾に小さくなり、電気
伝導性が向上している。この電気伝導性の向上は上述の
膜中の不純物の減少とともに、膜内にガス状でトラップ
されるO2 をはじめとする不純ガスの減少が大きく寄与
している。
As can be seen from Tables 1 to 3 above, in this embodiment, the ultrafine iron film has a very high purity and the adhesion strength on the Si substrate is improved by about 30% as compared with the conventional method. Further, the electric resistance thereof is greatly reduced in this embodiment, and the electric conductivity is improved. This improvement in electrical conductivity is greatly contributed by the reduction of impurities in the film and the reduction of impure gas such as O 2 trapped in a gaseous state in the film.

【0034】以上のように、本実施例による超微粒子の
ガスデポジション方法及び装置によれば、超微粒子膜の
純度、基板上での堆積膜の付着強度及び膜の電気的電導
性が良くなり、膜の品質が向上した。また、通常のるつ
ぼ内で鉄を溶融、蒸発する場合と比べて、溶融球Mは表
面全体が蒸発面となるため、蒸発面積は5倍となり蒸発
効率が向上する。このように高品質の超微粒子生成量の
増加のメリットはガスデポジションによる形成膜のより
高品質化、高能率化を指向し、その利用分野をエレクト
ロニクス、ファインメカニカル、ファインケミカルなど
より広い分野への応用につながる。
As described above, according to the method and apparatus for gas deposition of ultrafine particles according to this embodiment, the purity of the ultrafine particle film, the adhesion strength of the deposited film on the substrate, and the electric conductivity of the film are improved. , The quality of the membrane was improved. Further, as compared with the case where iron is melted and evaporated in a normal crucible, the entire surface of the molten sphere M serves as an evaporation surface, so that the evaporation area becomes 5 times and the evaporation efficiency is improved. In this way, the merit of increasing the production amount of high-quality ultrafine particles is aimed at higher quality and higher efficiency of the formed film by gas deposition, and its application fields are expanded to wider fields such as electronics, fine mechanical, and fine chemical. It leads to application.

【0035】以上、本発明の各実施例について説明した
が、勿論、本発明はこれらに限定されることなく、本発
明の技術的思想に基いて種々の変形が可能である。
Although the respective embodiments of the present invention have been described above, needless to say, the present invention is not limited to these, and various modifications can be made based on the technical idea of the present invention.

【0036】例えば、以上の実施例では蒸発材料を鉄と
したが、勿論、本発明は他の金属にも適用することがで
きる。また、セラミックスにも適用することができる。
但し、この場合はセラミックスに導電性を持たせるため
セラミックスを所定温度に加熱する必要があり、このた
め搬送ガスを加熱し支持部材に借り置きされているセラ
ミックスを予め上記所定温度に加温させてから、上述し
た実施例と同じ方法で行えばよく、実施例と同様な効果
を奏する。尚、加熱した搬送ガスにより不純物が発生し
ないようにガス導入配管4を石英などで形成させる必要
がある。
For example, although the evaporation material is iron in the above embodiments, the present invention can of course be applied to other metals. It can also be applied to ceramics.
However, in this case, it is necessary to heat the ceramics to a predetermined temperature in order to make the ceramics electrically conductive. Therefore, the carrier gas is heated to preheat the ceramics rented to the support member to the predetermined temperature. Therefore, the same method as that of the above-described embodiment may be performed, and the same effect as that of the embodiment can be obtained. In addition, it is necessary to form the gas introduction pipe 4 with quartz or the like so that impurities are not generated by the heated carrier gas.

【0037】更に、本発明は蒸発材料として極性有機高
分子にも適用することができる。この場合はコイル6に
高周波電流が流れることにより、蒸発材料中に誘電損が
生じて加熱される。極性有機高分子は種類により200
℃〜600℃以上で分解するので、加熱温度をそれ以上
に上げないように考慮する必要がある。蒸発材料を浮遊
させるためには、蒸発材料に搬送ガスを下から上へ噴き
上げて浮遊させる。また、極性有機高分子は蒸発温度が
低いため、加熱手段にコイル6と電源18による誘導加
熱を用いないで、搬送ガスを加熱して、この搬送ガスに
より蒸発材料を加熱させて蒸発させることもできる。こ
の場合も蒸発材料を浮遊させるのに、蒸発材料に搬送ガ
スを下から上へ噴き上げて浮遊させる。また、上述した
ように加熱した搬送ガスにより不純物が発生しないよう
にガス導入配管4を石英などで形成させる必要がある。
Furthermore, the present invention can also be applied to polar organic polymers as evaporation materials. In this case, a high-frequency current flows through the coil 6, causing dielectric loss in the evaporation material and heating. 200 for polar organic polymers
Since it decomposes at ℃ ~ 600 ℃ or more, it is necessary to consider not to raise the heating temperature any more. In order to suspend the evaporation material, a carrier gas is blown up from the bottom to the evaporation material to float. Further, since the polar organic polymer has a low evaporation temperature, it is possible to heat the carrier gas and heat the evaporation material by the carrier gas without using induction heating by the coil 6 and the power source 18 for the heating means. it can. Also in this case, in order to float the evaporation material, the carrier gas is jetted upward from the evaporation material to float. Further, it is necessary to form the gas introduction pipe 4 with quartz or the like so that impurities are not generated by the heated carrier gas as described above.

【0038】また、以上の実施例では支持部材3に形成
された開口の形状を円柱形としたが、図4に示されるよ
うに支持部材3’の開口を逆円錐形状とすると、搬送ガ
スの流れが効率よく溶融球を下から上へ噴き上げ、溶融
球がコイル6の中心で浮遊させるの助成することができ
る。
Further, in the above embodiments, the shape of the opening formed in the support member 3 is cylindrical, but if the opening of the support member 3'is made into an inverted conical shape as shown in FIG. The flow efficiently blows up the molten balls from the bottom to the top, and can help the molten balls to float at the center of the coil 6.

【0039】[0039]

【発明の効果】以上、本発明の超微粒子のガスデポジシ
ョン方法及び装置によれば、凝集のない純度の高い超微
粒子が膜形成室内に搬送されることから、高品質の堆積
膜が作成される。また、蒸発材料の蒸発面積を大きくす
ることができ、且つ超微粒子生成室で蒸発された超微粒
子の殆どが膜形成室に搬送されるために生産能率を高め
製品を大量生産することができる。
As described above, according to the method and apparatus for gas deposition of ultrafine particles of the present invention, since ultrafine particles of high purity without aggregation are conveyed into the film forming chamber, a high quality deposited film is produced. It Further, the evaporation area of the evaporation material can be increased, and most of the ultrafine particles evaporated in the ultrafine particle generation chamber are conveyed to the film forming chamber, so that the production efficiency can be increased and a large number of products can be mass produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による超微粒子のガスデポジシ
ョン方法及び装置の概略正面図である。
FIG. 1 is a schematic front view of a method and apparatus for gas deposition of ultrafine particles according to an embodiment of the present invention.

【図2】同超微粒子のガスデポジション方法及び装置に
より溶融球Mが蒸発させられているところを示す支持部
材近傍の拡大正面図である。
FIG. 2 is an enlarged front view of the vicinity of a support member, showing a molten sphere M being vaporized by the same ultrafine particle gas deposition method and apparatus.

【図3】同蒸発材料に原料が供給されているのを示す支
持部材近傍の拡大正面図である。
FIG. 3 is an enlarged front view of the vicinity of a support member showing that the raw material is supplied to the evaporation material.

【図4】同支持部材の変形例を拡大正面図である。FIG. 4 is an enlarged front view of a modified example of the support member.

【図5】従来例によるガスデポジション法を示す概略正
面図である。
FIG. 5 is a schematic front view showing a gas deposition method according to a conventional example.

【図6】同概略正面図である。FIG. 6 is a schematic front view of the same.

【符号の説明】[Explanation of symbols]

1 ガスデポジション装置 2 超微粒子生成室 3 支持部材 3’ 支持部材 3a 開口 4 ガス導入配管 5 円筒 6 コイル 8 ガス導入口 9 搬送管 19 原料棒 21 膜形成室 m 鉄塊 DESCRIPTION OF SYMBOLS 1 Gas deposition apparatus 2 Ultrafine particle production chamber 3 Support member 3'Support member 3a Opening 4 Gas introduction pipe 5 Cylinder 6 Coil 8 Gas introduction port 9 Conveying pipe 19 Raw material bar 21 Film forming chamber m Iron ingot

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 超微粒子生成室内に置かれた蒸発材料が
加熱されることにより、前記蒸発材料から蒸発した超微
粒子が搬送ガスと共に搬送管内を通り膜形成室に搬送さ
れ、該膜形成室内に配設された基板上に前記超微粒子の
膜を作成する超微粒子のガスデポジション方法におい
て、前記加熱はコイルに高周波電流を流すことにより金
属塊でなる前記蒸発材料中に誘導電流を流して加熱し、
該誘導電流により前記蒸発材料に生じる磁束と、前記高
周波電流による磁束との間の磁気反発力により、前記蒸
発材料を前記搬送ガス中に浮遊させた状態で加熱、蒸発
させ、この蒸発した前記超微粒子を前記搬送ガスと共に
前記膜形成室内に搬送させることを特徴とする超微粒子
のガスデポジション方法。
1. When the evaporation material placed in the ultrafine particle generation chamber is heated, the ultrafine particles evaporated from the evaporation material are conveyed together with a carrier gas into a film forming chamber through a carrier pipe, and into the film forming chamber. In the ultrafine gas deposition method of forming the ultrafine particle film on the arranged substrate, the heating is performed by passing an induction current in the evaporation material formed of a metal mass by passing a high frequency current through a coil. Then
Due to the magnetic repulsive force between the magnetic flux generated in the evaporation material by the induced current and the magnetic flux generated by the high frequency current, the evaporation material is heated and evaporated in a state of being suspended in the carrier gas, A gas deposition method for ultra-fine particles, characterized in that the fine particles are carried into the film forming chamber together with the carrier gas.
【請求項2】 前記蒸発材料を前記搬送ガス中に浮上さ
せるのに、該搬送ガスを前記蒸発材料の下方から上方に
流出させることにより該蒸発材料を浮遊させるのを助成
したことを特徴とする請求項1に記載の超微粒子のガス
デポジション方法。
2. In order to float the evaporation material in the carrier gas, the carrier gas is caused to flow upward from below to assist the floating of the evaporation material. The method for gas deposition of ultrafine particles according to claim 1.
【請求項3】 超微粒子生成室内に設けられた蒸発材料
を加熱する加熱装置と、該加熱装置により加熱されて前
記蒸発材料から蒸発した超微粒子を前記超微粒子生成室
内から膜形成室へ導入させるための搬送管と、前記超微
粒子を前記膜形成室内に搬送するための搬送ガスの導入
配管とを備えた超微粒子のガスデポジション装置におい
て、前記加熱装置は高周波電源に電気的に接続されたコ
イルで成り、前記導入配管の直上方に開口が形成された
支持部材を設け、該支持部材上で、且つ前記コイルの内
方に筒状部材を設け、該筒状部材内の上部に前記搬送管
のガス導入口を配設し、前記筒状部材内で金属塊からな
る前記蒸発材料を誘導加熱させたことを特徴とする超微
粒子のガスデポジション装置。
3. A heating device provided in the ultrafine particle generation chamber for heating an evaporation material, and ultrafine particles heated by the heating device and evaporated from the evaporation material are introduced into the film formation chamber from the ultrafine particle generation chamber. In a gas deposition apparatus for ultrafine particles, which comprises a transport pipe for transporting the gas and a carrier gas introduction pipe for transporting the ultrafine particles into the film forming chamber, the heating device is electrically connected to a high frequency power supply. A support member made of a coil and having an opening formed immediately above the introduction pipe is provided, and a tubular member is provided on the support member and inward of the coil, and the transfer member is provided above the tubular member. A gas deposition apparatus for ultrafine particles, characterized in that a gas introduction port of a tube is provided, and the evaporation material made of a metal mass is induction-heated in the cylindrical member.
【請求項4】 前記蒸発材料と同じ材料で成る材料棒を
前記筒状部材内で浮遊された前記蒸発材料に接触させて
供給するようにしたことから成る請求項3に記載の超微
粒子のガスデポジション装置。
4. The gas of ultrafine particles according to claim 3, wherein a material rod made of the same material as the evaporation material is supplied in contact with the evaporation material suspended in the tubular member. Deposition device.
【請求項5】 前記支持部材の開口は逆円錐形状である
請求項3に記載のガスデポジション装置。
5. The gas deposition apparatus according to claim 3, wherein the opening of the support member has an inverted conical shape.
【請求項6】 超微粒子生成室内に置かれた蒸発材料が
加熱されることにより、前記蒸発材料から蒸発した超微
粒子が搬送ガスと共に搬送管内を通り膜形成室に搬送さ
れ、該膜形成室内に配設された基板上に前記超微粒子の
膜を作成する超微粒子のガスデポジション方法におい
て、前記蒸発材料はセラミックスで成り、前記搬送ガス
を所定の温度に加熱することにより前記セラミックスで
なる前記蒸発材料を前記搬送ガスで昇温して導電性を持
たせ、コイルに高周波電流を流すことにより前記セラミ
ックスでなる前記蒸発材料中に誘導電流を流して加熱
し、該誘導電流により前記蒸発材料に生じる磁束と、前
記高周波電流による磁束との間の磁気反発力により、前
記蒸発材料を前記搬送ガス中に浮遊させた状態で加熱、
蒸発させ、該蒸発材料から蒸発した前記超微粒子を前記
搬送ガスと共に前記膜形成室内に搬送させることを特徴
とする超微粒子のガスデポジション方法。
6. When the evaporation material placed in the ultrafine particle generation chamber is heated, the ultrafine particles evaporated from the evaporation material are conveyed to the film forming chamber together with a carrier gas into the film forming chamber, and into the film forming chamber. In the method of gas deposition of ultra-fine particles for forming a film of the ultra-fine particles on an arranged substrate, the evaporation material is made of ceramics, and the evaporation is made of the ceramics by heating the carrier gas to a predetermined temperature. The material is heated by the carrier gas to make it conductive, and a high-frequency current is passed through the coil to cause an induction current to flow in the evaporation material made of the ceramic to heat the material, and the induction current causes the evaporation material to be generated in the evaporation material. By magnetic repulsion between the magnetic flux and the magnetic flux due to the high frequency current, the evaporation material is heated in a state of being suspended in the carrier gas,
A method for gas deposition of ultra-fine particles, characterized in that the ultra-fine particles that are vaporized and transported from the evaporation material are transported into the film forming chamber together with the transport gas.
【請求項7】 前記蒸発材料を前記搬送ガス中に浮上さ
せるのに、該搬送ガスを前記蒸発材料の下方から上方に
流出させることにより該蒸発材料を浮遊させるのを助成
したことを特徴とする請求項6に記載の超微粒子のガス
デポジション方法。
7. The floatation of the evaporation material in the carrier gas is facilitated by allowing the carrier gas to flow out from below the evaporation material to above the evaporation material. The method for gas deposition of ultrafine particles according to claim 6.
【請求項8】 超微粒子生成室内に設けられた蒸発材料
を加熱する加熱装置と、該加熱装置により加熱されて前
記蒸発材料から蒸発した超微粒子を前記超微粒子生成室
から膜形成室へ導入させるための搬送管と、前記超微粒
子を膜形成室内に搬送するための搬送ガスの導入配管と
を備えた前記超微粒子のガスデポジション装置におい
て、前記加熱装置は高周波電源に電気的に接続されたコ
イルで成り、前記導入配管の直上方に開口が形成された
支持部材を設け、該支持部材上で、且つ前記コイルの内
方に筒状部材を設け、該筒状部材内の上部に前記搬送管
のガス導入口を配設し、前記搬送ガスを所定の温度に加
熱する加熱手段を設け、前記筒状部材内でセラミックス
からなる前記蒸発材料を誘導加熱させたことを特徴とす
る超微粒子のガスデポジション装置。
8. A heating device provided in the ultrafine particle generation chamber for heating an evaporation material, and ultrafine particles heated by the heating device and evaporated from the evaporation material are introduced into the film formation chamber from the ultrafine particle generation chamber. In the gas deposition apparatus for ultra-fine particles, which comprises a transport pipe for transporting the gas and a carrier gas introduction pipe for transporting the ultra-fine particles into the film forming chamber, the heating device is electrically connected to a high-frequency power source. A support member made of a coil and having an opening formed immediately above the introduction pipe is provided, and a tubular member is provided on the support member and inward of the coil, and the transfer member is provided above the tubular member. A gas introduction port of a tube is provided, heating means for heating the carrier gas to a predetermined temperature is provided, and the evaporation material made of ceramics is induction-heated in the tubular member. Gas depot Equipment.
【請求項9】 前記蒸発材料と同じ材料で成る材料棒を
前記筒状部材内で浮遊された前記蒸発材料に接触させて
供給するようにしたことから成る請求項8に記載の超微
粒子のガスデポジション装置。
9. The gas of ultrafine particles according to claim 8, wherein a material rod made of the same material as the evaporation material is supplied in contact with the evaporation material suspended in the tubular member. Deposition device.
【請求項10】 前記支持部材の開口は逆円錐形状であ
る請求項8に記載の超微粒子のガスデポジション装置。
10. The gas deposition apparatus for ultrafine particles according to claim 8, wherein the opening of the support member has an inverted conical shape.
【請求項11】 超微粒子生成室内に置かれた蒸発材料
が加熱されることにより、前記蒸発材料から蒸発した超
微粒子が搬送ガスと共に搬送管内を通り膜形成室に搬送
され、該膜形成室内に配設された基板上に前記超微粒子
の膜を作成する超微粒子のガスデポジション方法におい
て、前記加熱はコイルに高周波電流を流すことにより極
性有機高分子材料で成る前記蒸発材料を誘電損により加
熱し、前記搬送ガスで浮遊させた状態で加熱、蒸発さ
せ、前記蒸発材料から蒸発した前記超微粒子を前記搬送
ガスと共に前記膜形成室内に搬送させることを特徴とす
る超微粒子のガスデポジション方法。
11. When the evaporation material placed in the ultrafine particle generation chamber is heated, the ultrafine particles evaporated from the evaporation material are conveyed to the film forming chamber together with the carrier gas in the film forming chamber. In the ultrafine particle gas deposition method of forming the ultrafine particle film on the arranged substrate, the heating heats the evaporation material made of a polar organic polymer material by dielectric loss by applying a high frequency current to a coil. Then, the ultrafine particles vaporized by heating and evaporating in a state of being suspended in the carrier gas, and the ultrafine particles evaporated from the evaporation material are carried into the film forming chamber together with the carrier gas.
【請求項12】 超微粒子生成室内に設けられた蒸発材
料を加熱する加熱装置と、該加熱装置により加熱されて
前記蒸発材料から蒸発した超微粒子を前記超微粒子生成
室内から膜形成室へ導入させるための搬送管と、前記超
微粒子を前記膜形成室内に搬送するための搬送ガスの導
入配管とを備えた超微粒子のガスデポジション装置にお
いて、前記加熱装置は高周波電源に電気的に接続された
コイルで成り、前記導入配管の直上方に開口が形成され
た支持部材を設け、該支持部材上で且つ前記コイルの内
方に筒状部材を設け、該筒状部材内の上部に前記搬送管
のガス導入口を配設し、前記筒状部材内で極性有機高分
子材料で成る前記蒸発材料を誘電損により加熱させ、か
つ搬送ガスを下方から噴出させて浮遊させたことを特徴
とする超微粒子のガスデポジション装置。
12. A heating device provided in the ultrafine particle generation chamber for heating an evaporation material, and ultrafine particles heated by the heating device and evaporated from the evaporation material are introduced into the film forming chamber from the ultrafine particle generation chamber. In a gas deposition apparatus for ultrafine particles, which comprises a transport pipe for transporting the gas and a carrier gas introduction pipe for transporting the ultrafine particles into the film forming chamber, the heating device is electrically connected to a high frequency power supply. A support member made of a coil and having an opening formed immediately above the introduction pipe is provided, and a tubular member is provided on the support member and inward of the coil, and the transfer pipe is provided above the tubular member. A gas introducing port is provided, the evaporation material made of a polar organic polymer material is heated in the cylindrical member by dielectric loss, and a carrier gas is jetted from below to float. Fine particle moth Deposition device.
【請求項13】 前記蒸発材料と同じ材料でなる材料棒
を前記筒状部材内で浮遊された前記被蒸発材料に接触さ
せて供給したことから成る請求項12に記載の超微粒子
のガスデポジション装置。
13. The gas deposition of ultrafine particles according to claim 12, wherein a material rod made of the same material as the evaporation material is supplied in contact with the evaporation target material suspended in the tubular member. apparatus.
【請求項14】 前記支持部材の開口は逆円錐形状であ
る請求項12に記載の超微粒子のガスデポジション装
置。
14. The gas deposition apparatus for ultrafine particles according to claim 12, wherein the opening of the support member has an inverted conical shape.
【請求項15】 超微粒子生成室内に置かれた蒸発材料
が加熱されることにより、前記蒸発材料から蒸発した超
微粒子が搬送ガスと共に搬送管内を通り膜形成室に搬送
され、該膜形成室内に配設された基板上に前記超微粒子
の膜を作成する超微粒子のガスデポジション方法におい
て、前記蒸発材料は極性有機高分子材料で成り、前記搬
送ガスを加熱手段により所定の温度にすることにより前
記極性有機高分子材料でなる前記蒸発材料を前記搬送ガ
スで加温して、かつ該搬送ガスを前記蒸発材料の下方か
ら上方に流出させることにより前記蒸発材料を浮遊させ
た状態で加熱、蒸発させ、該蒸発材料から蒸発した前記
超微粒子を前記搬送ガスと共に前記膜形成室内に搬送さ
せることを特徴とする超微粒子のガスデポジション方
法。
15. When the evaporation material placed in the ultrafine particle generation chamber is heated, the ultrafine particles evaporated from the evaporation material are conveyed to the film forming chamber together with the carrier gas into the film forming chamber and into the film forming chamber. In the ultrafine particle gas deposition method for forming the ultrafine particle film on the arranged substrate, the evaporation material is a polar organic polymer material, and the carrier gas is heated to a predetermined temperature by heating means. The evaporation material made of the polar organic polymer material is heated by the carrier gas, and the carrier gas is allowed to flow upward and downward to heat and evaporate the evaporation material in a suspended state. And carrying the ultrafine particles evaporated from the evaporation material together with the carrier gas into the film forming chamber.
【請求項16】 超微粒子生成室内に設けられた蒸発材
料を加熱する加熱装置と、該加熱装置により加熱されて
前記蒸発材料から蒸発した超微粒子を膜形成室に導入さ
せるための搬送管と、前記超微粒子生成室内に前記超微
粒子を前記膜形成室内に搬送するための搬送ガスの導入
配管とを備えた前記超微粒子のガスデポジション装置に
おいて、前記導入配管の直上方に開口が形成された支持
部材を設け、該支持部材上に筒状部材を設け、該筒状部
材内の上部に前記搬送管のガス導入口を配設し、前記搬
送ガスを所定の温度に加熱する加熱手段を設け、これに
より前記筒状部材内で極性有機高分子材料から成る前記
蒸発材料を加熱させ、且つ前記支持部材から浮上させた
ことを特徴とする超微粒子のガスデポジション装置。
16. A heating device provided in the ultrafine particle generation chamber for heating the evaporation material, and a transfer pipe for introducing the ultrafine particles heated by the heating device and evaporated from the evaporation material into the film forming chamber. In the gas deposition apparatus for the ultrafine particles, which is provided with an introduction pipe of a carrier gas for conveying the ultrafine particles into the film forming chamber in the ultrafine particle generation chamber, an opening is formed immediately above the introduction pipe. A support member is provided, a tubular member is provided on the support member, a gas introduction port of the carrier pipe is provided in an upper portion of the tubular member, and heating means for heating the carrier gas to a predetermined temperature is provided. A gas deposition apparatus for ultrafine particles, characterized in that the evaporation material made of a polar organic polymer material is heated in the cylindrical member and floated from the support member.
【請求項17】 前記蒸発材料と同じ材料でなる材料棒
を前記筒状部材内で浮遊された前記被蒸発材料に接触さ
せて供給したことから成る請求項16に記載の超微粒子
のガスデポジション装置。
17. The gas deposition of ultrafine particles according to claim 16, wherein a material rod made of the same material as the evaporation material is supplied in contact with the material to be evaporated suspended in the tubular member. apparatus.
【請求項18】 前記支持部材の開口は逆円錐形状であ
る請求項16に記載の超微粒子のガスデポジション装
置。
18. The gas deposition apparatus for ultrafine particles according to claim 16, wherein the opening of the support member has an inverted conical shape.
JP26967592A 1992-09-11 1992-09-11 Method and apparatus for gas deposition of ultrafine particles Expired - Fee Related JP3563083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26967592A JP3563083B2 (en) 1992-09-11 1992-09-11 Method and apparatus for gas deposition of ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26967592A JP3563083B2 (en) 1992-09-11 1992-09-11 Method and apparatus for gas deposition of ultrafine particles

Publications (2)

Publication Number Publication Date
JPH0693430A true JPH0693430A (en) 1994-04-05
JP3563083B2 JP3563083B2 (en) 2004-09-08

Family

ID=17475636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26967592A Expired - Fee Related JP3563083B2 (en) 1992-09-11 1992-09-11 Method and apparatus for gas deposition of ultrafine particles

Country Status (1)

Country Link
JP (1) JP3563083B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841626A (en) * 1994-07-28 1996-02-13 Vacuum Metallurgical Co Ltd Forming device for metallic partial film and its formation
JP2005523381A (en) * 2002-02-21 2005-08-04 コラス・テクノロジー・ベー・ブイ Method and apparatus for coating a substrate
JP2011214090A (en) * 2010-03-31 2011-10-27 National Institute Of Advanced Industrial Science & Technology Nanoparticle generator for gas deposition and apparatus for gas deposition
EP2652167A1 (en) * 2010-12-13 2013-10-23 Posco Continuous coating apparatus
EP2659022A2 (en) * 2010-12-27 2013-11-06 Posco Dry coating apparatus
CN107414081A (en) * 2017-06-19 2017-12-01 哈尔滨工业大学 The wire feed fuse system and its application process of metal increment manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841626A (en) * 1994-07-28 1996-02-13 Vacuum Metallurgical Co Ltd Forming device for metallic partial film and its formation
JP2005523381A (en) * 2002-02-21 2005-08-04 コラス・テクノロジー・ベー・ブイ Method and apparatus for coating a substrate
JP2011214090A (en) * 2010-03-31 2011-10-27 National Institute Of Advanced Industrial Science & Technology Nanoparticle generator for gas deposition and apparatus for gas deposition
EP2652167A1 (en) * 2010-12-13 2013-10-23 Posco Continuous coating apparatus
EP2652167A4 (en) * 2010-12-13 2014-04-30 Posco Continuous coating apparatus
US9267203B2 (en) 2010-12-13 2016-02-23 Posco Continuous coating apparatus
EP2659022A2 (en) * 2010-12-27 2013-11-06 Posco Dry coating apparatus
EP2659022A4 (en) * 2010-12-27 2014-06-11 Posco Dry coating apparatus
US9732423B2 (en) 2010-12-27 2017-08-15 Posco Dry coating apparatus
CN107414081A (en) * 2017-06-19 2017-12-01 哈尔滨工业大学 The wire feed fuse system and its application process of metal increment manufacture
CN107414081B (en) * 2017-06-19 2023-05-30 哈尔滨工业大学 Wire feed fuse system for metal increment manufacturing and application method thereof

Also Published As

Publication number Publication date
JP3563083B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US4505948A (en) Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
US4732369A (en) Arc apparatus for producing ultrafine particles
US6465052B1 (en) Method for production of nano-porous coatings
JPH07166332A (en) Gas deposition device
JP2002336688A (en) Method for treating powder, method for manufacturing inorganic powder and apparatus for treating object to be treated
CN105057688B (en) A kind of production method of ultra-fine Pb-free coating glass putty
TW201343540A (en) Apparatus and method for manufacturing particles
KR20180013966A (en) Synthesis of boron nitride nanotubes by direct induction
Stein et al. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis
JP2004137121A (en) Production method for substrate with carbon fiber fixed thereto
US20030108683A1 (en) Manufacturing method for nano-porous coatings and thin films
JPH0693430A (en) Gas deposition method for superfine particle and device therefor
JPH06279015A (en) Production of ultrafine silicon particle
GB2162766A (en) Methods of and apparatus for the melting of silicon
JPH0114170B2 (en)
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
JPH1171605A (en) Manufacture of fine particle, and manufacturing device therefor
JP3595823B2 (en) Apparatus and method for forming metal partial film
JP2001098309A (en) Method and device for producing metal fine powder and metal fine powder
JPS60224706A (en) Production of ultrafine metallic particles
US4569307A (en) Silicon melting and evaporation apparatus for high purity applications
JPH08209330A (en) Pattern formation of conductive metal thick film
JP2809359B2 (en) Thermal spray composite film forming method
TWI844545B (en) Device for producing molten silicon
KR100558772B1 (en) Fabrication method and apparatus for nano metallic and ceramic powder by Lavitational gas condensation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040601

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110611

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110611

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees