JPH069251B2 - Photoelectric conversion semiconductor device manufacturing method - Google Patents
Photoelectric conversion semiconductor device manufacturing methodInfo
- Publication number
- JPH069251B2 JPH069251B2 JP58204442A JP20444283A JPH069251B2 JP H069251 B2 JPH069251 B2 JP H069251B2 JP 58204442 A JP58204442 A JP 58204442A JP 20444283 A JP20444283 A JP 20444283A JP H069251 B2 JPH069251 B2 JP H069251B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- photoelectric conversion
- conductive film
- semiconductor
- organic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 55
- 238000006243 chemical reaction Methods 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229920005989 resin Polymers 0.000 claims description 40
- 239000011347 resin Substances 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 22
- 239000013078 crystal Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 13
- 238000002955 isolation Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 43
- 239000010409 thin film Substances 0.000 description 29
- 239000011651 chromium Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- -1 titanium Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は光電変換素子またはセルを絶縁表面を有する可
曲性の有機樹脂基板上にレーザスクライブ法を用いて複
合化する光電変換半導体装置の作製方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Use of the Invention] The present invention is directed to the production of a photoelectric conversion semiconductor device in which a photoelectric conversion element or a cell is combined on a flexible organic resin substrate having an insulating surface by a laser scribing method. Regarding the method.
従来、非単結晶半導体即ちアモルファスシリコンを含む
非単結晶シリコンを主成分としたPIN接合により、光起
電力を光照射により発生させんとしていた。Conventionally, a PIN junction mainly composed of non-single-crystal semiconductors, that is, non-single-crystal silicon including amorphous silicon, has been used to generate photovoltaic power by light irradiation.
しかしかかる接合を有する半導体の上下の電極は直列接
続をするため、1つのセルの下側電極と隣のセルの上側
電極とを電気的に連結を活性領域の「外側」でさせなけ
ればならなず、かつ各セル間は互いに電気的にアイソレ
イトされていることを必要を条件としていた。However, since the upper and lower electrodes of the semiconductor having such a junction are connected in series, it is necessary to electrically connect the lower electrode of one cell and the upper electrode of the adjacent cell “outside” of the active region. In addition, it is necessary that the cells be electrically isolated from each other.
第1図は従来構造の代表的な例を示している。FIG. 1 shows a typical example of a conventional structure.
第1図(A)は光電変換装置(1)を透光性のガラス基
板(2)を下側にした背面より見た平面図である。FIG. 1 (A) is a plan view of the photoelectric conversion device (1) viewed from the back side with the translucent glass substrate (2) facing down.
図面において、光照射により光起電力を発生する活性領
域(14)と、各セル(11)、(13)を連結する連結部(12)を有
する非活性領域(15)とを有する。第1図(A)のA−
A′、B−B′の縦断面図を対応させて(B)、(C)に示し
ていることより明らかなごとく、活性領域の各セル(1
1)、(13)におけるガラス基板(2)上の第1の電極の透
光性導電膜(3)は各セル間で互いに分離されている。In the drawing, it has an active region (14) that generates a photoelectromotive force by light irradiation, and an inactive region (15) having a connecting portion (12) connecting each cell (11) and (13). A- in FIG. 1 (A)
As is clear from the corresponding vertical sectional views of A ′ and BB ′ shown in (B) and (C), each cell (1
The transparent conductive film (3) of the first electrode on the glass substrate (2) in (1) and (13) is separated from each other in each cell.
また半導体(4)は各セル間にて互いに連結されてい
る。また非活性領域において、セル(13)の上側電極は、
セル(11)の下側電極と連結部(6)、(7)でのコンタ
クト(18)で連結し、これを繰り返し5つのセルを外部電
極(8)、(9)間にて直列接続をさせている。The semiconductors (4) are connected to each other between the cells. In the inactive region, the upper electrode of the cell (13) is
The lower electrode of the cell (11) is connected with the contact (18) at the connecting portions (6) and (7), and this is repeated to connect five cells in series between the external electrodes (8) and (9). I am letting you.
この従来構造は一見半導体(4)が1枚であるため製造
歩留りが高いように見える。しかし実際には3種類(第
1の導電膜のパターニング用の第1のマスク、非活性領
域形成のための第2のマスク、第2の導電膜のパターニ
ング用の第3のマスク)のマスクを用いるが、そのマス
クにおいて第1のマスクと第3のマスクとがセルファラ
イン方式でないため、マスクずれを起こしやすい。At first glance, this conventional structure seems to have a high manufacturing yield because there is only one semiconductor (4). However, actually, three types of masks (a first mask for patterning the first conductive film, a second mask for forming the inactive region, and a third mask for patterning the second conductive film) are used. Although the mask is used, since the first mask and the third mask are not the self-alignment method in the mask, a mask shift is likely to occur.
このずれ(即ち金属マスクにおいては0.3〜1mmのずれ
はごく当然である)により、セルの有効面積が10〜20%
も実質的に減少してしまうことが判明した。Due to this shift (that is, a shift of 0.3 to 1 mm is quite natural in a metal mask), the effective area of the cell is 10 to 20%.
Was also found to be substantially reduced.
さらにマスクを用いるため、第1図(B)の活性領域で
の電極間の開溝であるアイソレイション領域(22)は、0.
2〜1mm例えば0.5mmを有するため、セル巾を10mmとする
時、2mmずれるとするとセル巾(11)は8mmとなり、アイ
ソレイション巾(22)は2.5mmとなってしまい、20%近くも
有効面積が減少してしまう。またセルの外枠の占める面
積も5〜7%もある。Further, since a mask is used, the isolation region (22), which is a groove between the electrodes in the active region of FIG.
Since it has 2 to 1 mm, for example 0.5 mm, when the cell width is 10 mm, if the cell width is deviated by 2 mm, the cell width (11) will be 8 mm and the isolation width (22) will be 2.5 mm, which is effective for nearly 20%. The area will be reduced. The area occupied by the outer frame of the cell is also 5 to 7%.
このため上下の電極の組合せをセレフレジストレイショ
ン化することがその効率の向上のために強く求められて
いた。For this reason, it has been strongly demanded that the combination of the upper and lower electrodes be made into a self-registration in order to improve its efficiency.
また第1図の従来例においては、基板に活性領域の外側
に基板に非活性領域(15)が設けられ、この非活性領域は
基板全体における20〜30%も占めてしまう。このためプ
ロセス上の効率が低くなり、ひいては製造コストの低下
を図ることができない。Further, in the conventional example of FIG. 1, the inactive region (15) is provided on the substrate outside the active region, and this inactive region occupies 20 to 30% of the entire substrate. For this reason, the efficiency in the process becomes low, and eventually the manufacturing cost cannot be reduced.
このため非活性領域が存在しない光電変換装置を作るこ
とがきわめて重要であった。また基板がガラス基板で
は、機械ストレスにより破損しやすいく、また高価であ
り、量産に向かない。Therefore, it was extremely important to make a photoelectric conversion device having no inactive region. If the substrate is a glass substrate, it is easily damaged by mechanical stress and is expensive, which is not suitable for mass production.
このため、光電変換装置の耐機械破損防止、安価、多量
生産のための基板として可曲性の透光性有機薄膜の使用
が求められてきた。For this reason, there has been a demand for the use of a flexible translucent organic thin film as a substrate for preventing mechanical damage of photoelectric conversion devices, inexpensive, and for mass production.
本発明は有機樹脂薄膜上に形成される集積型光電変換半
導体装置において、視覚的商品価値が高く、高変換効率
を有し、かつ製造工程上の効率のよい光電変換装置の構
造を提供することを目的とする。The present invention provides a structure of an integrated photoelectric conversion semiconductor device formed on an organic resin thin film, which has high visual commercial value, high conversion efficiency, and good manufacturing process efficiency. With the goal.
上記の目的を達成するために本願発明は、絶縁表面を有
する透光性有機樹脂基板上の第1の電極となる透光性導
電膜に開溝を形成することにより複数の第1の電極に分
割する工程と、該第1の電極および該電極間の開溝上に
光照射により光起電力を発生する非単結晶半導体を形成
させる工程と、前記非単結晶半導体の端部に至らない内
部にレーザ光を照射して開孔を形成することにより該非
単結晶半導体下の第1の電極の上面または側面を露呈さ
せる工程と、この後前記非単結晶半導体上に第2の電極
となる導電膜を形成する工程と、該第2の電極となる導
電膜に開溝を形成して第2の電極を形成する工程とによ
り、隣合った異なる光電変換素子の第1の電極と第2の
電極とを前記開孔を介して電気的に連結して直列接続を
形成せしめることを特徴としている。In order to achieve the above object, the present invention provides a plurality of first electrodes by forming an opening in a translucent conductive film which is a first electrode on a translucent organic resin substrate having an insulating surface. A step of dividing, a step of forming a non-single-crystal semiconductor that generates a photoelectromotive force by light irradiation on the first electrode and the groove between the electrodes, and an interior that does not reach an end of the non-single-crystal semiconductor Exposing the upper surface or the side surface of the first electrode under the non-single crystal semiconductor by irradiating a laser beam on the non-single crystal semiconductor, and thereafter forming a second electrode on the non-single crystal semiconductor. By the step of forming a film and the step of forming an opening in the conductive film to be the second electrode to form the second electrode, the first electrode and the second electrode of different photoelectric conversion elements adjacent to each other are formed. Electrically connecting the electrodes through the apertures to form a series connection. It is characterized.
本発明は、有機樹脂薄膜とこの上面の透光性導電膜とに
レーザスクライブを実施するのに際し、透光性導電膜を
スクライブしつつも有機樹脂薄膜にまったく損傷を与え
ることのない条件が実験的に存在することを見いだし、
この事実を利用して光電変換半導体装置を作製するもの
である。According to the present invention, when carrying out laser scribing on the organic resin thin film and the transparent conductive film on the upper surface, an experiment was conducted under the condition that the organic conductive thin film was not damaged at all while scribing the transparent conductive film. That they exist,
By utilizing this fact, a photoelectric conversion semiconductor device is manufactured.
すなわち本発明においては、有機樹脂基板上に、第1の
電極と、この電極上に光照射により光起電力を発生する
非単結晶半導体と、該半導体上の第2の電極とよりなる
複数の光電変換素子を直列接続して配設するのに関し、
隣合った素子間の電気的連結を活性領域の非単結晶半導
体の端部に至らない内部に開孔を介してレーザ光にてコ
ンタクトを設けて成就できるようにしたことがその構成
上の最大の特徴である。That is, in the present invention, on the organic resin substrate, a plurality of first electrodes, a non-single crystal semiconductor that generates a photoelectromotive force by light irradiation on this electrode, and a second electrode on the semiconductor Regarding the arrangement of photoelectric conversion elements connected in series,
It is the maximum in the configuration that electrical connection between adjacent elements can be achieved by providing a contact with laser light through an opening inside the active region that does not reach the end of the non-single crystal semiconductor. Is a feature of.
本発明においては第1のセルの第1の電極と、第2のセ
ルの第2の電極との連結部のコンタクトは、基板上の半
導体の端部に至らない「内部」(この第2図では中央
部)にレーザ光によって開孔を設けることにより成就さ
れ、従来とそのコンタクトの位置がまったく異なってい
る。In the present invention, the contact at the connecting portion between the first electrode of the first cell and the second electrode of the second cell does not reach the end of the semiconductor on the substrate "inside" (see FIG. 2). This is accomplished by providing an opening in the center) with laser light, and the position of the contact is completely different from the conventional one.
本発明は上記の構成をとることにより、光電変換素子ま
たはセル(以下単にセルという)を絶縁表面を有する有
機樹脂基板上に複合化するに関し、光照射面側からは複
数の第1の電極の分離用の開溝が見られるのみ(コンタ
クト部は微小な開孔であるため、肉眼で見つけることは
極めて困難である)となり、前記開溝(隣合ったセル間
の切断線を肉眼では十分見分けにくい100μ以下好まし
くは5〜70μとすることで、装置全体としての視覚的商
品価値を向上させることを可能とした。The present invention relates to compounding a photoelectric conversion element or a cell (hereinafter simply referred to as a cell) on an organic resin substrate having an insulating surface by adopting the above-mentioned structure, and a plurality of first electrodes of the first electrode are provided from the light irradiation surface side. Only the separation groove can be seen (it is extremely difficult to find with the naked eye because the contact part is a minute hole), and the above-mentioned groove (the cutting line between adjacent cells can be sufficiently distinguished with the naked eye). It is possible to improve the visual commercial value of the entire device by making it difficult to set 100 μ or less, preferably 5 to 70 μ.
すなわちこのコンタクトを形成するに際して、隣合うセ
ル間の半導体をすべて切断する構造で開溝を形成するの
ではなく、その開溝(20〜90μφ)を1つまたは複数個
不連続に設けることにより、この開溝の存在が透光性有
機樹脂薄膜面側より実質的に肉眼で見い出し得ず、連結
部が目障りにならないようにすることができ、視覚的商
品価値を向上することができた。That is, when forming this contact, by forming one or a plurality of open grooves (20 to 90 μφ) discontinuously, instead of forming an open groove in a structure that cuts all semiconductors between adjacent cells, The presence of the groove cannot be found substantially with the naked eye from the transparent organic resin thin film surface side, and the connecting portion can be prevented from being an eyesore, and the visual commercial value can be improved.
またコンタクトが開孔であるため、その孔の側円周辺の
すべての側面が第1の電極と第2の電極との連結部のコ
ンタクトを構成することができ、この部分での接触抵抗
を1Ω以下に下げることができた。Moreover, since the contact is an opening, all side surfaces around the side circle of the hole can form a contact at the connecting portion between the first electrode and the second electrode, and the contact resistance at this portion is 1Ω. I was able to lower it below.
さらにこの内部コンタクトにより、透光性導電膜の光電
変換装置に与える直列抵抗を小さくできる。この結果、
連結部をセルの外側に設けなかったことにより、著しく
その有効面積と変換効率の向上を図ることができた。Further, this internal contact can reduce the series resistance applied to the photoelectric conversion device of the transparent conductive film. As a result,
Since the connecting portion is not provided outside the cell, the effective area and the conversion efficiency can be remarkably improved.
また本作製方法によって形成される光電変換半導体装置
は、さらに第1図(A)における領域(15)のごとき非活
性領域をまったく存在させず、連結部が即ち各セルのア
イソレイション領域を構成せしめることができる。In addition, the photoelectric conversion semiconductor device formed by this manufacturing method does not have any inactive region such as the region (15) in FIG. 1A, and the connecting portion constitutes the isolation region of each cell. be able to.
また、活性領域に設けられたセルにおける透光性基板上
の第1の電極と、この電極上に光照射により光起電力を
発生する非単結晶半導体と、該半導体上の第2の電極と
とそれぞれを、概略同一形状、概略同一位置(セルフレ
ジストレイション)構造として作製することができ、複
合化の合わせ精度のズレによる製造上の歩留り向上、製
造工程における効率の向上を果たすことができた。Further, a first electrode on the transparent substrate in the cell provided in the active region, a non-single-crystal semiconductor that generates a photoelectromotive force on the electrode by light irradiation, and a second electrode on the semiconductor. And each of them can be manufactured as a structure having substantially the same shape and substantially the same position (self-registration), and the manufacturing yield can be improved and the efficiency of the manufacturing process can be improved due to the deviation of the alignment accuracy of the composite. .
本発明はかかる多くの特長を有するものであって、以下
に図面に従ってその詳細を記す。The present invention has many such features, and the details will be described below with reference to the drawings.
本発明者らは基板側よりの光照射を可能とする透光性有
機樹脂薄膜と、その上の酸化インジュームまた酸化スズ
を主成分とする導電性酸化膜よりなる透光性導電膜に対
して、レーザ光を照射した時、この透光性有機樹脂薄膜
を損傷せずに透光性導電膜を選択的に除去することがで
きる条件を実験的に検討したところ、そのレーザ光を1
つの場所に長時間(数十m秒以上)照射することなく、
また走査(スキャン)スピードを適切化することによ
り、透光性導電膜のみを除去することが可能であること
を見いだした。The present inventors have proposed a transparent organic resin thin film that enables light irradiation from the substrate side, and a transparent conductive film made of a conductive oxide film containing indium oxide or tin oxide as a main component on the transparent organic resin thin film. Then, when the laser light was irradiated, the conditions under which the transparent conductive film could be selectively removed without damaging the transparent organic resin thin film were experimentally examined.
Without irradiating one place for a long time (tens of milliseconds or more),
It was also found that it is possible to remove only the transparent conductive film by optimizing the scanning speed.
即ち、レーザ光の照射により透光性有機樹脂薄膜は熱伝
導率が小さい(一般には1〜7×10-4Cal/sec/cm2/
(℃/cm))のため、同じ位置に繰り返しレーザパルス
を加えると、この有機樹脂内に熱が蓄積され、この熱で
樹脂が炭化され切断されてしまう。しかしの繰り返しい
を1回または数回とすると、この透光性有機樹脂薄膜の
熱伝導率が透光性導電膜の1/103程度であるため、逆
に透光性導電膜のみを選択的にレーザ光の照射された場
所のみ除去することができことを見いだし、この事実に
基づいてレーザスクライブにて本願発明の光電変換半導
体装置を作製した。That is, the light transmissive organic resin thin film has a small thermal conductivity due to the irradiation of laser light (generally 1 to 7 × 10 −4 Cal / sec / cm 2 / cm 2 ).
(° C./cm)), therefore, when a laser pulse is repeatedly applied to the same position, heat is accumulated in the organic resin, and the heat causes the resin to be carbonized and cut. However, if the number of repetitions is once or several times, since the thermal conductivity of this transparent organic resin thin film is about 1/10 3 of that of the transparent conductive film, conversely, only the transparent conductive film is selected. It was found that it was possible to remove only the portion irradiated with laser light, and based on this fact, the photoelectric conversion semiconductor device of the present invention was produced by laser scribing.
本実施例においては、レーザスクライブを用いるマスク
レスプロセスであるため、第1の開溝をテレビモニター
で観察して、その開溝を基準として所定の位置に光学的
にパターニングを行ういわゆるコンピュータ・エイデッ
ド・セルフレジストレイション方式を採用することが可
能になった。Since the present embodiment is a maskless process using laser scribing, a so-called computer-aided type in which the first open groove is observed on a television monitor and optically patterned at a predetermined position with reference to the open groove.・ It is now possible to use the self-registration method.
第2図は本発明の光電変換装置の製造工程および装置を
示すものである。FIG. 2 shows a manufacturing process and a device of the photoelectric conversion device of the present invention.
図面において、絶縁表面を有する透光性有機樹脂薄膜基
板例えば住友ベークライト社製スミライト(連続使用温
度150〜300℃、光線透光率 80〜92%(厚さ100μ)、
熱伝導率 3〜7×10-4Cal/sec/cm2/(℃/cm)を
透光性基板(2)(例えば厚さ100μ、長さ(図面では
左右方向)60cm、巾20cm)として用いた。In the drawing, a translucent organic resin thin film substrate having an insulating surface, such as Sumitomo Bakelite Sumilite (continuous operating temperature 150 to 300 ° C., light transmittance 80 to 92% (thickness 100 μ),
The thermal conductivity of 3 to 7 × 10 -4 Cal / sec / cm 2 / (℃ / cm) is used as the transparent substrate (2) (for example, thickness 100μ, length (horizontal direction in drawing) 60 cm, width 20 cm). Using.
本実施例ではその代表例として住友ベークライト社製ス
ミライトFS−1300を用いた。この透光性有機樹脂薄膜は
連続使用上限温度180℃、熱伝導率4.3×10-4Cal/sec/
cm2/(℃/cm)、光線透光率86.3%(100μの厚さとす
る)、表面抵抗率5.4×1014Ω、体積抵抗率1.7×1016Ω
cmを有する。In this example, Sumilite FS-1300 manufactured by Sumitomo Bakelite Co., Ltd. was used as a representative example. This translucent organic resin thin film has a maximum continuous use temperature of 180 ° C and a thermal conductivity of 4.3 × 10 -4 Cal / sec /
cm 2 / (℃ / cm), light transmittance 86.3% (100μ thickness), surface resistivity 5.4 × 10 14 Ω, volume resistivity 1.7 × 10 16 Ω
have cm.
さらにこの上面に全面にわたって透光性導電膜例えばIT
O(約1500Å)+SnO2(200〜400Å)またはハロゲン元
素が添加された酸化スズを主成分とする透光性導電膜
(1500〜2000Å)を真空蒸着法、プラズマCVD法または
スプレー法により形成させた。Further, a transparent conductive film such as IT
O (approximately 1500Å) + SnO 2 (200 to 400Å) or a transparent conductive film (1500 to 2000Å) mainly composed of tin oxide to which a halogen element is added is formed by a vacuum deposition method, a plasma CVD method or a spray method. It was
この透光性有機樹脂薄膜上にスパッタ法にてITOを700Å
の厚さに形成させた。するとそのシート抵抗は200Ω/
□を有していた。700 Å ITO is sputtered on this translucent organic resin thin film.
Was formed to a thickness of. Then the sheet resistance is 200Ω /
Had a □.
この図面は4つのセルを直列接続せしめた場合である。
即ち本発明の光電変換装置は、活性領域(14)を同一基板
に100〜2000ケ同時に有するより大きい20cm×60cmの基
体を用いた。This drawing shows the case where four cells are connected in series.
That is, in the photoelectric conversion device of the present invention, a larger 20 cm × 60 cm base having 100 to 2000 active regions 14 on the same substrate at the same time was used.
各セルでは、第1の導電膜を基体全面に形成した。さら
にこの導電膜を所定の形状にレーザ(ここでは1.06μま
たは0.53μの波長のYAGレーザ)スクライブをマイクロ
コンピュータにより記憶され制御されたパターンに従っ
て行って第1の開溝(16)を形成した。In each cell, the first conductive film was formed on the entire surface of the substrate. Further, a laser (here, a YAG laser having a wavelength of 1.06 μ or 0.53 μ) was scribed on the conductive film according to a pattern stored and controlled by a microcomputer to form a first open groove (16).
さらにセルの外側において、作製時の残存物や外部から
の圧力等によるリークを除去するため、分離用開溝(2
6)、(26′)を形成させた。そしてセル領域(11)、(13)お
よび外部接続用電極部(8)、(9)を形成させた。In addition, on the outside of the cell, in order to remove the residuals during fabrication and leakage due to pressure from the outside, etc.
6) and (26 ') were formed. Then, the cell regions (11) and (13) and the external connection electrode portions (8) and (9) were formed.
即ち、ここにYAGレーザ(発光波長1.06μ、焦点距離50m
m、光径50μ)を照射した。その条件として、繰り返し
同時に6kHz、平均出力1.3W、スキャンスピード(走査速
度)60cm/分とした。That is, YAG laser (emission wavelength 1.06μ, focal length 50m
m, light diameter 50 μ). The conditions were 6 kHz at the same time repeatedly, an average output of 1.3 W, and a scan speed (scan speed) of 60 cm / min.
スクライビングにより形成された開溝(16)は巾約70μ、
長さ20cm(図面では1cm)、深さは透光性有機樹脂薄膜
のそれぞれの第1の電極を完全に切断分離した。The open groove (16) formed by scribing is about 70μ wide,
The length was 20 cm (1 cm in the drawing) and the depth was such that each first electrode of the translucent organic resin thin film was completely cut and separated.
第1の素子(11)および第2の素子(13)を構成する巾は10
mmとした。The width of the first element (11) and the second element (13) is 10
mm.
この時電子顕微鏡にて調べた範囲では、透光性有機樹脂
薄膜表面には何等の損傷もまた部分的な劣化も見られな
かった。このレーザ光は1600℃以上の温度を有すると推
察されるが、連続使用上限温度が180℃程度の低い耐熱
性しか有さない透光性有機樹脂薄膜に何等損傷を与えな
かった。At this time, no damage or partial deterioration was observed on the surface of the translucent organic resin thin film in the range examined by an electron microscope. It is presumed that this laser beam has a temperature of 1600 ° C. or higher, but it did not damage the translucent organic resin thin film, which has only low heat resistance such that the continuous use upper limit temperature is about 180 ° C.
即ち、透光性有機樹脂薄膜上の透光性導電膜に対し、選
択的に開溝(16)を作製することができることがわかっ
た。その上、2つのプロープ間には1MΩ以上の抵抗
(巾は1cmとする)を得ることができた。That is, it was found that the open groove (16) can be selectively formed in the transparent conductive film on the transparent organic resin thin film. Moreover, a resistance of 1 MΩ or more (width of 1 cm) could be obtained between the two probes.
第3図はレーザ光の繰り返し周波数を可変にしたもの
で、開溝が形成される場合の電気抵抗を示す。FIG. 3 shows the electric resistance when the repetitive frequency of the laser beam is made variable and an open groove is formed.
図面において、スキャンスピード60cm/分、平均出力0.
8W,光径50μのYAGレーザを用いた。するとその周波数
を10KHzより下げてゆくと、曲線(45)は7KHz以下で不連
続に1MΩ以上(45′)となって電気的にアイソレイション
を行うことができるようになったことが判明した。In the drawing, scan speed 60 cm / min, average output 0.
A YAG laser with 8 W and a light diameter of 50 μ was used. Then, when the frequency was lowered below 10 KHz, it became clear that the curve (45) became discontinuously above 1 MΩ (45 ') at 7 KHz or less, and electrical isolation could be performed.
しかしこの周波数が4KHz以下ではこの透光性導電膜に加
えて下地の透光性有機樹脂薄膜をもその中心部(ガウス
分布のエネルギ密度の最も高い領域)で損傷してしまっ
た。However, at frequencies below 4 KHz, in addition to the translucent conductive film, the underlying translucent organic resin thin film was also damaged at its center (the region with the highest Gaussian energy density).
このことにより、透光性有機樹脂薄膜上の透光性導電膜
のレーザスクライブには(44)に示す範囲が適していた。From this, the range shown in (44) was suitable for the laser scribing of the translucent conductive film on the translucent organic resin thin film.
さらに、この下地の透光性有機樹脂薄膜に損傷を与える
ことなく透光性導電膜のみを除去する領域を調べたとこ
ろ、第4図を得た。Further, when a region in which only the transparent conductive film was removed without damaging the transparent organic resin thin film as the underlying layer was examined, FIG. 4 was obtained.
即ち、スキャンスピードを0〜120cm/分、平均出力0
〜3W、繰り返し周波数6KHz、焦点距離50cm、レーザ光
の直径50μのYAGレーザとすると、領域(49)即ち点A,B,
C,D,E,Fで囲まれる範囲は透光性有機樹脂薄膜の損傷が
なく透光性導電膜のみで除去することができた。That is, scan speed is 0 to 120 cm / min, average output is 0
Assuming that the YAG laser is ˜3 W, repetition frequency 6 KHz, focal length 50 cm, and laser light diameter 50 μ, the area (49), that is, points A, B,
In the area surrounded by C, D, E, and F, the transparent organic resin thin film was not damaged and could be removed only by the transparent conductive film.
さらに領域(47)は透光性導電膜すらも除去することがで
きない領域であり、領域(46)はパルス光が透光性導電膜
上で連続せず、破線のごとく不連続な穴溝を得たのみで
あった。領域(48)は透光性導電膜のみならず下地の透光
性っ樹脂薄膜に対しても損傷を与えてしまった領域であ
る。Further, the region (47) is a region where even the transparent conductive film cannot be removed, and the region (46) is such that the pulsed light is not continuous on the transparent conductive film and has a discontinuous hole groove as shown by a broken line. I only got it. The region (48) is a region that has damaged not only the transparent conductive film but also the underlying transparent resin thin film.
このことにより下地の透光性有機樹脂薄膜に対して損傷
を与えることなく、透光性導電膜のみを選択的に開溝と
して除去することのできる領域(19)があることがわかっ
た。This revealed that there is a region (19) in which only the transparent conductive film can be selectively removed as an opening without damaging the underlying transparent organic resin thin film.
第2図(A)の平面図またA−A′、F−F′における
縦断面図を(A−1)、(A−2)にそれぞれ示す。2A is a plan view and FIG. 2A is a vertical sectional view taken along lines AA ′ and FF ′.
次に第2図(B)の平面図に示すごとく、光照射により
光起電力を発生する水素または弗素が添加された非単結
晶半導体を、この電極(3)、開溝(16)のすべての上面
に均質の膜厚に形成させる。また半導体はプラズマCVD
法、減圧CVD法、光CVD法または光プラズマCVD法を用い
て形成した。Next, as shown in the plan view of FIG. 2 (B), a non-single crystal semiconductor added with hydrogen or fluorine, which generates a photoelectromotive force by light irradiation, is formed on the electrode (3) and the groove (16). A uniform film thickness on the upper surface of. For semiconductors, plasma CVD
Method, low pressure CVD method, optical CVD method or optical plasma CVD method.
この半導体(4′)は例えばSixC1-x(0<x<1一般には
x=0.7〜0.8)をP型を約100Åの厚さに、さらにI型
の水素又はハロゲン元素が添加された珪素を主成分とす
る半導体を0.4〜0.8μの厚さに、さらにN型の微結晶化
した珪素またはN型のSixC1-x(0<x<1 x〜0.9)
を主成分とする半導体のPIN接合構造とした。This semiconductor (4 ') is, for example, SixC1 -x (0 <x <1 generally x = 0.7 to 0.8) made of P-type silicon having a thickness of about 100 Å and further added with I-type hydrogen or a halogen element. With a thickness of 0.4-0.8μ, and N-type microcrystallized silicon or N-type SixC 1-x (0 <x <1 x-0.9)
A PIN junction structure of a semiconductor whose main component is is.
もちろんこれをP(SixC1-xx=0.7〜0.8)−I(Si)
−N(μCSi)−P(SixC1-xx=0.7〜0.8)−I(SixC
e1-xx=0.6〜0.8)−N(微結晶化CSiまたはSixC1-x0
<x<1)といったPINPIN構造のタンデム構造としても
よい。Of course, this is P (SixC 1-x x = 0.7-0.8) -I (Si)
-N (μCSi) -P (SixC 1-x x = 0.7 to 0.8) -I (SixC
e 1-x x = 0.6 to 0.8) -N (microcrystallized CSi or SixC 1-x 0
A tandem structure of PINPIN structure such as <x <1) may be used.
さらに第2の開孔(15)をレーザ光により形成させ、第2
図(B)におけるB−B′,C−C′の縦断面図を(B
−1)、(B−2)に対応して示している。Further, the second opening (15) is formed by laser light,
A vertical cross-sectional view of BB ′ and CC ′ in FIG.
-1) and (B-2) are shown.
かくして第2の開孔(15)は透光性有機樹脂薄膜の表面に
は損傷を与えずに第1電極の側面(17)を露出させた。Thus, the second opening (15) exposed the side surface (17) of the first electrode without damaging the surface of the translucent organic resin thin film.
この時、非単結晶半導体は透明導電膜に比べて容易に除
去されるため、透光性導電膜の上端部を0〜5μの巾で
露呈させる結果、連結は透光性導電膜(3)の側面およ
び上面が連結部のコンタクトを構成する。At this time, since the non-single-crystal semiconductor is more easily removed than the transparent conductive film, exposing the upper end portion of the transparent conductive film with a width of 0 to 5 μ results in the connection being the transparent conductive film (3). The side surface and the upper surface of each of the contacts form a contact of the connecting portion.
この第2の開孔(15)の形成条件は第1の開溝を形成する
条件とレーザ光をパルスを不連続に(15)の位置のみに加
える以外は同一である。The conditions for forming the second opening (15) are the same as the conditions for forming the first opening except that the laser beam is applied to the position (15) discontinuously.
即ち、半導体の存在は実質的に無視しても差支えなく、
第3図、第4図の特性を用いることができた。In other words, it is safe to ignore the existence of semiconductors,
The characteristics shown in FIGS. 3 and 4 could be used.
もちろん、このレーザ光をさらに1/2程度に弱くして
透光性導電膜をスクライブさせず半導体のみをスクライ
ブし、コンタクトを透光性導電膜の上部(上表面)にて
成就してもよい。Of course, this laser light may be further weakened to about 1/2 to scribe only the semiconductor without scribing the transparent conductive film, and the contact may be achieved on the upper part (upper surface) of the transparent conductive film. .
次に第2図(C)のパターンを形成させた。第2図
(C)のD−D′、E−E′、G−G′に対応した縦断
面図を(C−2)、(C−3)、(C−1)に示してい
る。Next, the pattern of FIG. 2 (C) was formed. Vertical sectional views corresponding to DD ', EE', and GG 'in FIG. 2 (C) are shown in (C-2), (C-3), and (C-1).
即ち、まず半導体(4)上に第2の電極を電子ビーム蒸
着法によりITOを100〜1600Å例えば1050Åの厚さに設け
た。That is, first, a second electrode was provided on the semiconductor (4) by electron beam evaporation to a thickness of ITO of 100 to 1600Å, for example 1050Å.
すると、開孔(15)において、第1の透光性導電膜(3)の
側面(17)に対し、ITOの導電性酸化物がコンタクトし、
オーム接触をさせることができた。Then, in the opening (15), the conductive oxide of ITO comes into contact with the side surface (17) of the first transparent conductive film (3),
I was able to make ohmic contact.
さらにクロムを主成分とする金属を500〜2000Åの厚さ
に形成させた。Further, a metal containing chromium as a main component was formed to a thickness of 500 to 2000Å.
このクロムは融点1800℃、沸点2660℃、熱伝導度0.2cal
/(cm.sec.deg)を有している。特にこの熱伝導率は他
が金属例えばチタンの0.05に比べて4倍を有し、銀の0.
998の1/5である。この熱伝導率は0.1〜0.3の範囲が
レーザ加工にもっとも好ましいとされている。This chrome has a melting point of 1800 ℃, a boiling point of 2660 ℃, and a thermal conductivity of 0.2cal.
/(Cm.sec.deg). In particular, this thermal conductivity is 4 times higher than that of other metals such as titanium, which is 0.05, and that of silver is 0.
It is 1/5 of 998. It is said that the thermal conductivity in the range of 0.1 to 0.3 is most preferable for laser processing.
レーザ照射においては、このクロム膜はアルミニューム
等と比較して酸化物を作りにくく、かつ下地と反応しに
くい金属として特にすぐれたものであった。In laser irradiation, this chromium film was particularly excellent as a metal that was less likely to form an oxide and was less likely to react with the base than aluminum or the like.
またこの下のITOがないとレーザ光は下側の半導体をも
容易にスクライブし、その周辺を多結晶半導体化してし
まった。またITOのみではレーザ光が透過し、半導体の
みを実質的にスクライブしてしまった。これらのことよ
り、裏面電極はITOとクロムとの2層膜が最適があっ
た。Also, if there is no ITO below this, the laser light easily scribes the semiconductor underneath and turns the periphery into a polycrystalline semiconductor. Moreover, the laser beam was transmitted only by ITO and substantially scribed only the semiconductor. From these, the back electrode was optimally a two-layer film of ITO and chromium.
裏面電極の反射性を利用して特性改良を図るには、前記
したITO(1050Å)+Ti(20Å)またはAg(100〜200
Å)+Cr(1000〜3000Å)が好ましかった。In order to improve the characteristics by utilizing the reflectivity of the back surface electrode, the above-mentioned ITO (1050Å) + Ti (20Å) or Ag (100-200
Å) + Cr (1000-3000 Å) was preferred.
この後、第2図(C)においてレーザスクライブ(19)を
行って第3の開溝を形成した。この工程はYAGレーザ
(波長1.06μ,0.53μ)をテレビモニターにて第1の開
溝をモニターしつつ、それより50〜200μ第2のセル側
(13)にはいった位置にて開溝を作った。レーザ光の平均
出力0.5〜1.3Wとし、ビーム径30〜50μφ、ビーム走査
スピード0.1〜1m/分、一般には0.3m/分として行っ
た。After that, laser scribing (19) was performed in FIG. 2 (C) to form a third groove. In this step, the YAG laser (wavelength 1.06μ, 0.53μ) is monitored on the TV monitor for the first open groove, and 50 to 200μ from that side on the second cell side.
An open groove was made at the position entered in (13). The average output of the laser beam was 0.5 to 1.3 W, the beam diameter was 30 to 50 μφ, and the beam scanning speed was 0.1 to 1 m / min, generally 0.3 m / min.
かくするとITO+Crの組合せにより熱伝導率が他の金属に
比べて適度に小さいため、半導体にその熱を過度に伝え
てしまうことによって生じる半導体の組成を変化等を発
生させることなく、この第2の電極用の導体のみをスク
ライブして除去させることができた。By doing so, the thermal conductivity due to the combination of ITO + Cr is appropriately smaller than that of other metals, so without changing the composition of the semiconductor caused by excessively transmitting the heat to the semiconductor, this first Only the conductor for the second electrode could be scribed and removed.
さらにこの第3の開溝(20)をアセトン等の洗浄溶液にて
溶去することは残存物を除去するために好ましい。Further, it is preferable to dissolve away the third open groove (20) with a cleaning solution such as acetone in order to remove the residue.
またこの半導体(3)がP型半導体層、I型半導体層、
N型半導体層と例えば1つのPIN接合を有し、このN型
半導体層が微結晶または多結晶構造を有してもよい。そ
の電気伝導度が1〜200(Ωcm)-1と高い伝導度を持つ
場合、本発明においてN型半導体層を室温〜150℃の温
度で酸化(10〜200時間)させ、絶縁物化することによ
りパッシベイションおよびリーク電流発生を防止するこ
とはきわめて重要であった。The semiconductor (3) is a P-type semiconductor layer, an I-type semiconductor layer,
It may have, for example, one PIN junction with the N-type semiconductor layer, and this N-type semiconductor layer may have a microcrystalline or polycrystalline structure. When the electric conductivity thereof is as high as 1 to 200 (Ωcm) −1 , the N-type semiconductor layer is oxidized (10 to 200 hours) at a temperature of room temperature to 150 ° C. in the present invention to be an insulator. Preventing passivation and leakage current generation was extremely important.
かくして、連結部(12)において、セル(13)の第1の電極
(23′)と、セル(11)の第2の電極(25)とが酸化物コンタ
クトによりオーム接触を第2の開孔(18)を介してしてい
る。特に連結部(12)におけるコンタクト(17)は、第2の
開孔(15)により作られた第1の電極の側面または側面と
0〜5μの巾の第1の電極の上端面とで成就され、いわ
ゆるサイドコンタクト構造を有している。即ち2つのセ
ルはわずか10〜70μφの第2の開孔のサイドコンタクト
で十分であり、この部分に第2の電極を構成する材料を
密接させて電気的に直列接続をさせている。Thus, at the connection (12), the first electrode of the cell (13)
Oxide contact between (23 ') and the second electrode (25) of the cell (11) is made by oxide contact through the second opening (18). In particular, the contact (17) in the connecting portion (12) is formed by the side surface or side surface of the first electrode formed by the second opening (15) and the upper end surface of the first electrode having a width of 0 to 5 μ. And has a so-called side contact structure. That is, it is sufficient for the two cells to have the side contact of the second opening of only 10 to 70 μφ, and the material forming the second electrode is brought into close contact with this portion for electrical series connection.
第2図において、第2の開孔(15)は1つのみを半導体内
部の特に中央付近に存在させた。しかしこの開孔は、複
数ケ(2〜4ケ)を破線的にY方向に第1および第3の
開溝の間に作製しても、また櫛目形状に半導体(3)の
内部に第1の開溝(16)にそって形成させてもよい。In FIG. 2, only one second hole (15) was present inside the semiconductor, especially near the center. However, even if a plurality of holes (2 to 4) are formed between the first and third grooves in the Y direction in a broken line in the Y direction, the first holes are formed inside the semiconductor (3) in a comb shape. It may be formed along the open groove (16).
(C−1)、(C−2)の断面図より明らかなごとく、
半導体(4)上に第2の電極(5)が形成されている。
そしてこの第3の開溝(20)はその下の半導体を多結晶化
することなく、また実質的に半導体をえぐることなく電
極のみを分離して各素子の第2の電極間を電気的にアイ
ソレイトさせることができた。As is clear from the sectional views of (C-1) and (C-2),
A second electrode (5) is formed on the semiconductor (4).
Then, the third open groove (20) separates only the electrodes without polycrystallizing the semiconductor therebelow and substantially without scooping the semiconductor to electrically connect the second electrodes of the respective elements. I was able to isolate it.
さらに第2図(C)において、これらの上面に有機樹脂
(28)例えばシリコーン、エポキシまたはポリイミドを10
〜100μの厚さにコーティングして完成させている。Further, in FIG. 2 (C), an organic resin
(28) For example, silicone, epoxy or polyimide 10
Completed by coating to a thickness of ~ 100μ.
その結果、この図面より明らかなごとく、この光電変換
装置は、例えば図面に示されているごとく1cm×5cmの光
電変換装置を同じ大きさの透光性透光性有機樹脂薄膜上
に1つ作るのではなく、20cm×20cmまたは20cm×60cmま
たは40cm×40cmの大きな同一透光性透光性有機樹脂薄膜
基板上に一度に多数の光電変換装置を作ることが可能と
なった。As a result, as is clear from this drawing, this photoelectric conversion device is, for example, as shown in the drawing, one photoelectric conversion device of 1 cm × 5 cm is formed on a translucent translucent organic resin thin film of the same size. Instead, it has become possible to make a large number of photoelectric conversion devices at once on a large translucent organic resin thin film substrate of 20 cm × 20 cm or 20 cm × 60 cm or 40 cm × 40 cm.
そして最後にこれらを(70)の境界で裁断法により切断
し、それぞれの光電変換装置にした。このためには、従
来より知られた光電変換装置のごとく活性領域と非活性
領域とを作るのではなく、すべて実質的に活性領域と
し、かつレーザ光により開溝を端から端まで作り、レー
ザ光の走査スピードを大きな透光性有機樹脂薄膜上で常
に一定にさせていることが重要である。さもないと、ス
キャンスピードが遅い部分では透光性有機樹脂薄膜に損
層がおきてしまうからである。Finally, these were cut at the boundary of (70) by a cutting method to obtain each photoelectric conversion device. To this end, instead of forming an active region and an inactive region as in the conventionally known photoelectric conversion device, all are made substantially active regions, and laser light is used to form open grooves from end to end, It is important to keep the scanning speed of light constant on a large transparent organic resin thin film. Otherwise, a loss layer will be formed on the translucent organic resin thin film in the portion where the scan speed is slow.
第2図(C)での開溝(20)、(27)、(27′)が端から端ま
で走査されているのは、量産化を考えた時重要である。
もちろんこれらの開溝は入射光側からはまったく見られ
ないため高商品価値化を下げない。It is important for mass production that the open grooves (20), (27), (27 ') in FIG. 2 (C) are scanned from end to end.
Of course, these open grooves are not seen from the incident light side at all, so they do not reduce the product value.
以上の説明は本発明の第2図のパターンには限定されな
い。セルの数、大きさはその設計仕様によって定められ
るものである。The above description is not limited to the pattern of FIG. 2 of the present invention. The number and size of cells are determined by their design specifications.
本発明は各セルの連結部を開孔を介した内部コンタクト
により成就し、各セル間分離のための第1の開溝幅をレ
ーザ等を用いることにより10〜100μときわめて小さ
く、かつ第2の開孔も10〜50μφときわめて小さく、ま
た第3の開溝は透光性有機樹脂薄膜面側からはまったく
見えない。その結果肉眼によりハイブリット化がされて
いることを確認され得ず、高付加商品価値を与えること
ができた。The present invention achieves the connecting portion of each cell by an internal contact through an opening, and the first opening groove width for separating each cell is extremely small as 10 to 100 μ by using a laser and the like. Of 10 to 50 μφ, which is extremely small, and the third groove is completely invisible from the transparent organic resin thin film surface side. As a result, it could not be confirmed with the naked eye that it was hybridized, and it was possible to give a high added commercial value.
またセルの有効面積は連結部(12)の10〜300μ巾のきわ
めてわずかな部分を除いて他のすべてが有効であり、実
効面積は90%以上を得ることができ、従来例の80%に比
べ本発明方法は格段に優れたものであった。In addition, the effective area of the cell is all other than the extremely small part of the connecting part (12) of 10 to 300μ width, and the effective area can be 90% or more, which is 80% of the conventional example. In comparison, the method of the present invention was remarkably excellent.
また第1の開溝と第2の開孔、第3の開溝の形成をセレ
フレジストレイションで行えるため製造工程を極めて単
純化することができ、かつその同一バッチで作られた各
光電変換装置間のバラツキが少ないため製造歩留りが高
くなった。また有効面積を増加させることができた。In addition, since the formation of the first opening, the second opening, and the third opening can be performed by the self-registration, the manufacturing process can be extremely simplified, and each photoelectric conversion device manufactured in the same batch. The manufacturing yield was high because there was little variation. Moreover, the effective area could be increased.
本発明は透光性有機樹脂膜の大面積基板に同時に多数の
光電変換装置を作り、これを分割して各基板上に1つの
光電変換装置を作る方式を採用することにより低価格の
製造が可能となった。このため、従来の1/3〜1/5
の価格(1ケあたり30〜50円)での製造が可能となっ
た。According to the present invention, a large number of photoelectric conversion devices are simultaneously formed on a large-area substrate of a translucent organic resin film, and the photoelectric conversion device is divided on each substrate to form one photoelectric conversion device. It has become possible. Therefore, 1/3 to 1/5 of the conventional
It is now possible to manufacture at the price of (30-50 yen per unit).
また本発明は、非単結晶シリコンを主成分とするPIN接
合、ヘテロ接合、タンデム接合のみに限らず多くの構造
への応用が可能である。Further, the present invention can be applied not only to PIN junctions, hetero junctions, and tandem junctions containing non-single crystal silicon as a main component, but also to many structures.
なお本発明は透光性有機樹脂上に透光性導電膜を密接さ
せた場合を示した。しかし本発明は、有機樹脂上に窒化
珪素または酸化珪素の膜を300〜3000Åの厚さにバリア
層として形成し、その上に透光性導電膜を形成してもよ
いことはいうまでもない。The present invention shows the case where the transparent conductive film is brought into close contact with the transparent organic resin. However, it goes without saying that in the present invention, a silicon nitride or silicon oxide film may be formed as a barrier layer with a thickness of 300 to 3000 Å on an organic resin, and a translucent conductive film may be formed thereon. .
第1図は従来の光電変換装置の縦断面図である。 第2図は本発明による光電変換装置の平面図および縦断
面図を製造工程に従って示したものである。 第3図は本発明の有機樹脂上の透明導電膜をレーザスク
ライブした時のレーザスクライブによる電気抵抗の変化
を示す。 第4図は本実施例における有機樹脂上の透明導電膜をレ
ーザスクライブした時のレーザスクライブの可能な領域
を示す。FIG. 1 is a vertical sectional view of a conventional photoelectric conversion device. FIG. 2 shows a plan view and a vertical sectional view of a photoelectric conversion device according to the present invention in accordance with the manufacturing process. FIG. 3 shows a change in electric resistance due to laser scribing when the transparent conductive film on the organic resin of the present invention is laser scribed. FIG. 4 shows a region where laser scribing is possible when the transparent conductive film on the organic resin in this example is laser scribed.
Claims (3)
第1の電極となる透光性導電膜に開溝を形成することに
より複数の第1の電極に分割する工程と、該第1の電極
および該電極間の開溝上に光照射により光起電力を発生
する非単結晶半導体を形成させる工程と、前記非単結晶
半導体の端部に至らない内部にレーザ光を照射して開孔
を形成することにより該非単結晶半導体下の第1の電極
の上面または側面を露呈させる工程と、この後前記非単
結晶半導体上に第2の電極となる導電膜を形成する工程
と、該第2の電極となる導電膜に開溝を形成して第2の
電極を形成する工程とにより、隣合った異なる光電変換
素子の第1の電極と第2の電極とを前記開孔を介して電
気的に連結して直列接続を形成せしめることを特徴とす
る光電変換半導体装置作製方法。1. A step of dividing into a plurality of first electrodes by forming an opening in a light-transmitting conductive film which becomes a first electrode on a light-transmitting organic resin substrate having an insulating surface, and the first electrode. A step of forming a non-single-crystal semiconductor that generates a photoelectromotive force by light irradiation on the first electrode and the groove between the electrodes; and irradiating the inside of the non-single-crystal semiconductor with a laser beam Forming a hole to expose the upper surface or side surface of the first electrode below the non-single-crystal semiconductor, and thereafter forming a conductive film to be a second electrode on the non-single-crystal semiconductor; By forming an opening in the conductive film to be the second electrode to form the second electrode, the opening is formed between the first electrode and the second electrode of different photoelectric conversion elements adjacent to each other. Photoelectric conversion semiconductor characterized in that they are electrically connected to each other to form a series connection.置作 made way.
半導体の端部に至らない内部に開孔を形成して第1の電
極の上面または側面を露呈せしめて、該第1の電極の側
面または側面と上面とに第2の電極を構成する導電性酸
化物材料を密接して設けることによりコンタクトを形成
させたことを特徴とする光電変換半導体装置作製方法。2. The first electrode according to claim 1, wherein an opening is formed inside the non-single crystal semiconductor so as not to reach an end of the non-single crystal semiconductor to expose an upper surface or a side surface of the first electrode. A method for manufacturing a photoelectric conversion semiconductor device, wherein a contact is formed by closely providing a conductive oxide material forming the second electrode on the side surface or the side surface and the upper surface.
極または第2の電極のうち少なくともどちらか一方の電
極の外周部領域のうち電極間連結部分以外の領域に、前
記電極の端部に沿ってリーク防止のための分離用開溝を
設けたことを特徴とする光電変換半導体装置作製方法。3. The electrode according to claim 1, wherein an end of the electrode is provided in a region other than the inter-electrode connecting portion in the outer peripheral region of at least one of the first electrode and the second electrode. A method for manufacturing a photoelectric conversion semiconductor device, characterized in that an isolation trench for preventing leakage is provided along the portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58204442A JPH069251B2 (en) | 1983-10-31 | 1983-10-31 | Photoelectric conversion semiconductor device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58204442A JPH069251B2 (en) | 1983-10-31 | 1983-10-31 | Photoelectric conversion semiconductor device manufacturing method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5173708A Division JPH06314808A (en) | 1993-06-21 | 1993-06-21 | Photoelectric conversion semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6095979A JPS6095979A (en) | 1985-05-29 |
JPH069251B2 true JPH069251B2 (en) | 1994-02-02 |
Family
ID=16490590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58204442A Expired - Lifetime JPH069251B2 (en) | 1983-10-31 | 1983-10-31 | Photoelectric conversion semiconductor device manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH069251B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH065776B2 (en) * | 1984-03-26 | 1994-01-19 | 株式会社半導体エネルギー研究所 | Method for manufacturing photoelectric conversion device |
US5238713A (en) * | 1987-09-18 | 1993-08-24 | Tokyo Ohka Kogyo Co., Ltd. | Spin-on method and apparatus for applying coating material to a substrate, including an air flow developing and guiding step/means |
US5408109A (en) | 1991-02-27 | 1995-04-18 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
US5352906A (en) * | 1993-01-29 | 1994-10-04 | Iowa State University Research Foundation, Inc. | Poly (p-phenyleneneacetylene) light-emitting diodes |
US5334539A (en) * | 1993-01-29 | 1994-08-02 | Iowa State University Research Foundation, Inc. | Fabrication of poly(p-phenyleneacetylene) light-emitting diodes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5148783U (en) * | 1974-10-09 | 1976-04-12 |
-
1983
- 1983-10-31 JP JP58204442A patent/JPH069251B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6095979A (en) | 1985-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1039554B1 (en) | Method of manufacturing thin film solar cell-modules | |
US4542578A (en) | Method of manufacturing photovoltaic device | |
US20110139216A1 (en) | Solar cell and method for manufacturing same | |
CN102239571B (en) | Method for manufacturing thin-film photoelectric conversion device | |
KR101011228B1 (en) | Solar Cell and Method For Fabricating The Same | |
JPH0638512B2 (en) | Photoelectric conversion semiconductor device | |
JPH069251B2 (en) | Photoelectric conversion semiconductor device manufacturing method | |
KR101047170B1 (en) | Solar cell and manufacturing method | |
JPH0476227B2 (en) | ||
JPH06314808A (en) | Photoelectric conversion semiconductor device | |
JPH088369B2 (en) | Photoelectric conversion semiconductor device | |
JPH07105511B2 (en) | Photovoltaic device manufacturing method | |
KR101044680B1 (en) | Solar cell and method for fabricating the same | |
JPH0566754B2 (en) | ||
JP2585503B2 (en) | Laser processing method | |
JPS59220978A (en) | Manufacture of photovoltaic device | |
JPH0415631B2 (en) | ||
JPH06112514A (en) | Manufacture of photoelectric conversion semiconductor device | |
JPH065776B2 (en) | Method for manufacturing photoelectric conversion device | |
JPH0614556B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
JPH065775B2 (en) | Photoelectric conversion semiconductor device | |
JPH01184960A (en) | Manufacture of photovoltaic device | |
JPH0758797B2 (en) | Method for manufacturing photoelectric conversion semiconductor device | |
JPS59168680A (en) | Manufacture of photovoltaic device | |
JPS61234574A (en) | Photocell unit and manufacture thereof |