JPH0680831B2 - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH0680831B2 JPH0680831B2 JP58224089A JP22408983A JPH0680831B2 JP H0680831 B2 JPH0680831 B2 JP H0680831B2 JP 58224089 A JP58224089 A JP 58224089A JP 22408983 A JP22408983 A JP 22408983A JP H0680831 B2 JPH0680831 B2 JP H0680831B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- layer
- conductivity type
- semiconductor device
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 239000012535 impurity Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H01L29/78—
Landscapes
- Bipolar Transistors (AREA)
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電力スイツチング素子として用いられる導電
変調型の半導体装置に関する。Description: TECHNICAL FIELD The present invention relates to a conductive modulation type semiconductor device used as a power switching element.
近年、電力用スイツチング素子としてパワーMOSFETが市
場に現われているが、1000〔V〕以上の阻止電圧で十分
低いオン抵抗をもつた素子は未だ実現されていない。そ
の理由は、阻止電圧VBが高くなる程素子のオン抵抗Ron
が増大してしまうためで、この両者の間には概略次の関
係があることが知られている。In recent years, a power MOSFET has appeared on the market as a power switching element, but an element having a sufficiently low on-resistance at a blocking voltage of 1000 [V] or higher has not yet been realized. The reason is that the higher the blocking voltage V B , the higher the on-resistance Ron of the device.
It is known that there is the following relationship between the two.
Ron∝VB 2.5 このような状況を改善するため最近、導電変調型のスイ
ツチング素子が提案されている。その基本構成を第1図
に示す。この構造は、通常縦型DMOSといわれるパワーMO
SFETのドレイン領域となるn+層をp+層におき換えたもの
ということができる。即ち、p+基板11(第1領域)に高
抵抗のn-層12(第2領域)を形成し、このn-層12の表面
部に選択的にp+層13(第3領域)を、更にこのp+層13の
表面部に選択的にn+層14(第4領域)を形成し、p+層13
のn-層12とn+層14で挾まれた表面領域をチャネル領域と
してこの上にゲート絶縁膜15を介してゲート電極16を形
成している。17はp+層13からn+層14上にまたがるように
配設されたソース電極、18はドレイン電極である。Ron ∝ V B 2.5 In order to improve such a situation, a conductivity modulation type switching element has recently been proposed. The basic structure is shown in FIG. This structure is a power MO that is usually called vertical DMOS.
It can be said that the n + layer that becomes the drain region of the SFET is replaced with the p + layer. That is, a high resistance n − layer 12 (second region) is formed on the p + substrate 11 (first region), and the p + layer 13 (third region) is selectively formed on the surface of the n − layer 12. further selectively formed n + layer 14 (the fourth region) in the surface portion of the p + layer 13, the p + layer 13
A gate electrode 16 is formed on the surface region sandwiched by the n − layer 12 and the n + layer 14 as a channel region with a gate insulating film 15 interposed therebetween. Reference numeral 17 is a source electrode arranged so as to extend from the p + layer 13 to the n + layer 14, and 18 is a drain electrode.
この素子の動作は次のとおりである。ソース電極17をア
ースし、ゲート電極16およびドレイン電極18に正の電圧
を与えると、MOSFETと同じ原理でゲート電極16直下のp+
層13表面が反転して電子のチヤネルができるためにオン
する。MOSFETと異なつているのは、ドレイン側p+基板11
からもn-層12に正孔の注入がおこることで、この注入さ
れた正孔はn-層12に蓄積してこの領域の抵抗を低くす
る。この導電変調の効果によつて、MOSFETの場合に問題
となつた先の式と無関係にオン抵抗を十分低くすること
ができる。The operation of this element is as follows. When the source electrode 17 is grounded and a positive voltage is applied to the gate electrode 16 and the drain electrode 18, p + directly below the gate electrode 16 is operated by the same principle as the MOSFET.
It is turned on because the surface of the layer 13 is inverted and an electron channel is formed. What is different from the MOSFET is the drain side p + substrate 11
As a result, holes are injected into the n − layer 12, and the injected holes are accumulated in the n − layer 12 to reduce the resistance in this region. Due to the effect of this conduction modulation, the on-resistance can be made sufficiently low irrespective of the above equation which is a problem in the case of MOSFET.
しかしながらこのスイツチング素子は、オン抵抗が小さ
くなる反面、ターンオフ時間がMOSFETの場合に比べて非
常に長くなるという欠点をもつ。これは、n-層12に蓄積
されたキヤリアが消滅するのに時間がかかるためであ
る。このターンオフのメカニズムを詳しく説明する。第
2図は、上記導電変調型スイツチング素子の代表的なス
イツチング波形である。図から、ターンオフには二つの
フエイズI,IIがあることがわかる。第1のフエイズI
は、ゲート電圧が零になつたことによつてp+層13表面の
チヤネルが消え、このチヤネルを流れていた電子電流が
零になるために、その分だけ瞬時にドレイン電流が減少
するものである。これに続く第2のフエイズIIは、n-層
12中に残留するキヤリアによつて、p+層13−n-層12−p+
基板11のトランジスタ作用で流れる電流がキヤリア寿命
τで減衰するものである。However, this switching element has a drawback that the turn-off time becomes much longer than that of the MOSFET, while the on-resistance is reduced. This is because it takes time for the carriers accumulated in the n − layer 12 to disappear. This turn-off mechanism will be described in detail. FIG. 2 shows a typical switching waveform of the conductivity modulation type switching element. From the figure, it can be seen that there are two phases I and II at turn-off. First Phase I
Is that the channel on the surface of the p + layer 13 disappears due to the gate voltage becoming zero, and the electron current flowing through this channel becomes zero, so that the drain current immediately decreases by that amount. is there. The second Phase II following this is the n - layer
Due to the carrier remaining in 12, the p + layer 13-n - layer 12-p +
The current flowing due to the transistor action of the substrate 11 is attenuated by the carrier life τ.
n-層12を不純物濃度1014〔cm-3〕、厚み40〜50〔μm」
とした従来の代表的な素子で、ターンオフ時間toffは10
〔μsec〕を越えるものとなる。n − layer 12 has an impurity concentration of 10 14 [cm −3 ] and a thickness of 40 to 50 μm
The typical turn-off time t off is 10
It exceeds [μsec].
本発明は上記事情を考慮してなされたもので、低いオン
抵抗を維持しながらターンオフ時間を十分短かくした導
電変調型の半導体装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object thereof is to provide a conductive modulation type semiconductor device in which the turn-off time is sufficiently short while maintaining a low on-resistance.
本発明は第1図に示す素子構造において、オン時のドレ
イン電流中の電子電流と正孔電流の比率がp+基板11から
の正孔の注入効率によりほぼ決まる点に着目し、n-層12
(第2領域)のp+基板11(第1領域)に接する部分に不
純物の総量が4×1013〔cm-2〕以上のn+層を設けること
を特徴とする。The present invention focuses on the fact that in the device structure shown in FIG. 1, the ratio of the electron current to the hole current in the drain current at the time of ON is almost determined by the injection efficiency of holes from the p + substrate 11, and the n − layer 12
An n + layer having a total amount of impurities of 4 × 10 13 [cm −2 ] or more is provided in a portion of the (second region) in contact with the p + substrate 11 (first region).
各領域の導電型を逆にした素子の場合にも同様の位置に
不純物総量が4×1013〔cm-2〕以上のp+層を設ければよ
い。In the case of a device in which the conductivity type of each region is reversed, a p + layer having a total impurity amount of 4 × 10 13 [cm −2 ] or more may be provided at the same position.
本発明によれば、ドレイン側からのキヤリア注入を抑制
してドレイン電流中の電子電流と正孔電流の比率を変え
ることにより、前述したフエイズIで瞬時に電流の減少
する割合を大きくすることができ、この結果ターンオフ
時間の大幅な短縮が図られる。同時に本発明によれば、
高抵抗層がパンチスルーする電圧が増大し、素子の電圧
阻止能力も向上する。According to the present invention, by suppressing the carrier injection from the drain side and changing the ratio of the electron current and the hole current in the drain current, it is possible to increase the rate of the current decrease instantaneously in phase I described above. As a result, the turn-off time can be significantly shortened. At the same time, according to the invention,
The voltage at which the high resistance layer punches through increases, and the voltage blocking capability of the device also improves.
以下本発明の実施例を説明する。第3図は一実施例の素
子構造であり、第1図と対応する部分には第1図と同一
符号を付してある。これを製造工程に従つて説明する
と、まず1×1020〔cm-3〕程度のp+基板11に、6×1017
〔cm-3〕、5μm厚のn+層19と3×1014〔cm-3〕、40μ
m厚のn-層12をイオン注入法と気相成長法によつて形成
する。次に選択拡散法によつて約5〔μm〕の深さにp+
層13を形成し、更にその表面にn+層14を形成する。そし
て高温熱酸化によりゲート絶縁膜15を形成し、n+層14と
p+層13にオーミツク電極をとるためにゲート絶縁膜15に
穴あけを行い、アルミニウムを数〔μm〕蒸着し、選択
エツチングしてゲート電極16とソース電極17を形成す
る。最後にウエハ裏面にV−Ni−Au膜を蒸着してドレイ
ン電極18を形成して完成する。Examples of the present invention will be described below. FIG. 3 shows an element structure of one embodiment, and portions corresponding to those of FIG. 1 are designated by the same reference numerals as those of FIG. This will be described according to the manufacturing process. First, on a p + substrate 11 of about 1 × 10 20 [cm −3 ], 6 × 10 17
[Cm -3 ], 5 μm thick n + layer 19 and 3 × 10 14 [cm -3 ], 40 μm
The m-thick n − layer 12 is formed by the ion implantation method and the vapor phase growth method. Next, by selective diffusion method, p + to a depth of about 5 μm
A layer 13 is formed, and an n + layer 14 is further formed on the surface thereof. Then, the gate insulating film 15 is formed by high temperature thermal oxidation, and the n + layer 14 and
In order to form an ohmic electrode in the p + layer 13, the gate insulating film 15 is perforated, aluminum is deposited by several μm, and selective etching is performed to form the gate electrode 16 and the source electrode 17. Finally, a V-Ni-Au film is vapor-deposited on the back surface of the wafer to form a drain electrode 18, which is completed.
この実施例による素子のスイツチング波形を第4図に示
す。この素子では、n+層19の存在によつてp+基板11から
n-層12への正孔注入効率が大幅に低下し、従つてオン時
にn-層12を流れる電流のうち電子電流の占める割合が大
きくなつている。その結果、第2図と比較して明らかな
ようにゲート電圧が零となつて電子電流がしや断された
ときのフエイズIでの電流減少が大きく、ターンオフ時
間はtoff6〔μsec」と従来の約1/2にまで短縮され
る。The switching waveform of the device according to this embodiment is shown in FIG. In this device, due to the presence of the n + layer 19, from the p + substrate 11
The efficiency of hole injection into the n - layer 12 is significantly reduced, and accordingly, the ratio of the electron current to the current flowing through the n - layer 12 at the time of ON is increasing. As a result, as is apparent from comparison with FIG. 2, when the gate voltage becomes zero and the electron current is interrupted or cut off, the current decrease in Phase I is large, and the turn-off time is t off 6 [μsec]. It is reduced to about 1/2 of the conventional one.
第5図は、第3図のn+層19に存在する不純物の総量を変
えたときのオン電流中に占める電子電流の割合を理論計
算により求めた結果である。このデータから、n+層19の
不純物量が4×1013〔cm-2〕を越えるあたりから電子電
流の割合が増大しはじめ、3×1014〔cm-2〕以上におい
てその増大傾向が顕著に現われている。FIG. 5 is the result of theoretical calculation of the ratio of the electron current in the on-current when the total amount of impurities existing in the n + layer 19 of FIG. 3 is changed. From this data, the ratio of the electron current starts to increase when the amount of impurities in the n + layer 19 exceeds 4 × 10 13 [cm −2 ], and the increasing tendency is remarkable above 3 × 10 14 [cm −2 ]. Appears in.
参考までに、第3図のn+層19の部分に2×1016〔c
m-3〕、厚み15μm程度のn層(不純物総量3×1013〔c
m-2〕)を設けてn-層12のパンチスルー耐圧を高める技
術は知られている。しかしこの程度の不純物量のn層を
設けても、第5図から明らかなように電子電流の割合の
増大は殆んど認められない。即ちn+層19の不純物量を4
×1013[cm-2]を越えるあたりからターンオフタイムの
短縮が図られ、3×1014[cm-2]以上とすることにより
更に大きなターンオフタイムの短縮という効果が得られ
るのである。しかも、n+層19の不純物量が3×1014〜10
15〔cm-2〕程度であれば、電子電流の割合が多くなると
はいつても正孔電流も存在し、素子のオン抵抗は従来の
DMOSに比べて十分低く保たれる。For reference, 2 × 10 16 [c at a portion of the n + layer 19 of FIG. 3
m −3 ], an n layer with a thickness of about 15 μm (total impurity amount 3 × 10 13 [c
m -2 ]) to increase the punch-through breakdown voltage of the n - layer 12 is known. However, even if the n layer having such an impurity amount is provided, almost no increase in the ratio of the electron current is recognized, as is apparent from FIG. That is, the impurity amount of the n + layer 19 is set to 4
The turn-off time can be shortened from the point where it exceeds × 10 13 [cm -2 ], and the effect of further shortening the turn-off time can be obtained by setting it to 3 × 10 14 [cm -2 ] or more. Moreover, the amount of impurities in the n + layer 19 is 3 × 10 14 to 10
If the ratio is about 15 [cm -2 ], the proportion of electron current will increase, and there will always be hole current.
It is kept low enough compared to DMOS.
【図面の簡単な説明】 第1図は導電変調型スイツチング素子の一例を示す図、
第2図はそのスイツチング動作波形を示す図、第3図は
本発明の一実施例の導電変調型スイツチング素子を示す
図、第4図はそのスイツチング動作波形を示す図、第5
図は本発明の効果を説明するための図である。 11…p+基板(第1領域)、12…n-層(第2領域)、13…
p+層(第3領域)、14…n+層(第4領域)、15…ゲート
絶縁膜、16…ゲート電極、17…ソース電極、18…ドレイ
ン電極、19…n+層。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of a conductive modulation type switching element,
FIG. 2 is a diagram showing the switching operation waveform, FIG. 3 is a diagram showing a conductive modulation type switching element of an embodiment of the present invention, and FIG. 4 is a diagram showing the switching operation waveform.
The figure is a figure for demonstrating the effect of this invention. 11 ... p + substrate (first area), 12 ... n - layer (second area), 13 ...
p + layer (third region), 14 ... N + layer (fourth region), 15 ... Gate insulating film, 16 ... Gate electrode, 17 ... Source electrode, 18 ... Drain electrode, 19 ... N + layer.
Claims (3)
この第1領域上に設けられた低不純物濃度で第2導電型
の第2領域と、この第2領域表面部に選択的に形成され
た第1導電型の第3領域と、この第3領域表面部に選択
的に形成された高不純物濃度で第2導電型の第4領域と
を有し、前記第3領域表面の第2領域と第4領域表面で
挟まれた部分をチャネル領域としてこのチャネル領域上
にゲート絶縁膜を介してゲート電極が形成され、前記第
3領域と第4領域表面に同時にコンタクトするソース電
極が形成され、かつ前記第1領域表面にドレイン電極が
形成された半導体装置において、前記第2領域の第1領
域と接する部分に不純物の総量が4×1013cm-2以上であ
る高濃度の第2導電型層を設けたことを特徴とする半導
体装置。1. A first region of a first conductivity type having a high impurity concentration,
A second region of the second conductivity type having a low impurity concentration provided on the first region, a third region of the first conductivity type selectively formed on the surface of the second region, and the third region. A fourth region of the second conductivity type having a high impurity concentration, which is selectively formed on the surface portion, and a portion sandwiched between the second region and the fourth region surface of the third region surface is used as a channel region. A semiconductor device in which a gate electrode is formed on a channel region via a gate insulating film, a source electrode is formed in contact with the surfaces of the third region and the fourth region at the same time, and a drain electrode is formed on the surface of the first region. 2. The semiconductor device according to claim 2, wherein a high-concentration second conductivity type layer having a total amount of impurities of 4 × 10 13 cm −2 or more is provided in a portion of the second region in contact with the first region.
が、3×1014cm-2以上の範囲であることを特徴とする特
許請求の範囲第1項記載の半導体装置。2. The semiconductor device according to claim 1, wherein the total amount of impurities in the high-concentration second conductivity type layer is in the range of 3 × 10 14 cm -2 or more.
が、1015cm-2以下の範囲であることを特徴とする特許請
求の範囲第1項乃至第2項記載の半導体装置。3. The semiconductor device according to claim 1, wherein the total amount of impurities in the high-concentration second conductivity type layer is in the range of 10 15 cm -2 or less.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58224089A JPH0680831B2 (en) | 1983-11-30 | 1983-11-30 | Semiconductor device |
GB8430147A GB2150753B (en) | 1983-11-30 | 1984-11-29 | Semiconductor device |
DE3443854A DE3443854C2 (en) | 1983-11-30 | 1984-11-30 | Insulated gate semiconductor device |
US06/858,854 US4689647A (en) | 1983-11-30 | 1986-04-30 | Conductivity modulated field effect switch with optimized anode emitter and anode base impurity concentrations |
US07/807,752 US5212396A (en) | 1983-11-30 | 1991-12-17 | Conductivity modulated field effect transistor with optimized anode emitter and anode base impurity concentrations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58224089A JPH0680831B2 (en) | 1983-11-30 | 1983-11-30 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60117673A JPS60117673A (en) | 1985-06-25 |
JPH0680831B2 true JPH0680831B2 (en) | 1994-10-12 |
Family
ID=16808372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58224089A Expired - Lifetime JPH0680831B2 (en) | 1983-11-30 | 1983-11-30 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0680831B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60260152A (en) * | 1984-06-07 | 1985-12-23 | Nec Corp | Mos gate bipolar transistor |
JPH0612827B2 (en) * | 1985-02-28 | 1994-02-16 | 株式会社東芝 | Conduction modulation type MOSFET |
JPH02148767A (en) * | 1988-11-29 | 1990-06-07 | Fuji Electric Co Ltd | Conductivity modulation type mosfet |
JP5745650B2 (en) | 2011-12-15 | 2015-07-08 | 株式会社日立製作所 | Semiconductor device and power conversion device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4364073A (en) * | 1980-03-25 | 1982-12-14 | Rca Corporation | Power MOSFET with an anode region |
-
1983
- 1983-11-30 JP JP58224089A patent/JPH0680831B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60117673A (en) | 1985-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4689647A (en) | Conductivity modulated field effect switch with optimized anode emitter and anode base impurity concentrations | |
US5895939A (en) | Silicon carbide field effect transistor with increased avalanche withstand capability | |
US5969378A (en) | Latch-up free power UMOS-bipolar transistor | |
JP3471823B2 (en) | Insulated gate semiconductor device and method of manufacturing the same | |
JPH0467343B2 (en) | ||
JP2984478B2 (en) | Conductivity modulation type semiconductor device and method of manufacturing the same | |
JPH0550866B2 (en) | ||
KR950014279B1 (en) | Semiconductor device and its making method | |
JP2946750B2 (en) | Semiconductor device | |
JPH0752770B2 (en) | Conduction modulation type MOSFET | |
JPH04274368A (en) | Insulated gate type bipolar transistor and manufacture thereof | |
JPH07101737B2 (en) | Method for manufacturing semiconductor device | |
JPH1027899A (en) | Voltage drive-type silicon carbide thyristor | |
JPH0680831B2 (en) | Semiconductor device | |
JPS61222260A (en) | Conductivity-modulation type mosfet | |
JP3063278B2 (en) | Vertical field-effect transistor | |
JPH0888357A (en) | Lateral igbt | |
JPS6373670A (en) | Conductive modulation type mosfet | |
JP7411465B2 (en) | semiconductor equipment | |
JP4016901B2 (en) | Insulated gate semiconductor device and method for manufacturing insulated gate semiconductor device | |
JP3755231B2 (en) | Insulated gate bipolar transistor | |
JPH08241993A (en) | Power switching device | |
JPS6145395B2 (en) | ||
JPH0758322A (en) | Semiconductor device and its manufacture | |
JPH10335649A (en) | Semiconductor device and manufacture thereof |