JPH0658725A - Detecting method of attribute of high-luminance area - Google Patents
Detecting method of attribute of high-luminance areaInfo
- Publication number
- JPH0658725A JPH0658725A JP4208102A JP20810292A JPH0658725A JP H0658725 A JPH0658725 A JP H0658725A JP 4208102 A JP4208102 A JP 4208102A JP 20810292 A JP20810292 A JP 20810292A JP H0658725 A JPH0658725 A JP H0658725A
- Authority
- JP
- Japan
- Prior art keywords
- value
- peak
- index
- center
- luminance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、スリット光を投射した
物体をテレビカメラで撮影した画像上の、スリット光反
射像の性状検出に関し、特に、これに限定する意図では
ないが、スリット位置検出による物体形状測定において
画像上の輝度ピ−ク領域が、スリット光反射像を正確に
表わす「スリット形状」であるか、スリット位置検出に
エラ−をもたらす「ブル−ミング」あるいはスミアであ
るかを検出し、正確に物体形状測定を行なう方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the detection of the properties of a slit light reflection image on an image obtained by shooting a slit light projection object with a television camera. In particular, although not intended to be limited to this, slit position detection is possible. In the measurement of the object shape, the brightness peak area on the image is "slit shape" that accurately represents the slit light reflection image, or "blooming" or smear that causes an error in the slit position detection. The present invention relates to a method for detecting and accurately measuring an object shape.
【0002】[0002]
【従来の技術】例えば、レ−ザ光をスリット状に物体に
投射して物体をテレビカメラで撮影し、コンピュ−タに
よる画像処理および演算により撮影画面上の物体上のス
リット光反射位置を算出し、物体の形状,寸法等を算出
する測定方法は、非接触で、オンラインかつリアルタイ
ムで物体の測定ができるので便利である。この測定にお
いては、物体上の、スリット光による高輝度線およびそ
の線の線幅中心位置を正確に測定することが必要であ
る。特開平2−95091号公報には、画像デ−タのS
N比,スリット光による高輝度線のとぎれ量、および、
該高輝度線の線幅より、ファジ−推論により、スリット
光の強度および画像信号の2値化閾値の適否すなわち測
定環境等の適否を判定してこれらを適切に定めようとす
る技術が大まかに提案されている。2. Description of the Related Art For example, laser light is projected in a slit shape on an object, the object is photographed by a television camera, and the slit light reflection position on the object on the photographed screen is calculated by image processing and calculation by a computer. However, the measuring method for calculating the shape, size, etc. of the object is convenient because the object can be measured online and in real time without contact. In this measurement, it is necessary to accurately measure the high-intensity line by the slit light and the line width center position of the line on the object. Japanese Unexamined Patent Publication No. 2-95091 discloses S of image data.
N-ratio, amount of break of high-intensity line due to slit light, and
Roughly, there is a technique for determining the appropriateness of the intensity of slit light and the binarization threshold value of the image signal, that is, the appropriateness of the measurement environment or the like, by fuzzy reasoning from the line width of the high-intensity line. Proposed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記S
N比,とぎれ量および線幅のいずれも、正確な値が得ら
れるものではない。例えば、物体自身の凹凸により画像
上ではスリット光による高輝度線のとぎれが現われる。
このとぎれは物体の形状,寸法等を算出するための1つ
のパラメ−タである。したがって、高輝度線のとぎれ
が、物体の形状によるものか、測定環境等が不適である
ために生じたものかの識別が必要となる。線幅も同様で
ある。SN比の算出では、画像デ−タのいずれをノイズ
Nとするかノイズ検出の信頼性に問題が転嫁される。こ
のように次々に検出が必要となるが、いずれの検出にも
信頼性の問題を内在する。したがって、高信頼性の結果
が得られるとの根拠は見当らない。However, the above-mentioned S
Accurate values cannot be obtained for any of the N ratio, the amount of break, and the line width. For example, due to the unevenness of the object itself, the break of the high-intensity line due to the slit light appears on the image.
This break is one parameter for calculating the shape and size of the object. Therefore, it is necessary to identify whether the break of the high-intensity line is due to the shape of the object or the break due to an inappropriate measurement environment. The line width is also the same. In the calculation of the SN ratio, which of the image data is the noise N causes a problem to be passed on to the reliability of noise detection. As described above, the detections are required one after another, but each detection has a problem of reliability. Therefore, there is no evidence that a highly reliable result can be obtained.
【0004】加えて、画像上にはブル−ミングやスミア
が現われることがある。図13に、これを示す。ブル−
ミングBLは物体上の特異な高反射スポットによる高輝
度反射により、カメラの画像信号が最高レベルに飽和す
る現象であるが、この程度が大きいと、カメラのCCD
特性により、他の走査線の対応位置に高レベル信号が現
われこれがスミアSMである。すなわちブル−ミングB
LはスミアSMの原因となる。スリット光像を正確に表
わす(正常)領域NLの一走査線における輝度信号レベ
ルを図14に、ブル−ミングBLの一走査線における輝
度信号レベルを図15に、また、スミアSMの一走査線
における輝度信号レベルを図16に示す。 ところで、
物体上のスリット光像のエッジ(低輝度領域と高輝度領
域の境界線:スリット光像の幅両端のそれぞれ)の検出
が重要であり、形状や寸法を正確に必要とする場合は特
に、エッジ(線)の中心位置の正確な判定が必要であ
る。ところで、例えばx,y方向に共に512個の光電
変換素子(ピクセル)を配列した2次元カメラ(例えばC
CDカメラ)を用いる撮影では、ピクセルの配列ピッチ
をKp、カメラの倍率をKcとすると、ピクセル配列面上
でピクセル配列ピッチKpが、現実の物体のKp・Kcの
長さを表わす。ピクセル配列面上でピクセル配列ピッチ
Kp未満の解像度を得ることはできないので、測定上の
解像度(最小単位)はKp・Kcとなる。したがって、カメ
ラの倍率が高いとあるいはピクセル配列ピッチKpが大
きいと、測定精度が低い。これに加えて、照明の明るさ
や物体表面の光反射率等に依存してエッジ線がぼけたり
太くなったりしてエッジ切出し(エッジ摘出)精度が低
下するなどの問題がある。これを今少し詳しく説明する
と、図1に示すように物体3をCCDカメラ2で撮影し
図2の(a)に示すような画像フレ−ムを得て、図2の
(b)に示すように処理対象領域を摘出した場合、1走
査線y=jの輝度信号(デジタル)は図3の(a)に示
すようになりスリット光像のエッジ部で輝度信号が急激
に変化する。ピ−ク領域(スリット光像領域)切出し
(摘出)のためのしきい値のレベルによりエッジ検出位
置が変わる。加えて、照明光又は反射光の明るさのわず
かな変動によって、エッジ検出位置が変わる。In addition, blooming or smear may appear on the image. This is shown in FIG. Bull-
The ming BL is a phenomenon in which the image signal of the camera is saturated to the maximum level due to high-brightness reflection due to a peculiar high-reflection spot on the object.
Due to the characteristics, a high level signal appears at the corresponding position of another scanning line, and this is the smear SM. That is, blooming B
L causes smear SM. FIG. 14 shows the luminance signal level in one scanning line of the (normal) region NL that accurately represents the slit light image, FIG. 15 shows the luminance signal level in one scanning line of the blooming BL, and one scanning line of the smear SM. FIG. 16 shows the luminance signal level at. by the way,
It is important to detect the edge of the slit light image on the object (the boundary between the low-luminance area and the high-luminance area: each of the width edges of the slit light image), and the edge is especially important when the shape and dimensions are required accurately. Accurate determination of the center position of (line) is required. By the way, for example, a two-dimensional camera in which 512 photoelectric conversion elements (pixels) are arrayed in both the x and y directions (for example, C
In photographing using a CD camera), when the pixel array pitch is Kp and the camera magnification is Kc, the pixel array pitch Kp on the pixel array plane represents the length of Kp · Kc of the actual object. Since it is not possible to obtain a resolution less than the pixel array pitch Kp on the pixel array surface, the resolution (minimum unit) in measurement is Kp · Kc. Therefore, when the magnification of the camera is high or the pixel array pitch Kp is large, the measurement accuracy is low. In addition to this, there is a problem in that the edge cutout (edge extraction) accuracy is reduced due to the edge line becoming blurred or thick depending on the brightness of the illumination, the light reflectance of the object surface, and the like. Explaining this in a little more detail, as shown in FIG. 2B, the object 3 is photographed by the CCD camera 2 as shown in FIG. 1 to obtain an image frame as shown in FIG. When the region to be processed is extracted, the luminance signal (digital) of one scanning line y = j becomes as shown in FIG. 3A, and the luminance signal sharply changes at the edge portion of the slit light image. The edge detection position changes depending on the level of the threshold value for cutting out (extracting) the peak area (slit light image area). In addition, the edge detection position changes due to a slight change in the brightness of the illumination light or the reflected light.
【0005】本願の発明は、画像上のピ−ク領域が、正
常なスリット光像か、ブル−ミングか、スミアか等、ピ
−ク領域の属性を検出することを第1の目的とし、画像
上のスリット光像を正確に摘出することを第2の目的と
し、画像上のスリット光像の像エッジを正確に検出する
ことを第3の目的とし、画像上のスリット光像の位置を
正確に検出することを第4の目的とする。The first object of the invention of the present application is to detect the attribute of the peak area such as whether the peak area on the image is a normal slit light image, blooming, smear, or the like. The second purpose is to accurately extract the slit light image on the image, and the third purpose is to accurately detect the image edge of the slit light image on the image. The fourth purpose is to detect accurately.
【0006】[0006]
【課題を解決するための手段】本願発明の第1実施態様
(請求項1)では、スリット光を当てた物体を撮影し
た、2次元x,yに分布する各画素の輝度を表わす画像
デ−タで表わされる画像上の、高輝度領域の属性を、次
のようにして検出する。In a first embodiment (claim 1) of the present invention, an image data representing the brightness of each pixel distributed in two-dimensional x, y is obtained by photographing an object illuminated with slit light. The attribute of the high-luminance area on the image represented by the data is detected as follows.
【0007】A.走査線(y=j)上における輝度ピ−ク(Lm
x)を検出する, B1.検出した輝度ピ−ク(Lmx)によって定まる、輝度ピ
−クの基底レベルに近い第1閾値(0.2Lmx)以上の、前記
走査線上の第1ピ−ク領域幅(LSW)を検出する, D1.第1ピ−ク領域幅(LSW)を小,中,大等各指標〔fL
z(LSW)〜fLb(LSW)〕の値〔fLz(d),fLs(d)〕に変換す
る、および、 E1.得た各指標値〔fLz(d),fLs(d)〕を各指標に対応付
けられている、「スリット形状」反射である程度が低,
高等各指標〔fNz(fLz)〜fNb(fLb)〕の値に変換し、これ
らの値の集合の中心値(NLv)すなわち「スリット形状」
反射である確信度(NLv)を算出する。A. Luminance peak (Lm on scan line (y = j)
x) is detected, B 1 . Detecting a first peak region width (LSW) on the scanning line that is equal to or higher than a first threshold (0.2Lmx) close to the base level of the luminance peak, which is determined by the detected luminance peak (Lmx), D 1 . The first peak area width (LSW) is small, medium, large, etc. [fL
z (LSW) to fLb (LSW)] values [fLz (d), fLs (d)], and E 1 . The obtained index values [fLz (d), fLs (d)] are associated with each index.
Converted to the value of each higher index (fNz (fLz) ~ fNb (fLb)), the center value (NLv) of the set of these values, that is, the "slit shape"
The certainty factor (NLv) that is a reflection is calculated.
【0008】第2実施態様(請求項2)では、 A.走査線(y=j)上における輝度ピ−ク(Lmx)を検出す
る, C.輝度ピ−ク(Lmx)が輝度飽和値(255)であるときその
飽和幅(MSW)を検出する,D2.飽和幅(MSW)を小,中,
大等各指標〔fMz(MSW)〜fMm(MSW)〕の値〔fMz(c),fMs
(c)〕に変換する、および、 E2.得た各指標値〔fMz(c),fMs(c)〕を各指標に対応付
けられている、「ブル−ミング」反射である程度が低,
高等各指標〔fBz(fMz)〜fBm(fMm)〕の値に変換し、これ
らの値の集合の中心値(BLv)すなわち「ブル−ミング」
反射である確信度(BLv)を算出する。In the second embodiment (claim 2), A. Detecting a luminance peak (Lmx) on the scan line (y = j), C.I. Brightness peak - click (Lmx) detects the saturation width (MSW) when a luminance saturation value (255), D 2. Saturation width (MSW) is small, medium,
Values of each index (fMz (MSW) ~ fMm (MSW)) (fMz (c), fMs
It converted to (c)], and, E 2. Each obtained index value [fMz (c), fMs (c)] is associated with each index.
Converted to the value of each higher index (fBz (fMz) ~ fBm (fMm)), the central value (BLv) of the set of these values or `` blooming ''
The certainty factor (BLv) that is a reflection is calculated.
【0009】第3実施態様(請求項3)では、 A.走査線(y=j)上における輝度ピ−ク(Lmx)を検出す
る, B1.検出した輝度ピ−ク(Lmx)によって定まる、輝度ピ
−クの基底レベルに近い第1閾値(0.2Lmx)以上の、前記
走査線上の第1ピ−ク領域幅(LSW)を検出する, B2.検出した輝度ピ−ク(Lmx)によって定まる、輝度ピ
−クに近い第2閾値(0.8Lmx)以上の、前記走査線上の第
2ピ−ク領域幅(USW)を検出する, D3.第1ピ−ク領域幅(LSW)と第2ピ−ク領域幅(USW)
の相対値(e=USW/LSW)を小,中,大等各指標〔fEz(E)〜f
Em(E)〕の値〔fEs(e)〜fEm(e)〕に変換する、および、 E3.得た各指標値〔fEs(e)〜fEm(e)〕を各指標に対応
付けられている、「スミア」である程度が低,高等各指
標〔fSz(fEz)〜fSm(fEm)〕の値に変換し、これらの値の
集合の中心値(SMv)すなわち「スミア」である確信度(SM
v)を算出する。In the third embodiment (claim 3), A. Detect the luminance peak (Lmx) on the scanning line (y = j), B 1 . Detecting a first peak region width (LSW) on the scan line that is equal to or higher than a first threshold (0.2Lmx) close to the base level of the luminance peak, which is determined by the detected luminance peak (Lmx), B 2 . Determined by the click (Lmx), the luminance peak - - detected luminance peak second threshold close to click (0.8Lmx) above, the second peak of the scanning line - detecting the click region width (USW), D 3. 1st peak area width (LSW) and 2nd peak area width (USW)
Relative value (e = USW / LSW) of small, medium, large index [fEz (E) ~ f
Converting the value of em (E)] [fEs (e) ~fEm (e)], and, E 3. Each index value obtained [fEs (e) ~ fEm (e)] is associated with each index, and the value of each index [fSz (fEz) ~ fSm (fEm)] is low to some extent in "smear". And the confidence value (SMv) which is the central value (SMv) or “smear” of the set of these values.
Calculate v).
【0010】第4実施態様(請求項4)では、第1実施態
様と同様にして「スリット形状」反射である確信度(NL
v)を算出し、第2実施態様と同様にして「ブル−ミン
グ」反射である確信度(BLv)を算出し、そして、F1.
「スリット形状」反射である確信度(NLv)と「ブル−ミ
ング」反射である確信度(BLv)を比較して、ピ−ク領域
を、前者(NLv)が大きいと「スリット形状」反射と、後
者(BLv)が大きいと「ブル−ミング」反射と決定する。In the fourth embodiment (claim 4), as in the first embodiment, the certainty factor (NL) which is a "slit shape" reflection.
v), the confidence (BLv) that is a “blooming” reflection is calculated in the same manner as in the second embodiment, and F 1 ..
By comparing the certainty factor (NLv) that is a "slit shape" reflection and the certainty factor (BLv) that is a "blooming" reflection, the peak area is defined as the "slit shape" reflection when the former (NLv) is large. , The latter (BLv) is large, it is determined to be a "blooming" reflection.
【0011】第5実施態様(請求項5)では、第1実施態
様と同様にして「スリット形状」反射である確信度(NL
v)を算出し、第2実施態様と同様にして「ブル−ミン
グ」反射である確信度(BLv)を算出し、第3実施態様と
同様にして「スミア」である確信度(SMv)を算出し、そ
して、F2.「スリット形状」反射である確信度(NLv),
「ブル−ミング」反射である確信度(BLv)および「スミ
ア」である確信度(SMv)の中の、最大値の値の属性すな
わち「スリット形状」反射,「ブル−ミング」反射又は
「スミア」を、ピ−ク領域の属性と決定する。In the fifth embodiment (claim 5), as in the first embodiment, the certainty factor (NL
v) is calculated, and the certainty factor (BLv) that is the “blooming” reflection is calculated in the same manner as in the second embodiment, and the certainty factor (SMv) that is the “smear” is calculated in the same manner as in the third embodiment. Calculate and F 2 . Confidence (NLv) that is a "slit-shaped" reflection,
Among the certainty (BLv) that is the “blooming” reflection and the certainty (SMv) that is the “smear”, the attribute of the maximum value, that is, the “slit shape” reflection, the “blooming” reflection, or the “smear” Is determined as the attribute of the peak area.
【0012】本発明の好ましい実施例では、「スリット
形状」と判定したピ−ク領域の、輝度が立上るエッジ範
囲および輝度が立下るエッジ範囲それぞれの中心を算出
し、算出した中心間の中心をピ−ク領域の中心と決定
し、「ブル−ミング」と判定した走査線があるときに
は、物体に当てるスリット光の強度を下げて再度撮影
し、この撮影画像上の、前記「ブル−ミング」と判定し
た走査線につき該走査線の再度の属性検出を経て、これ
により「スリット形状」と判定したピ−ク領域の、輝度
が立上るエッジ範囲および輝度が立下るエッジ範囲それ
ぞれの中心を算出し、算出した中心間の中心をピ−ク領
域の中心と決定し、「スミア」と判定したピ−ク領域
は、前記ピ−ク領域の中心を決定する対象から除外する
(請求項6〜8)。In a preferred embodiment of the present invention, the center of each of the edge range where the brightness rises and the edge range where the brightness falls falls in the peak area determined as the "slit shape", and the center between the calculated centers is calculated. Is set as the center of the peak area, and when there is a scanning line determined as "blooming", the intensity of the slit light applied to the object is reduced and the image is taken again. For the scanning line determined to be "," the attribute of the scanning line is detected again, and the center of each of the edge range in which the brightness rises and the edge range in which the brightness falls in the peak area determined to be the "slit shape" is determined. The center between the calculated centers is determined as the center of the peak area, and the peak area determined as "smear" is excluded from the target for determining the center of the peak area.
(Claims 6 to 8).
【0013】本発明の好ましい実施例では、上記エッジ
範囲の中心の算出は、次のようにして行なう(請求項9〜
11)。In a preferred embodiment of the present invention, the center of the edge range is calculated as follows (claims 9 to 9).
11).
【0014】a.走査線(y=j)が延びる方向(x方向)で隣
接する画素間の輝度の差すなわち微分値(Di)を算出す
る, b.微分値(Di)が0から他の値に変化し0に戻る走査線
が延びる方向のエッジ範囲(xeb1〜xee1/xeb2〜xee2)内
の所定領域(xeb1〜xee1/xeb2〜xee2)の画素のそれぞれ
の微分値(Di)を小,中,大等各指標の値に変換する(図6
のa), c1.前記所定領域(xeb1〜xee1/xeb2〜xee2)の画素(xi)
のそれぞれにつき、各指標値を各指標に対応付けられて
いるエッジ存在幅変換関数に従がい各エッジ存在幅に変
換し、各エッジ存在幅の合成中心値である第1合成中心
値を算出する(図7のa), c2.前記所定領域(xeb1〜xee1/xeb2〜xee2)の画素(xi)
のそれぞれにつき、各指標値を各指標に対応付けられて
いるエッジ確率変換関数に従がい各エッジ確率に変換
し、各エッジ確率の合成中心値である第2合成中心値を
算出する(図7のb)、および、 d3.前記所定領域(xeb1〜xee1/xeb2〜xee2)の画素(Di)
のそれぞれの走査線(y=j)が延びる方向の位置(xi)をそ
の第1および第2合成中心値で重み付けして、これらの
画素の集合でなる前記所定領域の走査線が延びる方向の
中心位置(Ejcp1/Ejcp2)を算出する。A. Calculate a difference in luminance between adjacent pixels, that is, a differential value (Di) in the direction (x direction) in which the scanning line (y = j) extends, b. The differential value (Di) changes from 0 to another value and returns to 0. The pixel of the predetermined area (xeb1 ~ xee1 / xeb2 ~ xee2) within the edge range (xeb1 ~ xee1 / xeb2 ~ xee2) in the direction in which the scanning line extends Convert each differential value (Di) to the value of each index such as small, medium, large (Fig. 6
A), c 1 . Pixels (xi) of the predetermined area (xeb1 ~ xee1 / xeb2 ~ xee2)
For each of the above, each index value is converted into each edge existing width according to the edge existing width conversion function associated with each index, and the first combined central value which is the combined central value of each edge existing width is calculated. (A in FIG. 7), c 2 . Pixels (xi) of the predetermined area (xeb1 ~ xee1 / xeb2 ~ xee2)
For each of the above, each index value is converted into each edge probability according to the edge probability conversion function associated with each index, and the second combined central value that is the combined central value of each edge probability is calculated (FIG. 7). of b), and, d 3. Pixels (Di) in the predetermined area (xeb1 ~ xee1 / xeb2 ~ xee2)
Position (xi) in the direction in which each of the scanning lines (y = j) extends is weighted by the first and second combined center values, and the scanning line in the direction in which the scanning line in the predetermined region formed by a group of these pixels extends. Calculate the center position (Ejcp1 / Ejcp2).
【0015】なお、カッコ内の記号は、図面に示す対応
事項又は処理態様を示す図面を表わすものである。Symbols in parentheses represent drawings showing corresponding items or processing modes shown in the drawings.
【0016】[0016]
【作用】スリット光像が正常に画像上に表われている場
合すなわち画像上で「スリット形状」である場合には、
図14に示すように、一走査線における輝度分布は、上
に凸の放物線に近い形状を示すが、ブル−ミングの場合
は図15に示すように、輝度が飽和してしまう領域があ
り、ピ−ク領域幅が広くなる。またスミアの場合には、
図16に示すように、輝度分布は三角形状に近いものと
なり、ピ−ク領域幅が狭くなる。すなわち、ブル−ミン
グ時の輝度分布は、飽和領域幅(MSW)が広く、したがっ
てピ−ク領域幅も広く、輝度ピ−ク(Lmx)によって定ま
る、輝度ピ−クの基底レベルに近い第1閾値(0.2Lmx)以
上の第1ピ−ク領域幅(LSW)、および、輝度ピ−ク(Lmx)
によって定まる、輝度ピ−クの輝度ピ−ク(Lmx)に近い
第2閾値(0.8Lmx)以上の第2ピ−ク領域幅(USW)も広い
ので、相対値E=USW/LSWは大きい。これとは逆に、ス
ミアは、飽和領域が実質上なく(飽和領域幅=0)、E
=USW/LSWが極く小さい。正常な「スリット形
状」である場合は、輝度分布は、これらブル−ミングお
よびスミアの特性の略中間的な特性を示す。したがっ
て、第1ピ−ク領域幅(LSW),飽和領域幅(MSW)および第
1,第2ピ−ク領域幅の相対値E=USW/LSWの、少くと
も一者を用いて、輝度分布のピ−ク領域が、「スリット
形状」特性(正常)か、「ブル−ミング」特性か、「ス
ミア」特性かを判別しうる。When the slit light image normally appears on the image, that is, when it has a "slit shape" on the image,
As shown in FIG. 14, the luminance distribution on one scanning line shows a shape close to an upwardly convex parabola, but in the case of blooming, as shown in FIG. 15, there is a region where the luminance is saturated, The peak area width becomes wider. In the case of smear,
As shown in FIG. 16, the luminance distribution is close to a triangular shape, and the peak area width is narrow. That is, the luminance distribution during blooming has a wide saturation region width (MSW) and therefore a wide peak region width, and is close to the base level of the luminance peak, which is determined by the luminance peak (Lmx). First peak area width (LSW) above the threshold (0.2Lmx) and luminance peak (Lmx)
Since the second peak region width (USW) equal to or larger than the second threshold (0.8Lmx) close to the luminance peak (Lmx) of the luminance peak, which is determined by, is wide, the relative value E = USW / LSW is large. On the contrary, smear has substantially no saturation region (saturation region width = 0), and
= USW / LSW is extremely small. In the case of the normal "slit shape", the luminance distribution shows a property almost intermediate between those of blooming and smear. Therefore, using at least one of the first peak region width (LSW), the saturation region width (MSW) and the relative value E = USW / LSW of the first and second peak region widths, the luminance distribution is calculated. It is possible to discriminate whether the peak area is a "slit shape" characteristic (normal), a "blooming" characteristic, or a "smear" characteristic.
【0017】第1実施態様(請求項1)では、第1ピ−ク
領域幅(LSW)を小,中,大等各指標〔fLz(LSW)〜fLb(LS
W)〕の値〔fLz(d),fLs(d)〕に変換し、得た各指標値〔f
Lz(d),fLs(d)〕を各指標に対応付けられている、「スリ
ット形状」反射である程度が低,高等各指標〔fNz(fLz)
〜fNb(fLb)〕の値に変換し、これらの値の集合の中心値
(NLv)すなわち「スリット形状」反射である確信度(NLv)
を算出するので、この確信度(NLv)が大きい程、輝度分
布上のピ−ク領域が「スリット形状」(正常)である確
率が高い。換言すると、この確信度(NLv)が低い程、ピ
−ク領域が「ブル−ミング」又は「スミア」である確率
が高い。このように、輝度分布上のピ−ク領域が「スリ
ット形状」(正常)である度合を示す評価値(NLv)が得
られる。In the first embodiment (claim 1), the first peak region width (LSW) is set to each of small, medium and large indexes [fLz (LSW) to fLb (LSW).
W)) value [fLz (d), fLs (d)], and obtained each index value [f
Lz (d), fLs (d)] is associated with each index, and each is a "slit-shaped" reflection with low and high indices [fNz (fLz)
~ FNb (fLb)], and the median of the set of these values
(NLv), that is, the certainty factor (NLv) that is a "slit-shaped" reflection
Therefore, the larger the certainty factor (NLv), the higher the probability that the peak area on the luminance distribution has the “slit shape” (normal). In other words, the lower the certainty factor (NLv), the higher the probability that the peak area is "blooming" or "smear". In this way, the evaluation value (NLv) indicating the degree to which the peak area on the luminance distribution has the "slit shape" (normal) is obtained.
【0018】同様に、第2実施態様(請求項2)によれ
ば、輝度分布上のピ−ク領域が「ブル−ミング」(異
常)である度合を示す評価値(BLv)が得られ、第3態様
(請求項3)によれば「スミア」(異常)である度合を示す評
価値(SMv)が得られる。Similarly, according to the second embodiment (claim 2), an evaluation value (BLv) indicating the degree to which the peak area on the luminance distribution is "blooming" (abnormal) is obtained, Third aspect
According to (Claim 3), the evaluation value (SMv) indicating the degree of "smear" (abnormal) can be obtained.
【0019】第4実施態様(請求項4)では、「スリット
形状」反射である確信度(NLv)と「ブル−ミング」反射
である確信度(BLv)を比較して、ピ−ク領域を、前者(NL
v)が大きいと「スリット形状」反射と、後者(BLv)が大
きいと「ブル−ミング」反射と決定するので、「ブル−
ミング」を「スリット形状」(正常)と検出する確率が
より低くなる。In the fourth embodiment (claim 4), the certainty factor (NLv) which is the "slit-shaped" reflection and the certainty factor (BLv) which is the "blooming" reflection are compared to determine the peak area. , The former (NL
If v) is large, it is determined as "slit-shaped" reflection, and if the latter (BLv) is large, it is determined as "blooming" reflection.
The probability of detecting "Ming" as "slit shape" (normal) is lower.
【0020】第5実施態様(請求項5)では、「スリット
形状」反射である確信度(NLv),「ブル−ミング」反射
である確信度(BLv)および「スミア」である確信度(SMv)
の中の、最大値の値の属性すなわち「スリット形状」反
射,「ブル−ミング」反射又は「スミア」を、ピ−ク領
域の属性と決定するので、「ブル−ミング」や「スミ
ア」を「スリット形状」(正常)と検出する確率が最も
低くなり、最高の信頼度で、輝度分布上のピ−ク領域が
「スリット形状」(正常)であるか否かの情報が得られ
る。In the fifth embodiment (claim 5), the certainty factor (NLv) which is a "slit shape" reflection, the certainty factor (BLv) which is a "blooming" reflection and the certainty factor (SMv) which is a "smear". )
Among these, the attribute of the maximum value, that is, "slit shape" reflection, "blooming" reflection or "smear" is determined as the attribute of the peak area, so "blooming" or "smear" is determined. The probability of detecting the "slit shape" (normal) is the lowest, and the information indicating whether or not the peak area on the luminance distribution has the "slit shape" (normal) with the highest reliability.
【0021】本発明の好ましい実施例では、「スリット
形状」と判定したピ−ク領域の、輝度が立上るエッジ範
囲および輝度が立下るエッジ範囲それぞれの中心を算出
し、算出した中心間の中心をピ−ク領域の中心と決定
し、「ブル−ミング」と判定した走査線があるときに
は、物体に当てるスリット光の強度を下げて再度撮影
し、この撮影画像上の、前記「ブル−ミング」と判定し
た走査線につき該走査線の再度の属性検出を経て、これ
により「スリット形状」と判定したピ−ク領域の、輝度
が立上るエッジ範囲および輝度が立下るエッジ範囲それ
ぞれの中心を算出し、算出した中心間の中心をピ−ク領
域の中心と決定し、「スミア」と判定したピ−ク領域
は、前記ピ−ク領域の中心を決定する対象から除外する
(請求項6〜8)。これによれば、各回の撮影画像を無駄に
することなく、スリット光像の各走査線上の位置が正確
に、しかも実質上漏れなくかつノイズ(スミア)を拾う
ことなく検出され、精度が高い物体形状計測が可能とな
る。In a preferred embodiment of the present invention, the center of each of the edge range where the brightness rises and the edge range where the brightness falls falls in the peak area determined as the "slit shape", and the center between the calculated centers is calculated. Is set as the center of the peak area, and when there is a scanning line determined as "blooming", the intensity of the slit light applied to the object is reduced and the image is taken again. For the scanning line determined to be "," the attribute of the scanning line is detected again, and the center of each of the edge range in which the brightness rises and the edge range in which the brightness falls in the peak area determined to be the "slit shape" is determined. The center between the calculated centers is determined as the center of the peak area, and the peak area determined as "smear" is excluded from the target for determining the center of the peak area.
(Claims 6 to 8). According to this, the position of each slit light image on each scanning line is accurately detected without wasting each captured image, and substantially without leakage and without picking up noise (smear). Shape measurement is possible.
【0022】本発明の好ましい実施例では上記エッジ範
囲の中心の算出は、 a.走査線(y=j)が延びる方向(x方向)で隣接する画素間
の輝度の差すなわち微分値(Di)を算出し、 b.微分値(Di)が0から他の値に変化し0に戻る走査線
が延びる方向のエッジ範囲(xeb1〜xee1/xeb2〜xee2)内
の所定領域(xeb1〜xee1/xeb2〜xee2)の画素のそれぞれ
の微分値(Di)を小,中,大等各指標の値に変換し(図6の
a)、 c1.前記所定領域(xeb1〜xee1/xeb2〜xee2)の画素(xi)
のそれぞれにつき、各指標値を各指標に対応付けられて
いるエッジ存在幅変換関数に従がい各エッジ存在幅に変
換し、各エッジ存在幅の合成中心値である第1合成中心
値を算出し(図7のa)、c2.前記所定領域(xeb1〜xee1/x
eb2〜xee2)の画素(xi)のそれぞれにつき、各指標値を各
指標に対応付けられているエッジ確率変換関数に従がい
各エッジ確率に変換し、各エッジ確率の合成中心値であ
る第2合成中心値を算出し(図7のb)、そして、 d3.前記所定領域(xeb1〜xee1/xeb2〜xee2)の画素(Di)
のそれぞれの走査線(y=j)が延びる方向の位置(xi)をそ
の第1および第2合成中心値で重み付けして、これらの
画素の集合でなる前記所定領域の走査線が延びる方向の
中心位置(Ejcp1/Ejcp2)を算出する、により行なう(請求
項9〜11)。In the preferred embodiment of the present invention, the calculation of the center of the edge range is performed by a. Calculating a difference in luminance between adjacent pixels, that is, a differential value (Di) in a direction (x direction) in which the scanning line (y = j) extends, b. The differential value (Di) changes from 0 to another value and returns to 0. The pixel of the predetermined area (xeb1 ~ xee1 / xeb2 ~ xee2) within the edge range (xeb1 ~ xee1 / xeb2 ~ xee2) in the direction in which the scanning line extends Convert each differential value (Di) to the value of each index such as small, medium, large (see Fig. 6
a), c 1 . Pixels (xi) of the predetermined area (xeb1 ~ xee1 / xeb2 ~ xee2)
For each of the above, each index value is converted into each edge existing width according to the edge existing width conversion function associated with each index, and a first combined central value that is a combined central value of each edge existing width is calculated. (A in FIG. 7), c 2 . The predetermined area (xeb1 to xee1 / x
For each pixel (xi) of eb2 to xee2), each index value is converted into each edge probability according to the edge probability conversion function associated with each index, and the second is a composite central value of each edge probability. Calculate the composite center value (b in FIG. 7), and d 3 . Pixels (Di) in the predetermined area (xeb1 ~ xee1 / xeb2 ~ xee2)
Position (xi) in the direction in which each of the scanning lines (y = j) extends is weighted by the first and second combined center values, and the scanning line in the direction in which the scanning line in the predetermined region formed by a group of these pixels extends. The central position (Ejcp1 / Ejcp2) is calculated (claims 9 to 11).
【0023】このa.の微分処理,微分値が0から他の
値へ変化して0に戻るまでの範囲内の所定領域の各画素
(xi)の微分値を、輝度をあいまいに表わす小,中,大等の
各指標に属する程度をあらわす値へ変換する前述のb.
の処理,変換した値を、各指標に対応付けられているエ
ッジ存在幅変換関数およびエッジ確率変換関数に従がい
エッジ存在幅およびエッジ確率に変換し、そしてエッジ
存在幅の合成中心値およびエッジ確率の合成中心値を算
出する前述のc1.,c2.の処理、および、所定領域の
各画素(xi)の位置を、これらの合成中心値で重み付けし
て、該領域のx方向中心位置すなわちエッジセンタ−位
置(Ejcp1,Ejcp2)を算出するd3.の処理により、エッ
ジセンタ−位置(Ejcp1,Ejcp2)を表現する数値は、画
素単位(ピクセルピッチ)で表現される数値の端数を含
むものとなり、ピクセルピッチよりも高い解像度のエッ
ジセンタ−情報(Ejcp1,Ejcp2)が得られる。This a. Differentiating process of, each pixel in a predetermined area within the range from the differential value changing from 0 to another value and returning to 0
The differential value of (xi) is converted into a value representing the degree of belonging to each index such as small, medium, large, etc. that vaguely represents the brightness.
Processing, the converted value is converted into an edge existence width and an edge probability according to the edge existence width conversion function and the edge probability conversion function associated with each index, and the composite center value and edge probability of the edge existence width are converted. Of the above-mentioned c 1 . , C 2 . Processing, and the position of each pixel (xi) of the predetermined region, are weighted with these synthetic center value, x-direction center position or edge center of the area - position (Ejcp1, Ejcp2) calculates a d 3. By the processing of step 1, the numerical value representing the edge center position (Ejcp1, Ejcp2) includes a fractional value expressed in the pixel unit (pixel pitch), and the edge center information (Ejcp1 , Ejcp2) is obtained.
【0024】加えて、微分値Diは照明の明るさの影響
が小さく、これに基づいた前記c1.,c2.および
d2.の処理、特にd2.の集合の中心値は、照明の明る
さの動揺によっては実質上動かないので、得られるエッ
ジセンタ−情報(Ejcp1,Ejcp2)は、照明による検出誤差
がない。In addition, the differential value Di has little influence of the brightness of the illumination, and based on this, the above-mentioned c 1 . , C 2 . And d 2 . Processing, especially d 2 . Since the center value of the set does not substantially move due to fluctuations in the brightness of the illumination, the obtained edge center information (Ejcp1, Ejcp2) has no detection error due to the illumination.
【0025】本願発明の他の目的および特徴は、図面を
参照した以下の実施例の説明より明らかになろう。Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.
【0026】[0026]
【実施例】図1に、本願発明を一態様で実施する画像処
理装置の構成を示す。この装置は、コンピュ−タ1,撮
像カメラ2,画像メモリ4,ディスプレイ5,プリンタ
6,フロッピ−ディスク7,キ−ボ−ドタ−ミナル8,
物体3にスリット光14seを投射するレ−ザ光源14,
この光源に通電し発光強度を調整するレ−ザドライバ1
5等でなる。y軸走行キャリッジ11にx軸走行キャリ
ッジ9が搭載されており、図示しない動力伝達機構を介
してy軸走行キャリッジ11は、電気モ−タ12でy方
向に駆動される。電気モ−タ12はモ−タドライバ13
yで正,逆転付勢される。図示しない動力伝達機構を介
してx軸走行キャリッジ9は、電気モ−タ10でy方向
に駆動される。電気モ−タ10はモ−タドライバ13x
で正,逆転付勢される。測定対象物体3はx軸走行キャ
リッジ9上に固定され、この物体3にスリット状のレ−
ザ光(以下スリット光)14seが投射される。カメラ2
は物体3の上面を撮影する。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an image processing apparatus for carrying out the present invention in one mode. This device comprises a computer 1, an image pickup camera 2, an image memory 4, a display 5, a printer 6, a floppy disk 7, a keyboard terminal 8,
A laser light source 14 for projecting a slit light 14se onto the object 3,
A laser driver 1 for energizing this light source to adjust the emission intensity
It will be 5 mag. An x-axis traveling carriage 9 is mounted on the y-axis traveling carriage 11, and the y-axis traveling carriage 11 is driven in the y direction by an electric motor 12 via a power transmission mechanism (not shown). The electric motor 12 is a motor driver 13
Positive and reverse rotation is activated by y. The x-axis traveling carriage 9 is driven in the y direction by an electric motor 10 via a power transmission mechanism (not shown). The electric motor 10 is a motor driver 13x
It is urged forward and backward. The object 3 to be measured is fixed on the x-axis traveling carriage 9, and the object 3 is slit-shaped.
The light (hereinafter, slit light) 14se is projected. Camera 2
Takes an image of the upper surface of the object 3.
【0027】カメラ2は、物体3を撮映して512×5
12画素区分でアナログ画像信号を出力するITVカメ
ラ(CCDカメラ)であり、この画像信号をA/Dコン
バ−タ22が1画素256階調のデジタルデ−タ(画像
デ−タ)に変換する。図1に示す画像メモリ4は読み書
き自在であり、撮影画像の原画像デ−タを始めとして種
々の処理デ−タを記憶する。ディスプレイユニット5お
よびプリンタ6は、コンピュ−タ1の処理結果等を出力
し、フロッピ−ディスク7はその処理結果を登録してお
く。また、キ−ボ−ドタ−ミナル8はオペレ−タにより
操作されて、各種の指示又はデ−タが入力される。コン
ピュ−タ1には、さらにホストコンピュ−タが接続され
ており、そこから与えられた指示又はデ−タ、またはキ
−ボ−ドタ−ミナル8より与えられた指示又はデ−タに
従って、コンピュ−タ1が、物体3を撮影し、撮影した
画面上で物体3上のスリット光SLi(図2)位置(S
Liのx方向中心位置)を算出して中心位置画像(細線
化したスリット光像)を、カメラ2の解像度より高い解
像度で画像メモリ4に展開して、ディスプレイ5に表示
すると共に、この中心位置画像をホストコンピュ−タに
転送する。ホストコンピュ−タは、この中心位置画像に
基づいて、物体3の形状および寸法を算出する。なお、
図1および図2には、物体3の上端面の穴形状および寸
法を測定する態様を示す。The camera 2 shoots the object 3 to obtain 512 × 5.
This is an ITV camera (CCD camera) that outputs an analog image signal in 12 pixel sections, and the A / D converter 22 converts this image signal into digital data (image data) of 256 gradations per pixel. . The image memory 4 shown in FIG. 1 is readable and writable and stores various processing data including the original image data of the captured image. The display unit 5 and the printer 6 output the processing results of the computer 1 and the like, and the floppy disk 7 registers the processing results. Further, the keyboard terminal 8 is operated by an operator to input various instructions or data. A host computer is further connected to the computer 1, and in accordance with an instruction or data given from the host computer or an instruction or data given from the keyboard terminal 8, the computer is connected. -Ta 1 photographs the object 3, and the slit light SLi (FIG. 2) position (S) on the object 3 is photographed on the screen.
The center position image (thin line slit image) is developed in the image memory 4 at a resolution higher than that of the camera 2 and displayed on the display 5, and the center position is calculated. Transfer the image to the host computer. The host computer calculates the shape and size of the object 3 based on the center position image. In addition,
1 and 2 show a mode in which the hole shape and the size of the upper end surface of the object 3 are measured.
【0028】図9に、コンピュ−タ1の、スリット光反
射位置計測処理の内容の概要を示す。光反射位置計測L
PDでコンピュ−タ1はまず、光源14の光放射強度を
設定する(サブル−チンIDP。以下、カッコ内ではサ
ブル−チンとかステップという語を省略してその記号又
は番号のみを記す。)。後述するサブル−チン15(図
10)で光放射調度を調整するが、このレ−ザパワ−設
定IDPでは、プログラム上又は外部入力で設定された
基準値に、過去のレ−ザパワ−調整15(図10)で調
整した値(調整代)に時間的に最近のものから高い重み
を付した補正値を加えた値に、光源14の光放射強度を
設定する。FIG. 9 shows the outline of the slit light reflection position measuring process of the computer 1. Light reflection position measurement L
In PD, the computer 1 first sets the light emission intensity of the light source 14 (subroutine IDP. In the following, in parentheses, the word subroutine or step is omitted and only the symbol or number is described.). The light emission tonality is adjusted by a subroutine 15 (FIG. 10) which will be described later. In this laser power setting IDP, the past laser power adjustment 15 (is set to the reference value set by the program or by external input. The light emission intensity of the light source 14 is set to the value (adjustment allowance) adjusted in FIG. 10) plus a correction value with a higher weight from the latest one in terms of time.
【0029】コンピュ−タ1は次に、カメラ2の撮像画
像の一画面分の映像信号をA/Dコンバ−タ22で0〜
255階調の画像デ−タに変換して、メモリ4の原画像
領域(X,Y座標)に書込む(1)。書込まれた原画像
領域の画像を図2の(a)に示す。コンピュ−タ1は次
に、原画像領域の所定の処理領域(図2のaの外4角の
内側の2点鎖線で示す4角:X=x0,Y=y0とX=x
0+a,Y=y0+bを対角点とする領域=図2の
(b))の画像デ−タを摘出し、メモリ4の、処理画像
デ−タメモリ領域(以下、摘出デ−タ領域と称す;x,
y座標でありこの原点0,0が、原画像領域のX=
x0,Y=y0)に書込む(2)。Next, the computer 1 uses the A / D converter 22 to output a video signal for one screen of the image picked up by the camera 2 from 0 to 0.
It is converted into 255-gradation image data and written in the original image area (X, Y coordinates) of the memory 4 (1). An image of the written original image area is shown in FIG. The computer 1 then determines a predetermined processing area of the original image area (four corners indicated by a chain double-dashed line inside the outer four corners of FIG. 2A: X = x 0 , Y = y 0 and X = x).
Area where 0 + a, Y = y 0 + b is a diagonal point = the image data of (b) in FIG. 2 is extracted and the processed image data memory area (hereinafter, extracted data area) of the memory 4 is extracted. X,
This is the y coordinate, and the origin 0, 0 is X = of the original image area.
Write to x 0 , Y = y 0 ) (2).
【0030】次に、摘出デ−タ領域の画像デ−タの第j
ライン(y=jのライン)の画像デ−タを微分処理する
(4)。j=1が最初に処理するラインである。微分処
理は、x方向(図2のaで左から右)で、注目画素xi
の画像デ−タIi(輝度デジタル値)より1つ前(左
側)の画素xi-1の画像デ−タIi-1を減算するものであ
る。すなわち、注目画素xiの微分値Di=Ii−I
i-1である。図2の(b)に示すように、背景が低輝
度、物体3上のスリット光像SLiが高輝度であるの
で、1ラインの画像輝度(デジタル)は図3の(a)に
示すように分布し、背景(物体3表面)からスリット光
像SLiに変わるエッジ領域およびその逆の変化のエッ
ジ領域で、画像デ−タはが大きく変化する。図3の
(a)の横軸は画素の並び(1目盛が1画素)を、縦軸
は画素の輝度(1目盛が0〜255階調の1単位)を表
わす。Next, the j-th image data of the extraction data area
Differentiate the image data of the line (line of y = j) (4). j = 1 is the line to be processed first. The differentiation process is performed in the x direction (from left to right in FIG.
Is subtracted from the image data I i-1 of the pixel x i-1 one pixel before (on the left side) of the image data I i (luminance digital value). That is, the differential value Di = Ii−I of the target pixel xi
i-1 . As shown in (b) of FIG. 2, since the background has low luminance and the slit light image SLi on the object 3 has high luminance, the image luminance (digital) of one line is as shown in (a) of FIG. In the edge region that is distributed and changes from the background (the surface of the object 3) to the slit light image SLi and vice versa, the image data greatly changes. The horizontal axis of (a) of FIG. 3 represents the arrangement of pixels (one pixel on one scale), and the vertical axis represents the luminance of the pixel (one unit of 0 to 255 gradations on one scale).
【0031】このような画像デ−タ分布に対して、微分
値Diは図3の(b)に示す分布となり、第1エッジ領
域xeb1〜xee1に入る所で微分値Diが0から正に変化
し、第2エッジ領域xeb2〜xee2に入るときに微分値Di
が負に変化し、第2エッジ領域を出る所で微分値Diが
0に戻る。第1エッジ領域xeb1〜xee1+第2エッジ領
域xeb2〜xee2が、スリット光像SLiに対応するピ−
ク領域である(図3)。このような変化に着目して、コ
ンピュ−タ1は、x方向に連なる1ライン分の微分値の
分布をチェックして、ピ−ク領域(第1エッジ領域xeb
1〜xee1+第2エッジ領域xeb2〜xee2)を検出する
(5)。ピ−ク領域を検出するとコンピュ−タ1は、ピ
−ク領域が、スリット光像が正確に現われた、「スリッ
ト形状」反射(正常)のものであるか、「ブル−ミン
グ」反射のものか、あるいは「スミア」のものであるか
を判定し(6)、「スリット形状」反射(正常)と判定
するとレジスタPchに「NL」を、「ブル−ミング」反
射と判定するとレジスタPchに「BL」を、「スミア」
と判定するとレジスタPchに「SM」を書込む(ピ−ク
領域の性状判定6)。この内容の詳細は、図11を参照
して後述する。In contrast to such image data distribution, the differential value Di becomes the distribution shown in FIG. 3B, and the differential value Di changes from 0 to positive at the place where it enters the first edge regions xeb1 to xee1. Then, when entering the second edge area xeb2 to xee2, the differential value Di
Changes to a negative value, and the differential value Di returns to 0 at the place where the second edge region exits. The first edge areas xeb1 to xee1 + the second edge areas xeb2 to xee2 correspond to the slit light image SLi.
Area (Fig. 3). Focusing on such a change, the computer 1 checks the distribution of differential values for one line continuous in the x direction, and determines the peak area (first edge area xeb).
1 to xee1 + second edge area xeb2 to xee2) is detected (5). When the peak area is detected, the computer 1 determines whether the peak area is a "slit-shaped" reflection (normal) in which the slit light image accurately appears, or a "blooming" reflection. Whether or not it is "smear" (6), if it is judged as "slit shape" reflection (normal), "NL" is set in the register Pch, and if it is judged as "blooming" reflection, it is set in the register Pch. BL ”for“ smear ”
If it is determined that "SM" is written in the register Pch (characteristic determination 6 of the peak area). Details of this content will be described later with reference to FIG. 11.
【0032】コンピュ−タ1は次に、上述の判定結果に
対応して、「スリット形状」反射(正常)との判定(P
ch=「NL」)であると、第1および第2エッジ領域
(図3のxeb1〜xee1およびxeb2〜xee2)の中心位置
(Ejcp1,Ejcp2)を算出し、ラインNo.対応で算出
した中心位置をメモリ4の細線化デ−タメモリ領域に書
込む(7,8)。この内容の詳細は、図12を参照して
後述する。The computer 1 then determines (P) that it is a "slit-shaped" reflection (normal) according to the above determination result.
ch = “NL”), the center positions (Ejcp1, Ejcp2) of the first and second edge regions (xeb1 to xee1 and xeb2 to xee2 in FIG. 3) are calculated, and the line No. The center position calculated by the correspondence is written in the thinned data memory area of the memory 4 (7, 8). Details of this content will be described later with reference to FIG.
【0033】「ブル−ミング」反射との判定(Pch=
「BL」)であると、ブル−ミングがあったことを示す
ためレジスタBFRに「1」を書込み、ブル−ミング情
報格納用のテ−ブルBFR(メモリ4に割り当ててい
る)に、ラインNo.jおよびピ−ク領域の性状判定6で
算出した、輝度飽和幅MSWを書込む(7,9)。「ス
ミア」との判定(Pch=「SM」)であると、そのピ−
ク領域は無視する。すなわち該ピ−ク領域に関しては何
らの処理も実行しない(7→10)。1つのピ−ク領域
を検出する毎に、これに関して、ピ−ク領域の性状判定
(6)と判定対応の処理(7〜8)を実行し、第jライ
ンの処理が終了すると、対象ラインを次のラインに更新
して(12)、またそのラインの微分処理(4)を行な
い、同様にピ−ク領域検出(5)以下を行なう(5〜1
0)。Judgment as "blooming" reflection (Pch =
If it is "BL"), "1" is written in the register BFR to indicate that there is blooming, and the line No. is written in the table BFR (allocated to the memory 4) for storing blooming information. .j and the brightness saturation width MSW calculated in the property determination 6 of the peak area are written (7, 9). If the determination is “smear” (Pch = “SM”), the peak
Area is ignored. That is, no processing is executed on the peak area (7 → 10). Every time one peak area is detected, the characteristic judgment (6) of the peak area and the processing (7 to 8) corresponding to the judgment are executed, and when the processing of the j-th line is completed, the target line Is updated to the next line (12), and the differentiation processing (4) of that line is performed, and similarly, the peak area detection (5) and the following are performed (5-1).
0).
【0034】図10を参照する。最終ライン(y=j=
b)の処理を終了すると、レジスタBFRの内容が
「1」(ブル−ミングがあった)であるかをチェックし
て(13)、該内容が「0」である(ブル−ミングがな
かった)と、細線化デ−タメモリ領域の各ラインの中心
位置デ−タ(図3の第1エッジ領域xeb1〜xee1および
第2エッジ領域xeb2〜xee2の、それぞれの中心位置E
jcp1,Ejcp2)の中心値〔(Ejcp1+Ejcp2)/2〕を
算出し、この位置を示す画像(スリット光像の中心線画
像)をディスプレイ5の高像度画像メモリに展開してデ
ィスプレイ5に表示すると共に、中心値〔(Ejcp1+E
jcp2)/2〕デ−タをホストコンピュ−タに転送し、高
像度画像メモリの画像デ−タを、ディスプレイ5,プリ
ンタ6,フロッピ−ディスク7および又はホストコンピ
ュ−タに出力する(19)。ホストコンピュ−タは、転
送を受けたデ−タを順次蓄積して、物体3上端面の穴の
立体形状を描画すると共に、該穴の形状および寸法を算
出する。なお、ホストコンピュ−タは立体情報を得るた
めに、コンピュ−タ1に、キャリッジ9の各種位置を指
示する情報を与え、コンピュ−タ1はこれに応答してキ
ャリッジ9を指示された位置に定めて、図9および図1
0に示す「光反射位置計測」LPDを実行する。さて、
最終ライン(y=j=b)の処理を終了したときレジス
タBFRの内容が「1」(ブル−ミングがあった)であ
ると、ブル−ミング情報格納用のテ−ブルBFRのデ−
タの中の、最高の飽和幅MSWを検索する(14)。そ
してこの飽和幅MSWに対応して、光源14の光放射強
度を下げる(15)。そして、上述の「画像入力」
(1)および「画像領域摘出」(2)と同様に、カメラ
2の1画面の画像デ−タを読込み、その中の所定領域
(図2のb)を摘出する(16)。そして、ブル−ミン
グ情報格納用のテ−ブルBFRのデ−タを避避用のテ−
ブル(メモリ)PDTに移し、レジスタBFRおよびテ
−ブルBFRをクリアする(18)。そして、テ−ブル
PDTに書込まれているラインのそれぞれ(前回撮影画
面での測定でブル−ミングと判定したライン)につき、
前述の、ライン微分処理以下の処理(3〜12)を同様
に実行する(図10の3a〜12a)。スリット光の強
度を下げているので、今回撮像影画像においては、ブル
−ミングと判定するライン数が少くなっているか、ある
いは、存在しなくなっているので、この処理(3a〜1
2a)により、前回撮影画像ではブル−ミングのため測
定できなかったラインのピ−ク領域(スリット光像)の
中心位置計測が行なわれ、この測定デ−タが、前回撮影
画像で得られた計測デ−タに追記されることになる。ス
リット光強度を下げた上記第2回の測定でもあるライン
でブル−ミングが検出されると、図10のステップ11
aからステップ13に進んで第2回の「レ−ザパワ−調
整」(15)が実行され、第2回の測定処理(3a〜1
2a)が実行される。このようにして、ブル−ミングが
検出されなくなるまで、スリット光強度の調整と、ブル
−ミングを検出したラインの再計測(3a〜12a)が
実行され、ブル−ミングを検出しないで再計測を終了す
ると、第1回の撮影ではブル−ミングがあったラインの
すべての、ブル−ミングのない状態での計測を終え、全
回数で得た計測デ−タ(実質上図2のbに示す領域の全
ラインのデ−タ)すなわちスリット光像の中心位置デ−
タ(図3の第1エッジ領域xeb1〜xee1および第2エッ
ジ領域xeb2〜xee2の、それぞれの中心位置Ejcp1,E
jcp2)が細線化デ−タメモリ領域に存在することにな
る。コンピュ−タ1は、中心位置Ejcp1,Ejcp2の中心
値〔(Ejcp1+Ejcp2)/2〕を算出し、この位置を示
す画像(スリット光像の中心線画像)をディスプレイ5
の高像度画像メモリに展開してディスプレイ5に表示す
ると共に、中心値〔(Ejcp1+Ejcp2)/2〕デ−タを
ホストコンピュ−タに転送し、高像度画像メモリの画像
デ−タを、ディスプレイ5,プリンタ6,フロッピ−デ
ィスク7および又はホストコンピュ−タに出力する(1
9)。 次に、図11を参照して、図9に示す「ピ−ク
領域の性状判定」(6)の内容(図10の6aの内容も
これに同じ)を説明する。ここではまず、ピ−ク領域
(図3の第1エッジ領域xeb1〜xee1+第2エッジ領域
xeb1〜xee1)の輝度ピ−ク値Lmxを検出する(6
1)。この値Lmxより、第1閾値0.2Lmxを算出して、該
ピ-ク領域内の、輝度レベルが第1閾値以上の画素数d=
LSW(ピ−ク基底幅)を算出する(62)。次に、輝
度ピ−ク値Lmxより第2閾値0.8Lmxを算出して、該ピ−
ク領域内の、輝度レベルが第2閾値以上の画素数USW
(ピ−ク幅)を算出し(63)、そしてこれら算出値の
相対値e=USW/LSWを算出する(64)。更に、輝度ピ
−ク値Lmxが飽和値255以上であるかをチェックし
て、以上であると前記ピ−ク領域内の飽和値255以上
の画素数c=MSWを計数する。輝度ピ−ク値Lmxが飽
和値255未満のときには、c=MSWには数値0を宛
てる(65)。Referring to FIG. Final line (y = j =
When the process of b) is completed, it is checked whether the content of the register BFR is "1" (there is blooming) (13), and the content is "0" (there is no blooming). ) And the center position data of each line of the thinned data memory area (the respective center positions E of the first edge areas xeb1 to xee1 and the second edge areas xeb2 to xee2 in FIG. 3).
The center value [(Ejcp1 + Ejcp2) / 2] of jcp1, Ejcp2) is calculated, and the image (center line image of the slit light image) showing this position is developed in the high-resolution image memory of the display 5 and displayed on the display 5. And the central value [(Ejcp1 + E
jcp2) / 2] data is transferred to the host computer, and the image data in the high-resolution image memory is output to the display 5, printer 6, floppy disk 7 and / or host computer (19). ). The host computer sequentially accumulates the transferred data, draws the three-dimensional shape of the hole on the upper end surface of the object 3, and calculates the shape and size of the hole. In order to obtain stereoscopic information, the host computer gives the computer 1 information for instructing various positions of the carriage 9, and in response thereto, the computer 1 moves the carriage 9 to the instructed position. Establish, FIG. 9 and FIG.
The "light reflection position measurement" LPD shown in 0 is executed. Now,
If the content of the register BFR is "1" (there was blooming) when the processing of the final line (y = j = b) is completed, the table BFR data for storing the blooming information will be deleted.
Search the highest saturation width MSW in the data (14). Then, the light emission intensity of the light source 14 is reduced corresponding to the saturation width MSW (15). Then, the above "image input"
Similarly to (1) and "extraction of image area" (2), the image data of one screen of the camera 2 is read and a predetermined area (b in FIG. 2) in the image data is extracted (16). Then, the data of the table BFR for storing the blooming information is saved as the evasion table.
Move to the table (memory) PDT, and clear the register BFR and the table BFR (18). Then, for each of the lines written in the table PDT (the line determined to be blooming in the previous measurement on the shooting screen),
The processes (3 to 12) below the line differentiation process described above are similarly executed (3a to 12a in FIG. 10). Since the intensity of the slit light is reduced, the number of lines determined to be blooming is small or does not exist in the captured shadow image this time. Therefore, this processing (3a to 1) is performed.
2a), the center position of the peak area (slit light image) of the line, which could not be measured due to blooming in the previously captured image, is measured, and this measurement data is obtained in the previously captured image. It will be added to the measurement data. When blooming is detected in the line which is the second measurement with the slit light intensity lowered, step 11 in FIG.
From step a to step 13, the second "laser power adjustment" (15) is executed, and the second measurement process (3a to 1).
2a) is executed. In this way, the adjustment of the slit light intensity and the re-measurement (3a to 12a) of the line in which the blooming is detected are executed until the blooming is no longer detected, and the re-measurement is performed without detecting the blooming. When the measurement is completed, the measurement of all the lines in which there is blooming in the first photographing is completed without blooming, and the measurement data obtained for all times (substantially shown in b of FIG. 2). (Data of all lines in the area), that is, the center position data of the slit light image
(Center positions Ejcp1 and Ej of the first edge regions xeb1 to xee1 and the second edge regions xeb2 to xee2 of FIG. 3 respectively).
jcp2) exists in the thinned data memory area. The computer 1 calculates the center value [(Ejcp1 + Ejcp2) / 2] of the center positions Ejcp1 and Ejcp2, and displays the image (center line image of the slit light image) indicating this position on the display 5
The image data of the high-resolution image memory is transferred to the host computer while the central value [(Ejcp1 + Ejcp2) / 2] data is transferred to the host computer. Output to the display 5, printer 6, floppy disk 7 and / or host computer (1
9). Next, referring to FIG. 11, the contents of the “characteristic determination of the peak area” (6) shown in FIG. 9 (the contents of 6a in FIG. 10 are the same) will be described. First, the luminance peak value Lmx of the peak area (first edge area xeb1 to xee1 + second edge area xeb1 to xee1 in FIG. 3) is detected (6
1). From this value Lmx, the first threshold value 0.2Lmx is calculated, and the number of pixels in the peak area whose brightness level is equal to or higher than the first threshold value d =
The LSW (peak base width) is calculated (62). Next, the second threshold value 0.8Lmx is calculated from the luminance peak value Lmx and the peak value is calculated.
Number of pixels in the black area with a brightness level above the second threshold Usw
(Peak width) is calculated (63), and the relative value e = USW / LSW of these calculated values is calculated (64). Further, it is checked whether or not the luminance peak value Lmx is a saturation value of 255 or more, and if it is, the number of pixels c = MSW of the saturation value of 255 or more in the peak area is counted. When the luminance peak value Lmx is less than the saturation value 255, the numerical value 0 is assigned to c = MSW (65).
【0035】コンピュ−タ1は次に、ピ−ク基底幅d=
LSWが、ゼロ(z),小(s),中(m)および大
(b)という各指標fLz(LSW),fLs(LSW),fLm(LSW)お
よびfLb(LSW)に属する程度値fLz(d),fLs(d),fLm
(d)およびfLb(d)に変換する(66)。変換関数を図
4の(b)に示す。この図示例では、d=LSWが小さ
いので、fLm(d)およびfLb(d)はいずれも0(ゼロ)
である。The computer 1 then determines the peak base width d =
The degree value fLz (fLz (LSW), fLz (LSW), fLm (LSW) and fLb (LSW) belonging to the respective indices fLz (LSW), fLz (LSW), fLz (LSW) of zero (z), small (s), medium (m) and large (b) d), fLs (d), fLm
(d) and fLb (d) (66). The conversion function is shown in FIG. In this example, since d = LSW is small, both fLm (d) and fLb (d) are 0 (zero).
Is.
【0036】続いて、0を越える値を得た指標(図示例
ではz,s)に対応付けられている、「スリット形状」
反射(正常)と見なす確信度に対する各指標の重み付け
関数に従って、指標値fLz(d),fLs(d)を該確信度へ
の寄与値に変換し、これらの寄与値の合成値NLvを算
出する(67)。図5の(a)に、この算出に用いる関
数fNz(fLz),fNs(fLs),fNm(fLm),fNb(fLb)を示す。
これらは面積を規定する関数である。例えば、指標
(z)に属する程度値fLz(d)は、関数fNz(fLz)と縦,
横軸で規定される図形の、縦軸値fLz(d)以下の領域の
面積の重心の横軸位置に変換される。指標(s)に属す
る程度値fLs(d)は、関数fNs(fLs)と縦,横軸で規定さ
れる図形の、縦軸値fLs(d)以下の領域の面積の重心の
横軸位置に変換される。これらの重心横軸位置の合成重
心がNLvである。横軸はピ−ク領域がスリット光像を
正確に現わす程度を表わす。すなわち、「スリット形
状」反射(正常)である確信度を表わす。NLvは、処
理対象のピ−ク領域が、「スリット形状」反射(正常)
である確信度である。Then, the "slit shape" is associated with the index (z, s in the illustrated example) that has obtained a value exceeding 0.
The index values fLz (d) and fLs (d) are converted into contribution values to the certainty factor according to a weighting function of each index with respect to the certainty factor considered as reflection (normal), and a combined value NLv of these contribution values is calculated. (67). FIG. 5A shows the functions fNz (fLz), fNs (fLs), fNm (fLm), and fNb (fLb) used for this calculation.
These are functions that define the area. For example, the degree value fLz (d) belonging to the index (z) is the function fNz (fLz)
It is converted into the horizontal axis position of the center of gravity of the area of the area defined by the horizontal axis and having the vertical axis value fLz (d) or less. The degree value fLs (d) belonging to the index (s) is the horizontal axis position of the center of gravity of the area of the figure defined by the function fNs (fLs) and the vertical and horizontal axes below the vertical axis value fLs (d). To be converted. The combined center of gravity of these positions of the horizontal axis is NLv. The horizontal axis represents the extent to which the peak area accurately represents the slit light image. That is, it represents the certainty factor that is "slit-shaped" reflection (normal). In NLv, the peak area to be processed is "slit-shaped" reflection (normal)
Is the certainty factor.
【0037】コンピュ−タ1は次に、飽和幅c=MSW
が、ゼロ(z),小(s)および中(m)という各指標
fMz(MSW),fMs(MSW)およびfMm(MSW)に属する程度値fM
z(c),fMs(c)およびfMm(c)に変換する(68)。
変換関数を図4の(c)に示す。この図示例では、c=
MSWがやや大きいので、fMz(c)は0(ゼロ)であ
る。The computer 1 then outputs the saturation width c = MSW.
Are zero (z), small (s) and medium (m) indices
Degree value fM belonging to fMz (MSW), fMs (MSW) and fMm (MSW)
Convert to z (c), fMs (c) and fMm (c) (68).
The conversion function is shown in FIG. In this illustrated example, c =
Since MSW is slightly large, fMz (c) is 0 (zero).
【0038】続いて、0を越える値を得た指標(図示例
ではs,m)に対応付けられている、「ブル−ミング」
(異常)と見なす確信度に対する各指標の重み付け関数
に従って、指標値fMs(c)およびfMm(c)を該確信度へ
の寄与値に変換し、これらの寄与値の合成値BLvを算
出する(69)。図5の(b)に、この算出に用いる関
数fBz(fMz),fBs(fMs),fBm(fMm)を示す。これらは面積
を規定する関数である。例えば、指標(s)に属する程
度値fMs(c)は、関数fBs(fMs)と縦,横軸で規定される
図形の、縦軸値fMs(c)以下の領域の面積の重心の横軸
位置に変換される。指標(m)に属する程度値fMm(c)
は、関数fBm(fMm)と縦,横軸で規定される図形の、縦軸
値fMm(c)以下の領域の面積の重心の横軸位置に変換さ
れる。これらの重心横軸位置の合成重心がBLvであ
る。横軸はピ−ク領域がブル−ミングである確率を表わ
す。すなわち、「スリット形状」反射(正常)である確
信度を表わす。BLvは、処理対象のピ−ク領域が、
「ブル−ミング」(異常)である確信度である。Then, "blooming" is associated with the index (s, m in the illustrated example) that has obtained a value exceeding 0.
The index values fMs (c) and fMm (c) are converted into contribution values to the certainty factor according to the weighting function of each index with respect to the certainty factor regarded as (abnormal), and the combined value BLv of these contribution values is calculated ( 69). FIG. 5B shows the functions fBz (fMz), fBs (fMs) and fBm (fMm) used for this calculation. These are functions that define the area. For example, the degree value fMs (c) belonging to the index (s) is the horizontal axis of the center of gravity of the area of the figure defined by the function fBs (fMs) and the vertical and horizontal axes, and below the vertical axis value fMs (c). Converted to position. Degree value fMm (c) belonging to index (m)
Is converted into the horizontal axis position of the center of gravity of the area of the figure defined by the function fBm (fMm) and the vertical and horizontal axes and having the vertical axis value fMm (c) or less. BLv is the composite center of gravity of these center of gravity horizontal axis positions. The horizontal axis represents the probability that the peak area is blooming. That is, it represents the certainty factor that is "slit-shaped" reflection (normal). In BLv, the peak area to be processed is
The certainty factor is "blooming" (abnormal).
【0039】コンピュ−タ1は次に、ピ−ク領域のピ−
ク下幅LSWに対するピ−ク上幅USMの比e=E=U
SW/LSWが、ゼロ(z),小(s)および中(m)
という各指標fEz(E),fEs(E)およびfEm(E)に属する
程度値fEz(e),fEs(e)およびfEm(e)に変換する
(70)。変換関数を図4の(d)に示す。この図示例
では、e=USW/LSWがやや大きいので、fMz(c)
は0(ゼロ)である。The computer 1 then selects the peak of the peak area.
Ratio of peak width USM to peak bottom width LSW e = E = U
SW / LSW is zero (z), small (s) and medium (m)
Are converted into degree values fEz (e), fEs (e) and fEm (e) belonging to the respective indexes fEz (E), fEs (E) and fEm (E) (70). The conversion function is shown in FIG. In this example, since e = USW / LSW is slightly large, fMz (c)
Is 0 (zero).
【0040】続いて、0を越える値を得た指標(図示例
ではs,m)に対応付けられている、「スミア」(ノイ
ズ)と見なす確信度に対する各指標の重み付け関数に従
って、指標値fEs(e)およびfEm(e)を該確信度への寄
与値に変換し、これらの寄与値の合成値SMvを算出す
る(71)。図5の(c)に、この算出に用いる関数fS
z(fEz),fSs(fEs),fSm(fEm)を示す。これらは面積を規
定する関数である。例えば、指標(s)に属する程度値
fSs(e)は、関数fSs(fEs)と縦,横軸で規定される図形
の、縦軸値fSs(e)以下の領域の面積の重心の横軸位置
に変換される。指標(m)に属する程度値fSm(e)は、
関数fSm(fEm)と縦,横軸で規定される図形の、縦軸値fS
m(e)以下の領域の面積の重心の横軸位置に変換され
る。これらの重心横軸位置の合成重心がSMvである。
横軸はピ−ク領域がスミアである確率を表わす。すなわ
ち、「スミア」(ノイズ)である確信度を表わす。SM
vは、処理対象のピ−ク領域が、「スミア」(ノイズ)
である確信度である。Subsequently, the index value fEs is calculated according to the weighting function of each index with respect to the certainty factor that is regarded as "smear" (noise), which is associated with the index (s, m in the illustrated example) that has obtained a value exceeding 0. (e) and fEm (e) are converted into contribution values to the certainty factor, and a combined value SMv of these contribution values is calculated (71). The function fS used for this calculation is shown in FIG.
z (fEz), fSs (fEs) and fSm (fEm) are shown. These are functions that define the area. For example, the degree value fSs (e) belonging to the index (s) is the horizontal axis of the center of gravity of the area of the region defined by the function fSs (fEs) and the vertical and horizontal axes and having the vertical axis value fSs (e) or less. Converted to position. The degree value fSm (e) belonging to the index (m) is
The vertical axis value fS of the figure defined by the function fSm (fEm) and the vertical and horizontal axes
It is converted into the horizontal axis position of the center of gravity of the area of the area of m (e) or less. The combined center of gravity of these center of gravity positions on the horizontal axis is SMv.
The horizontal axis represents the probability that the peak area is smear. That is, it represents the certainty factor that is "smear" (noise). SM
v is the peak area to be processed is "smear" (noise)
Is the certainty factor.
【0041】以上のように、ピ−ク領域が、スリット形
状画像を正確に表わす「スリット形状」反射のものであ
る確信度NLv,「ブル−ミング」である確信度BLvお
よび「スミア」である確信度SMvを算出するとコンピュ
−タ1は、NLv,BLvおよびSMvを比較して、それ
らの中の最高値のものを判定する(72〜74)。そし
て、NLvが最も大きいとレジスタPchにNL(ピ−ク
領域は「スリット形状」)を、BLvが最も大きいとレ
ジスタPchにBL(ピ−ク領域は「ブル−ミング」)
を、また、SMvが最も大きいとレジスタPchにSM
(ピ−ク領域は「スミア」)を、すなわち判定結果を示
す情報を、書込む(75〜77)。As described above, the peak region is the certainty factor NLv that is the "slit-shaped" reflection that accurately represents the slit-shaped image, and the certainty factor BLv and "smear" that are the "blooming". When the certainty factor SMv is calculated, the computer 1 compares NLv, BLv and SMv, and determines the highest value among them (72 to 74). When NLv is the largest, NL is set in the register Pch (the peak area is "slit shape"), and when BLv is the largest, BL is set in the register Pch (the peak area is "blooming").
If SMv is the largest, SM is added to the register Pch.
(The peak area is "smear"), that is, the information indicating the determination result is written (75 to 77).
【0042】次に、図12を参照して、「エッジ中心E
jcpの算出」(8)の内容を説明する。概略でいうと、こ
の算出(8)は、図3に示すピ−ク領域の第1エッジ領
域xeb1〜xee1のx方向中心位置Ejcp1(図8のb)お
よび第2エッジ領域xeb2〜xee2のx方向中心位置Ejc
p2を算出するものである。(Ejcp1+Ejcp2)/2が、
ピ−ク領域のx方向の中心位置、すなわち、物体3上の
スリット光のx方向中心位置、である。Next, referring to FIG. 12, "edge center E
Calculation of jcp ”(8) will be described. Roughly speaking, this calculation (8) is performed by the center position Ejcp1 (b in FIG. 8) of the first edge regions xeb1 to xee1 of the peak region shown in FIG. 3 and the x of the second edge regions xeb2 to xee2. Direction center position Ejc
It is for calculating p2. (Ejcp1 + Ejcp2) / 2 is
It is the center position of the peak region in the x direction, that is, the center position of the slit light on the object 3 in the x direction.
【0043】コンピュ−タ1は、中心位置Ejcpの算出
(8)ではまず、注目画素を第1エッジ領域の始め(左
端)の画素xeb1に定めて(81a)、その画素xi=
xeb1の微分値Di(の絶対値)が、ゼロ(z),小
(s),中(m),大(b)および特大(u)という各
指標に属する程度値fd(z=Di),fd(s=Di),fd(m=D
i),fd(b=Di)およびfd(u=Di)に変換する(82a)。
変換関数を図6の(a)に示す。この図示例では、Di
=3であるので、fd(m=Di),fd(b=Di)およびfd(u=D
i)はいずれも0(ゼロ)である。コンピュ−タ1は次
に、0を越える値を得た指標(図示例ではz,s)に対
応付けられているエッジ存在幅(wz,ws)推定関数
に従って、指標値〔fd(z=Di),fd(s=Di)〕をエッジ存
在幅(の推定値:図7のaのwz,ws)に変換し、得
たエッジ存在幅の合成エッジ存在幅(Wwi)を算出する
(83a)。図7の(a)に、この算出に用いる関数f
w(z),fw(s),fw(m),fw(b)を示す。これらは面積を
規定する関数である。例えば、指標(z)に属する程度
値fd(z=Di)は、関数fw(z)と縦,横軸で規定される図形
の、縦軸値fd(z=Di)以下の領域の面積の重心の横軸位
置wzに変換される。指標(s)に属する程度値fd(s=D
i)は、関数fw(s)と縦,横軸で規定される図形の、縦軸
値fd(s=Di)以下の領域の面積の重心の横軸位置wsに変
換される。これらの重心位置wzおよびwsの合成重心
がWwiである。横軸はエッジ存在幅推定値であり、Wwi
は、注目画素xiよりどれだけエッジ領域が広がってい
るかを示す。In the calculation (8) of the center position Ejcp, the computer 1 first determines the pixel of interest as the pixel xeb1 at the beginning (left end) of the first edge region (81a), and the pixel xi =
The degree value fd (z = Di), in which the differential value Di (absolute value) of xeb1 belongs to each index of zero (z), small (s), medium (m), large (b) and extra large (u), fd (s = Di), fd (m = D
i), fd (b = Di) and fd (u = Di) (82a).
The conversion function is shown in FIG. In this illustrated example, Di
= 3, fd (m = Di), fd (b = Di) and fd (u = D
Both i) are 0 (zero). Next, the computer 1 follows the index value [fd (z = Di, according to the edge existence width (wz, ws) estimation function associated with the index (z, s in the illustrated example) that has obtained a value exceeding 0. ), Fd (s = Di)] is converted into an edge existence width (estimated value: wz, ws in a of FIG. 7), and a composite edge existence width (Wwi) of the obtained edge existence width is calculated (83a). . The function f used for this calculation is shown in FIG.
w (z), fw (s), fw (m), and fw (b) are shown. These are functions that define the area. For example, the degree value fd (z = Di) belonging to the index (z) is the area of the region of the figure defined by the function fw (z) and the vertical and horizontal axes and having the vertical axis value fd (z = Di) or less. It is converted to the horizontal axis position wz of the center of gravity. Degree value fd (s = D belonging to index (s)
i) is converted to the horizontal axis position ws of the center of gravity of the area of the area defined by the function fw (s) and the vertical and horizontal axes and having the vertical axis value fd (s = Di) or less. The composite center of gravity of these center of gravity positions wz and ws is Wwi. The horizontal axis is the estimated width of edge existence,
Indicates how much the edge area extends from the pixel of interest xi.
【0044】コンピュ−タ1は次に、0を越える値を得
た指標(図示例ではz,s)に対応付けられているエッ
ジらしさ推定関数すなわちエッジ確率推定関数に従っ
て、指標値〔fd(z=Di),fd(s=Di)〕をエッジ確率(図
7のbのwz,ws)に変換し、得たエッジ確率の合成
エッジ確率(Wai)を算出する(84a)。図7の
(b)に、この算出に用いる関数fa(z),fa(s),fa
(m)およびfa(b)を示す。これらは面積を規定する関数
である。例えば、指標(z)に属する程度値fd(z=Di)
は、関数fa(z)と縦,横軸で規定される図形の、縦軸値
fd(z=Di)以下の領域の面積の重心の横軸位置wzに変換
される。指標(s)に属する程度値fd(s=Di)は、関数
fa(s)と縦,横軸で規定される図形の、縦軸値fd(s=D
i)以下の領域の面積の重心の横軸位置wsに変換される。
これらの重心位置wzおよびwsの合成重心がWaiであ
る。横軸はエッジ確率推定値であり、Waiは、注目画素
xiがエッジセンタ−である確率を示す。Next, the computer 1 follows the index value [fd (z in accordance with the edge likelihood estimation function, that is, the edge probability estimation function associated with the index (z, s in the illustrated example) that has obtained a value exceeding 0. = Di), fd (s = Di)] into edge probabilities (wz, ws in FIG. 7B), and a composite edge probability (Wai) of the obtained edge probabilities is calculated (84a). FIG. 7B shows functions fa (z), fa (s), fa used for this calculation.
(m) and fa (b) are shown. These are functions that define the area. For example, the degree value fd (z = Di) belonging to the index (z)
Is converted into the horizontal axis position wz of the center of gravity of the area of the area defined by the function fa (z) and the vertical and horizontal axes and having the vertical axis value fd (z = Di) or less. The degree value fd (s = Di) belonging to the index (s) is the vertical axis value fd (s = D of the figure defined by the function fa (s) and the vertical and horizontal axes.
i) Converted to the horizontal axis position ws of the center of gravity of the area of the following area.
The composite center of gravity of these center of gravity positions wz and ws is Wai. The horizontal axis represents the edge probability estimated value, and Wai represents the probability that the target pixel xi is the edge center.
【0045】このようにしてコンピュ−タ1は、領域x
eb1〜xee1の全画素xiについて、エッジ存在幅推定値
Wwiおよびエッジ確率Waiを算出する(82a〜86
a)。次にコンピュ−タ1は、第1エッジ領域xeb1〜
xee1の画素xiのそれぞれにつき、エッジ領域の広がり
Wwiを画素xiのx位置を中心にx方向(横軸)にと
り、かつエッジセンタ−確率Waiを縦軸にとった三角形
(1画素当り1個)を、同一のx位置(横軸)およびエ
ッジ確率(縦軸;エッジらしさ)平面上に展開し(図8
のaの実線三角形および2点鎖線三角形)、展開した全
三角形の全体の外輪郭線と横軸で囲まれる図形(図8の
b)の重心のx位置Ejcp1を算出する。この位置Ejcp1
が、第1エッジ領域xeb1〜xee1の中心(x方向)、す
なわちx方向中心位置である。In this way, the computer 1 can detect the area x
The edge existence width estimated value Wwi and the edge probability Wai are calculated for all pixels xi of eb1 to xee1 (82a to 86).
a). Next, the computer 1 uses the first edge area xeb1 ...
For each pixel xi of xee1, a triangle in which the spread Wwi of the edge region is taken in the x direction (horizontal axis) around the x position of the pixel xi and the edge center-probability Wai is taken as the vertical axis (one per pixel) On the same x position (horizontal axis) and edge probability (vertical axis; edge likelihood) plane (FIG. 8).
The solid line triangle (a) and the two-dot chain line triangle), the outer contour line of all the developed triangles, and the x position Ejcp1 of the center of gravity of the figure surrounded by the horizontal axis (b in FIG. 8) are calculated. This position Ejcp1
Is the center (x direction) of the first edge regions xeb1 to xee1, that is, the center position in the x direction.
【0046】次にコンピュ−タ1は、上述の第1エッジ
領域の中心位置Ejcp1の算出(81a〜87a)と同様
な処理により、第2エッジ領域xeb2〜xee2(図3)の
x方向中心位置Ejcp2を算出する(81b〜87b)。
このx位置デ−タEjcp2を算出するとコンピュ−タ1
は、メモリ4の細線化デ−タメモリ領域の、ラインN
o.jに割り当てるレジスタに、x位置デ−タEjcp1お
よびEjcp2を書込む(88)。 以上で、ラインNo.
jの第1エッジ領域xeb1〜xee1および第2エッジ領域
xeb2〜xee2の中心位置(x方向)が求まったことにな
る。Next, the computer 1 performs the same processing as the calculation of the center position Ejcp1 of the first edge area (81a to 87a) described above, and the center position in the x direction of the second edge area xeb2 to xee2 (FIG. 3). Ejcp2 is calculated (81b to 87b).
When this x-position data Ejcp2 is calculated, computer 1
Is a line N in the thinned data memory area of the memory 4.
o. Write the x position data Ejcp1 and Ejcp2 to the register assigned to j (88). With the above, the line No.
The center positions (x direction) of the first edge regions xeb1 to xee1 and the second edge regions xeb2 to xee2 of j are obtained.
【0047】ところで、エッジ領域では画像デ−タ(輝
度デ−タ)の変化が大きく、その微分値Di(x,y方
向の隣接画素間の輝度差)の絶対値が大きく、微分値D
i(以下絶対値と解釈されたい)が最高の位置(以下x
方向位置についてのみ説明)が、エッジセンタ−である
確率が高い。この観点から、図6の(a)に示すゼロ
(z),小(s),中(m),大(b)および特大
(u)という各指標に属する程度値fd(z=Di),fd(s=D
i),fd(m=Di),fd(b=Di)およびfd(u=Di)は、微分値
Diが大きい程、大きいことを表わす指標(u)から指
標値fd(u=Di)が大きくなるように、指標関数すなわち
メンバシップ関数fd(z),fd(s),fd(m),fd(b)およ
びfd(u)を定め、更に、図7の(a)のエッジ存在幅推
定関数fw(z),fw(s),fw(m)およびfw(b)は、微分値
Diが大きい程、エッジ位置はその画素の近傍に存在す
ると考えられるため、小さなエッジ存在幅推定値(重心w
z,ws等)を与えるように定める。一方、図7の(b)の
エッジ確率(エッジらしさ)推定関数fw(z),fa(z),
fa(s),fa(m)およびfa(b)は、微分値Diが大きい
程、その画素の位置に大きな重みを与えるために、大き
なエッジ確率推定値(重心wz,ws等)を与えるように定め
ている。図7の(a)に示す、エッジ存在幅推定値(重
心wz,ws等)の集合の重心Wwiは、画素xiの位置xiがエ
ッジセンタ−であるとする第1の重み付け値であり、図
7の(b)に示す、エッジ確率推定値(重心wz,ws等)の
集合の重心Waiは、画素xiの位置xiがエッジセンタ−
であるとする第2の重み付け値である。これらの値Ww
i,Waiで規定される、図8の(a)の、1つの画素xi
宛ての三角形(実線)の重心は、第1および第2の重み付
け値Wwi,Waiの合成値すなわち、エッジ領域xeb1〜
xee1の全画素の中での、1つの画素xiの重み付け値
となる。エッジセンタ−は1点であるので、該全画素の
このような重み付け値の集合の重心位置を、エッジセン
タ−と決定することができる。上記実施例では、図8の
(a)の、各画素宛ての三角形(実線&2点鎖線)の集
合の外輪郭線(図8のb)とx軸で囲まれる図形の重心
の横軸位置すなわちx位置Ejcp1をエッジセンタ−と決
定している。By the way, in the edge region, the change of the image data (luminance data) is large, and the absolute value of the differential value Di (luminance difference between adjacent pixels in the x and y directions) is large, and the differential value D
The position where i (which should be interpreted as an absolute value below) is the highest (hereinafter x
However, there is a high probability that it will be the edge center. From this viewpoint, the degree value fd (z = Di) belonging to each index of zero (z), small (s), medium (m), large (b) and extra large (u) shown in (a) of FIG. fd (s = D
i), fd (m = Di), fd (b = Di) and fd (u = Di) are index values fd (u = Di) from the index (u) indicating that the larger the differential value Di is, The index functions, that is, the membership functions fd (z), fd (s), fd (m), fd (b) and fd (u) are determined so as to be larger, and the edge existence width in FIG. In the estimation functions fw (z), fw (s), fw (m) and fw (b), the edge position is considered to be nearer to the pixel as the differential value Di is larger, and thus the small edge existence width estimated value (Center of gravity w
z, ws, etc.) should be given. On the other hand, the edge probability (edgelikeness) estimation functions fw (z), fa (z), in FIG.
Fa (s), fa (m) and fa (b) are given larger edge probability estimation values (center of gravity wz, ws, etc.) in order to give greater weight to the position of the pixel as the differential value Di is larger. Stipulated in. The centroid Wwi of the set of edge existence width estimation values (centroids wz, ws, etc.) shown in (a) of FIG. 7 is a first weighting value assuming that the position xi of the pixel xi is the edge center. As shown in (b) of FIG. 7, the center of gravity Wai of the set of edge probability estimated values (center of gravity wz, ws, etc.) has a position xi of the pixel xi at the edge center.
Is a second weighting value. These values Ww
One pixel xi of FIG. 8A defined by i and Wai
The center of gravity of the addressed triangle (solid line) is the combined value of the first and second weighting values Wwi and Wai, that is, the edge area xeb1.
It becomes the weighting value of one pixel xi among all the pixels of xee1. Since there is one edge center, the barycentric position of such a set of weighting values for all the pixels can be determined as the edge center. In the above embodiment, the horizontal axis position of the center of gravity of the figure surrounded by the outer contour line (b in FIG. 8) and the x-axis of the set of triangles (solid line & two-dot chain line) addressed to each pixel in FIG. The x position Ejcp1 is determined to be the edge center.
【0048】[0048]
【発明の効果】以上の通り本発明によれば、スリット光
を当てた物体を撮影した画面上における高輝度領域が、
スリット光像を正確に示す「スリット形状」のものか、
ハイスポット等により輝度飽和した「ブル−ミング」の
ものか、あるいはカメラの残像による「スミア」のもの
か等の属性が検出されるので、検出した属性に対応した
処理又は処置を施して、スリット光投射による物体形状
計測の信頼度を高めることができる。属性検出は、スリ
ット光照射により画面上に現われる高輝度ピ−ク領域の
形状特性に基づくので、信頼性が高い。As described above, according to the present invention, the high-brightness region on the screen where the object illuminated by the slit light is photographed is
Is it a "slit shape" that accurately shows the slit light image,
Attributes such as "blooming" with saturated brightness due to high spots, or "smear" due to afterimage of the camera are detected. The reliability of object shape measurement by light projection can be increased. The attribute detection is highly reliable because it is based on the shape characteristics of the high-brightness peak area appearing on the screen by the slit light irradiation.
【0049】したがって、この属性検出に基づいたスリ
ット光像の中心位置検出の信頼性および精度は高く、し
かも、カメラの解像度よりも高い解像度の中心位置デ−
タを得ることができる。Therefore, the center position detection of the slit light image based on this attribute detection is highly reliable and accurate, and the center position data of a resolution higher than that of the camera is detected.
You can get the data.
【図1】 本願発明を一態様で実施する装置構成を示す
ブロック図である。FIG. 1 is a block diagram showing a device configuration for implementing the present invention in one aspect.
【図2】 (a)は図1に示すカメラ2で撮影した画面
を示す平面図、(b)は該画面の一処理領域のある走査
線の輝度分布を示すグラフである。2A is a plan view showing a screen imaged by the camera 2 shown in FIG. 1, and FIG. 2B is a graph showing a luminance distribution of a scanning line having a processing region of the screen.
【図3】 (a)は図2の(b)に示す走査線jの輝度
分布を示すグラフ、(b)は隣り合う画素の輝度の差す
なわち輝度微分値を示すグラフである。3A is a graph showing a luminance distribution of a scanning line j shown in FIG. 2B, and FIG. 3B is a graph showing a luminance difference between adjacent pixels, that is, a luminance differential value.
【図4】 (a)は図2の(b)に示す走査線jの輝度
分布を示すグラフ、(b)は(a)に示すピ−ク下幅L
SWをその大きさの程度を示す指標値に変換する関数を
示すグラフ、(c)は(a)に示す輝度飽和幅MSWを
その大きさの程度を示す指標値に変換する関数を示すグ
ラフ、および、(d)は(a)に示すピ−ク下幅に対す
るピ−ク上幅USWの比Eをその大きさの程度を示す指
標値に変換する関数を示すグラフである。4A is a graph showing a luminance distribution of the scanning line j shown in FIG. 2B, and FIG. 4B is a peak lower width L shown in FIG.
A graph showing a function for converting SW into an index value showing the degree of the size, (c) a graph showing a function for converting the brightness saturation width MSW shown in (a) into an index value showing the degree of the size, And, (d) is a graph showing a function for converting the ratio E of the peak upper width USW to the peak lower width shown in (a) into an index value indicating the degree of the size.
【図5】 (a)は図4の(b)に示す関数で得た指標
値を「スリット形状」の確信度に変換する重み付け関数
を示すグラフ、(b)は図4の(c)に示す関数で得た
指標値を「ブル−ミング」の確信度に変換する重み付け
関数を示すグラフ、および、(c)は図4の(d)に示
す関数で得た指標値を「スミア」の確信度に変換する重
み付け関数を示すグラフである。5A is a graph showing a weighting function for converting an index value obtained by the function shown in FIG. 4B into a certainty factor of “slit shape”, and FIG. 5B is shown in FIG. The graph which shows the weighting function which converts the index value obtained by the function shown to the certainty factor of "Blooming", and (c) shows the index value obtained by the function shown in (d) of FIG. It is a graph which shows the weighting function which converts into a certainty factor.
【図6】 (a)は輝度微分値を大きさの程度を示す指
標値に変換する関数を示すグラフであり、図3に示す輝
度分布の第1エッジ領域の部分および第1エッジ領域の
輝度微分値と共に示す。FIG. 6A is a graph showing a function for converting a luminance differential value into an index value indicating a degree of magnitude, and the luminance of the first edge region and the first edge region of the luminance distribution shown in FIG. Shown together with the differential value.
【図7】 (a)は、図6の(a)に示す関数で得た指
定値をある重み値に変換するエッジ存在幅推定関数を示
すグラフ、(b)は該指標値をもう1つの重み値に変換
するエッジ確率推定関数を示すグラフである。7A is a graph showing an edge existence width estimation function for converting a specified value obtained by the function shown in FIG. 6A into a certain weight value, and FIG. 7B is a graph showing another index value. It is a graph which shows the edge probability estimation function converted into a weight value.
【図8】 (a)は、図7の(a)に示す推定関数を用
いて算出したエッジ存在幅推定値と図7の(b)に示す
推定関数を用いて算出したエッジ確率推定値で規定され
る、注目画素xiがエッジセンタ−であるとする推定の
確かさの重みを実線三角形で示すグラフである。(b)
は、エッジ存在領域の各画素のそれぞれがエッジセンタ
−であるとする推定の確かさの重みの集合の外輪郭線を
示すグラフである。8A is an edge existence width estimated value calculated using the estimation function shown in FIG. 7A and an edge probability estimated value calculated using the estimation function shown in FIG. 7B. 6 is a graph showing the weight of the certainty of estimation that the defined pixel of interest xi is the edge center, which is indicated by a solid line triangle. (B)
[Fig. 6] is a graph showing an outer contour line of a set of weights of estimation certainty that each pixel in the edge existence region is an edge center.
【図9】 図1に示すコンピュ−タ1の処理内容の一部
を示すフロ−チャ−トである。FIG. 9 is a flowchart showing a part of the processing contents of the computer 1 shown in FIG.
【図10】 図1に示すコンピュ−タ1の処理内容の一
部を示すフロ−チャ−トである。FIG. 10 is a flowchart showing a part of the processing contents of the computer 1 shown in FIG.
【図11】 図9に示す「ピ−ク領域の性状判定」
(6)の内容を示すフロ−チャ−トである。11 is a "characteristic determination of the peak area" shown in FIG.
It is a flowchart showing the contents of (6).
【図12】 図9に示す「エッジ中心Ejcpの算出」
(8)の内容を示すフロ−チャ−トである。FIG. 12 “Calculation of edge center Ejcp” shown in FIG.
It is a flowchart showing the contents of (8).
【図13】 図1に示すカメラ2のある画像の概要を示
す平面図であり、ブル−ミングおよびスミアを示す。FIG. 13 is a plan view showing an outline of an image with the camera 2 shown in FIG. 1, showing blooming and smear.
【図14】 図13の「正常」(NL)と示した画像領
域の輝度分布を示すグラフである。FIG. 14 is a graph showing a luminance distribution of an image area shown as “normal” (NL) in FIG.
【図15】 図13のブル−ミング(BL)と示した画
像領域の輝度分布を示すグラフである。FIG. 15 is a graph showing a luminance distribution of an image area shown as blooming (BL) in FIG.
【図16】 図13のスミア(SM)と示した画像領域
の輝度分布を示すグラフである。16 is a graph showing the luminance distribution of the image area shown as smear (SM) in FIG.
1:コンピュ−タ 2:テレビカメラ 2f:撮影画面 3:物体 3i:物体像 SLi:スリット
光像 4:画像メモリ 5:CRTディス
プレイ 6:プリンタ 7:フロッピ−デ
ィスク 8:キ−ボ−ド 9:x移動キャリ
ッジ 10:モ−タ 11:y移動キャ
リッジ 12:モ−タ 13x:モ−タド
ライバ 13y:モ−タドライバ 14:レ−ザ光源 14se:スリット光 15:レ−ザドラ
イバ 16:スリット露光/撮像装置 22:A/Dコン
バ−タ1: Computer 2: Television camera 2f: Photographing screen 3: Object 3i: Object image SLi: Slit light image 4: Image memory 5: CRT display 6: Printer 7: Floppy disk 8: Keyboard 9: x moving carriage 10: motor 11: y moving carriage 12: motor 13x: motor driver 13y: motor driver 14: laser light source 14se: slit light 15: laser driver 16: slit exposure / imaging Device 22: A / D converter
Claims (11)
た物体を撮影した、2次元x,yに分布する各画素の輝
度を表わす画像デ−タで表わされる画像上の、高輝度領
域の属性検出方法: A.走査線上における輝度ピ−クを検出する, B1.検出した輝度ピ−クによって定まる、輝度ピ−ク
の基底レベルに近い第1閾値以上の第1ピ−ク領域幅を
検出する, D1.第1ピ−ク領域幅を小,中,大等各指標の値に変
換する、および、 E1.得た各指標値を各指標に対応付けられている、
「スリット形状」反射である程度が低,高等各指標の値
に変換し、これらの値の集合の中心値すなわち「スリッ
ト形状」反射である確信度を算出する。1. A high brightness area of an image represented by image data representing the brightness of each pixel distributed in a two-dimensional x, y image of an object irradiated with slit light, which comprises the following steps: Attribute detection method: A. Brightness peak on the scanning line - detecting the click, B 1. Detected luminance peak - determined by click, the luminance peak - first threshold value or more first peak close to the basal level of click - detecting the click region width, D 1. The first peak - the click region width small, medium, and converts a large etc. of the value of each index, and, E 1. Each obtained index value is associated with each index,
The "slit-shaped" reflection is converted to values of low and high indices to some extent, and the central value of the set of these values, that is, the certainty factor of the "slit-shaped" reflection is calculated.
た物体を撮影した、2次元x,yに分布する各画素の輝
度を表わす画像デ−タで表わされる画像上の、高輝度領
域の属性検出方法: A.走査線上における輝度ピ−クを検出する, C.輝度ピ−クが輝度飽和値であるときその飽和幅を検
出する, D2.飽和幅を小,中,大等各指標の値に変換する、お
よび、 E2.得た各指標値を各指標に対応付けられている、
「ブル−ミング」反射である程度が低,高等各指標の値
に変換し、これらの値の集合の中心値すなわち「ブル−
ミング」反射である確信度を算出する。2. A high-luminance area of an image represented by image data representing the luminance of each pixel distributed in two-dimensional x, y obtained by photographing an object illuminated by slit light, which comprises the following steps. Attribute detection method: A. Detecting a luminance peak on a scan line, C.I. Brightness peak - click detects the saturation width when a luminance saturation value, D 2. Convert the saturation width into values for small, medium, large, etc. indices, and E 2 . Each obtained index value is associated with each index,
"Blooming" reflection is converted into values of low and high indices to some extent, and the central value of the set of these values, that is, "blue-
Compute the confidence that is the "Ming" reflection.
た物体を撮影した、2次元x,yに分布する各画素の輝
度を表わす画像デ−タで表わされる画像上の、高輝度領
域の属性検出方法: A.走査線上における輝度ピ−クを検出する, B1.検出した輝度ピ−クによって定まる、輝度ピ−ク
の基底レベルに近い第1閾値以上の、前記走査線上の第
1ピ−ク領域幅を検出する, B2.検出した輝度ピ−クによって定まる、輝度ピ−ク
に近い第2閾値以上の、前記走査線上の第2ピ−ク領域
幅を検出する, D3.第1ピ−ク領域幅と第2ピ−ク領域幅の相対値を
小,中,大等各指標の値に変換する、および、 E3.得た各指標値を各指標に対応付けられている、
「スミア」である程度が低,高等各指標の値に変換し、
これらの値の集合の中心値すなわち「スミア」である確
信度を算出する。3. A high-luminance region of an image represented by image data representing the luminance of each pixel distributed in two-dimensional x, y obtained by photographing an object illuminated by slit light, which comprises the following steps. Attribute detection method: A. Brightness peak on the scanning line - detecting the click, B 1. Determined by the click, the luminance peak - - detected luminance peak above the first threshold value close to the basal level of click, the first peak of the scanning line - detecting the click region width, B 2. Detected luminance peak - determined by click, the luminance peak - at least a second threshold value close to the click, the second peak of the scanning line - detecting the click region width, D 3. The first peak - click region width and a second peak - the relative value of the click region width small, medium, and converts a large etc. of the value of each index, and, E 3. Each obtained index value is associated with each index,
"Smear" is converted to low and high index values to some extent,
The certainty factor that is the central value of the set of these values, that is, "smear" is calculated.
た物体を撮影した、2次元x,yに分布する各画素の輝
度を表わす画像デ−タで表わされる画像上の、高輝度領
域の属性検出方法: A.走査線上における輝度ピ−クを検出する, B1.検出した輝度ピ−クによって定まる、輝度ピ−ク
の基底レベルに近い第1閾値以上の第1ピ−ク領域幅を
検出する, C.輝度ピ−クが輝度飽和値であるときその幅である飽
和幅を検出する, D1.第1ピ−ク領域幅を小,中,大等各指標の値に変
換する, D2.飽和幅を小,中,大等各指標の値に変換する, E1.D1.で得た各指標値を各指標に対応付けられてい
る、「スリット形状」反射である程度が低,高等各指標
の値に変換し、これらの値の集合の中心値すなわち「ス
リット形状」反射である確信度を算出する, E2.上記D2.で得た各指標値を各指標に対応付けられ
ている、「ブル−ミング反射」である程度が低,高等各
指標の値に変換し、これらの値の集合の中心値すなわち
「ブル−ミング反射」である確信度を算出する、およ
び、 F1.「スリット形状」反射である確信度と「ブル−ミ
ング」反射である確信度を比較して、ピ−ク領域を、前
者が大きいと「スリット形状」反射と、後者が大きいと
「ブル−ミング」反射と決定する。4. A high-luminance area of an image represented by image data representing the luminance of each pixel distributed in two-dimensional x, y obtained by photographing an object illuminated by slit light, which comprises the following steps. Attribute detection method: A. Brightness peak on the scanning line - detecting the click, B 1. Detecting a first peak region width equal to or higher than a first threshold, which is determined by the detected luminance peak and is close to the base level of the luminance peak, C. When the luminance peak is the luminance saturation value, the saturation width, which is the width thereof, is detected, D 1 . The first peak - the click region width small, medium, and converts a large etc. of the value of each index, D 2. Convert the saturation width to the value of each index such as small, medium, large, etc. E 1 . D 1 . Each index value obtained in step 1 is converted into the value of each of the low, high, etc. indexes with the "slit shape" reflection, which is associated with each index, and the central value of the set of these values, that is, the "slit shape" reflection Calculate certain confidence, E 2 . Above D 2 . Each index value obtained in step 1 is converted into a value of each index, which is associated with each index and has a certain degree of low or high reflection, and the central value of the set of these values, that is, "the blooming reflection". Is calculated, and F 1 .. By comparing the certainty factor of "slit-shaped" reflection and the certainty factor of "blooming" reflection, the peak area is larger when the former is "slit-shaped" reflection, and when the latter is larger, "blooming". It is decided to be a reflection.
た物体を撮影した、2次元x,yに分布する各画素の輝
度を表わす画像デ−タで表わされる画像上の、高輝度領
域の属性検出方法: A.走査線上における輝度ピ−クを検出する, B1.検出した輝度ピ−クによって定まる、輝度ピ−ク
の基底レベルに近い第1閾値以上の第1ピ−ク領域幅を
検出する, B2.検出した輝度ピ−クによって定まる、輝度ピ−ク
に近い第2閾値以上の、前記走査線上の第2ピ−ク領域
幅を検出する, C.輝度ピ−クが輝度飽和値であるときその幅である飽
和幅を検出する, D1.第1ピ−ク領域幅を小,中,大等各指標の値に変
換する, D2.飽和幅を小,中,大等各指標の値に変換する, D3.第1ピ−ク領域幅と第2ピ−ク領域幅の相対値を
小,中,大等各指標の値に変換する, E1.D1.で得た各指標値を各指標に対応付けられてい
る、「スリット形状」反射である程度が低,高等各指標
の値に変換し、これらの値の集合の中心値すなわち「ス
リット形状」反射である確信度を算出する, E2.上記D2.で得た各指標値を各指標に対応付けられ
ている、「ブル−ミング」反射である程度が低,高等各
指標の値に変換し、これらの値の集合の中心値すなわち
「ブル−ミング」反射である確信度を算出する, E3.上記D3.で得た各指標値を各指標に対応付けられ
ている、「スミア」である程度が低,高等各指標の値に
変換し、これらの値の集合の中心値すなわち「スミア」
である確信度を算出する、および、 F2.「スリット形状」反射である確信度,「ブル−ミ
ング」反射である確信度および「スミア」である確信度
の中の最大値の値の属性すなわち「スリット形状」,
「ブル−ミング」反射又は「スミア」、をピ−ク領域の
属性と決定する。5. A high-luminance area of an image represented by image data representing the luminance of each pixel distributed in two-dimensional x, y obtained by photographing an object illuminated with slit light, which comprises the following steps. Attribute detection method: A. Brightness peak on the scanning line - detecting the click, B 1. Detected luminance peak - determined by click, the luminance peak - first threshold value or more first peak close to the basal level of click - detecting the click region width, B 2. Detecting a second peak area width on the scanning line that is equal to or larger than a second threshold value close to the brightness peak, which is determined by the detected brightness peak, C. When the luminance peak is the luminance saturation value, the saturation width, which is the width thereof, is detected, D 1 . The first peak - the click region width small, medium, and converts a large etc. of the value of each index, D 2. Converting the saturation width small, medium, to a value greater such each index, D 3. Converting the relative value of the first peak area width and the second peak area width to the value of each index such as small, medium, and large, E 1 . D 1 . Each index value obtained in step 1 is converted into the value of each of the low, high, etc. indexes with the "slit shape" reflection, which is associated with each index, and the central value of the set of these values, that is, the "slit shape" reflection Calculate certain confidence, E 2 . Above D 2 . Each index value obtained in 1. is converted into a value of each index, which is associated with each index by the "blooming" reflection, to some extent low and high, and the central value of the set of these values, that is, "blooming". and calculates the certainty factor is reflected, E 3. Above D 3 . Convert each index value obtained in step 1 to the value of each low and high index that is associated with each index by "smear", and set the central value of these values, that is, "smear"
And calculates the certainty factor is, and, F 2. The attribute of the maximum value among the certainty factors that are the "slit shape" reflection, the certainty factors that are the "blooming" reflection, and the certainty factors that are "smear", that is, the "slit shape",
"Blooming" reflections or "smears" are determined as attributes of the peak area.
「スリット形状」と判定したピ−ク領域の、輝度が立上
るエッジ範囲および輝度が立下るエッジ範囲それぞれの
中心を算出し、算出した中心間の中心をピ−ク領域の中
心と決定する、スリット中心位置検出方法。6. The center of each of the edge range in which the brightness rises and the edge range in which the brightness falls is calculated for the peak area determined as the "slit shape" based on the attribute detection according to claim 1, 4 or 5. A slit center position detecting method in which the calculated center between the centers is determined as the center of the peak area.
ト形状」と判定したピ−ク領域の、輝度が立上るエッジ
範囲および輝度が立下るエッジ範囲それぞれの中心を算
出し、算出した中心間の中心をピ−ク領域の中心と決定
し、「ブル−ミング」と判定した走査線があるときに
は、物体に当てるスリット光の強度を下げて再度撮影
し、この撮影画像上の、前記「ブル−ミング」と判定し
た走査線につき請求項4又は5の属性検出を経て、該走
査線の、「スリット形状」と判定したピ−ク領域の、輝
度が立上るエッジ範囲および輝度が立下るエッジ範囲そ
れぞれの中心を算出し、算出した中心間の中心をピ−ク
領域の中心と決定する、スリット中心位置検出方法。7. The center of each of the edge range in which the brightness rises and the edge range in which the brightness falls in the peak area determined as the "slit shape" by the attribute detection according to claim 4 or 5, and the calculated center When there is a scanning line determined to be "blooming" by determining the center of the interval as the center of the peak area, the intensity of the slit light applied to the object is reduced and the image is taken again. The scanning line determined to be "blooming" is subjected to the attribute detection according to claim 4 or 5, and the edge range and the luminance of the peak region of the scanning line determined to be the "slit shape" and the luminance are decreased. A slit center position detecting method in which the center of each edge range is calculated and the center between the calculated centers is determined as the center of the peak area.
状」と判定したピ−ク領域の、輝度が立上るエッジ範囲
および輝度が立下るエッジ範囲それぞれの中心を算出
し、算出した中心間の中心をピ−ク領域の中心と決定
し、「ブル−ミング」と判定した走査線があるときに
は、物体に当てるスリット光の強度を下げて再度撮影
し、この撮影画像上の、前記「ブル−ミング」と判定し
た走査線につき請求項4又は5の属性検出を経て、該走
査線の、「スリット形状」と判定したピ−ク領域の、輝
度が立上るエッジ範囲および輝度が立下るエッジ範囲そ
れぞれの中心を算出し、算出した中心間の中心をピ−ク
領域の中心と決定し、「スミア」と判定したピ−ク領域
は、前記ピ−ク領域の中心を決定する対象から除外す
る、スリット中心位置検出方法。8. The center of each of the edge range in which the brightness rises and the edge range in which the brightness falls in the peak area determined as the "slit shape" by the attribute detection of claim 5 is calculated, and between the calculated centers. When the center is determined to be the center of the peak area and there is a scanning line determined to be "blooming", the intensity of the slit light applied to the object is reduced and the image is taken again. The edge range in which the brightness rises and the edge range in which the brightness falls in the peak area of the scan line determined to be the "slit shape" through the attribute detection of claim 4 or 5 for the scan line determined to be "mingling". The respective centers are calculated, the center between the calculated centers is determined as the center of the peak area, and the peak area determined to be "smear" is excluded from the target for determining the center of the peak area. , Slit center position detection method
を含む、請求項6,7又は8記載の、スリット中心位置
検出方法: a.走査線が延びる方向で隣接する画素間の輝度の差す
なわち微分値を算出する,b.微分値が0から他の値に
変化し0に戻る走査線が延びる方向のエッジ範囲内の所
定領域の画素のそれぞれの微分値を小,中,大等各指標
の値に変換する, c1.前記所定領域の画素のそれぞれにつき、各指標値
を各指標に対応付けられているエッジ存在幅変換関数に
従がい各エッジ存在幅に変換し、各エッジ存在幅の合成
中心値を算出する、および、 d1.前記所定領域の画素のそれぞれの走査線が延びる
方向の位置をその合成中心値の逆数で重み付けして、こ
れらの画素の集合でなる前記所定領域の走査線が延びる
方向の中心位置を算出する。9. The method for detecting the slit center position according to claim 6, 7 or 8, wherein the calculation of the center of the edge range includes the following steps: a. Calculating a difference in luminance between adjacent pixels in the direction in which the scanning line extends, that is, a differential value, b. The differential value changes from 0 to another value and returns to 0. The differential value of each pixel in a predetermined area within the edge range in the direction in which the scanning line extends is converted into the value of each index such as small, medium, large, c 1 . For each of the pixels in the predetermined area, each index value is converted into each edge existing width according to the edge existing width conversion function associated with each index, and a composite center value of each edge existing width is calculated, and , D 1 . The position of each pixel in the predetermined area in the direction in which the scanning line extends is weighted by the reciprocal of the composite center value, and the center position in the direction in which the scanning line in the predetermined area, which is a set of these pixels, is calculated.
プを含む、請求項6,7又は8記載の、スリット中心位
置検出方法: a.走査線が延びる方向で隣接する画素間の輝度の差す
なわち微分値を算出する,b.微分値が0から他の値に
変化し0に戻る走査線が延びる方向のエッジ範囲内の所
定領域の画素のそれぞれの微分値を小,中,大等各指標
の値に変換する, c2.前記所定領域の画素のそれぞれにつき、各指標値
を各指標に対応付けられているエッジ確率変換関数に従
がい各エッジ確率に変換し、各エッジ確率の合成中心値
を算出する、および、 d2.前記所定領域の画素のそれぞれの走査線が延びる
方向の位置をその合成中心値で重み付けして、これらの
画素の集合でなる前記所定領域の走査線が延びる方向の
中心位置を算出する。10. The slit center position detecting method according to claim 6, 7 or 8, wherein the calculation of the center of the edge range includes the following steps: a. Calculating a difference in luminance between adjacent pixels in the direction in which the scanning line extends, that is, a differential value, b. The differential value changes from 0 to another value and returns to 0. The differential value of each pixel in a predetermined area within the edge range in the direction in which the scanning line extends is converted into the value of each index such as small, medium and large, c 2 . For each of the pixels in the predetermined area, each index value is converted into each edge probability according to the edge probability conversion function associated with each index, and a composite center value of each edge probability is calculated, and d 2 . The position of each pixel in the predetermined area in the direction in which the scanning line extends is weighted by the combined center value, and the center position in the direction in which the scanning line in the predetermined area, which is a set of these pixels, is calculated.
プを含む、請求項6,7又は8記載の、スリット中心位
置検出方法: a.走査線が延びる方向で隣接する画素間の輝度の差す
なわち微分値を算出する,b.微分値が0から他の値に
変化し0に戻る走査線が延びる方向のエッジ範囲内の所
定領域の画素のそれぞれの微分値を小,中,大等各指標
の値に変換する, c1.前記所定領域の画素のそれぞれにつき、各指標値
を各指標に対応付けられているエッジ存在幅変換関数に
従がい各エッジ存在幅に変換し、各エッジ存在幅の合成
中心値である第1合成中心値を算出する, c2.前記所定領域の画素のそれぞれにつき、各指標値
を各指標に対応付けられているエッジ確率変換関数に従
がい各エッジ確率に変換し、各エッジ確率の合成中心値
である第2合成中心値を算出する、および、 d3.前記所定領域の画素のそれぞれの走査線が延びる
方向位置をその第1および第2合成中心値で重み付けし
て、これらの画素の集合でなる前記所定領域の走査線が
延びる方向中心位置を算出する。11. The slit center position detecting method according to claim 6, 7, or 8, wherein the calculation of the center of the edge range includes the following steps: a. Calculating a difference in luminance between adjacent pixels in the direction in which the scanning line extends, that is, a differential value, b. The differential value changes from 0 to another value and returns to 0. The differential value of each pixel in a predetermined area within the edge range in the direction in which the scanning line extends is converted into the value of each index such as small, medium, large, c 1 . For each of the pixels in the predetermined region, each index value is converted into each edge existing width according to the edge existing width conversion function associated with each index, and the first combination that is the combined center value of each edge existing width Calculate the median value, c 2 . For each of the pixels in the predetermined area, each index value is converted into each edge probability according to the edge probability conversion function associated with each index, and a second combined central value that is a combined central value of each edge probability is calculated. It is calculated, and, d 3. The position in the extending direction of the scanning line of each pixel in the predetermined area is weighted by the first and second combined center values to calculate the center position in the extending direction of the scan line of the predetermined area, which is a set of these pixels. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20810292A JP3343742B2 (en) | 1992-08-04 | 1992-08-04 | High brightness area attribute detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20810292A JP3343742B2 (en) | 1992-08-04 | 1992-08-04 | High brightness area attribute detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0658725A true JPH0658725A (en) | 1994-03-04 |
JP3343742B2 JP3343742B2 (en) | 2002-11-11 |
Family
ID=16550673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20810292A Expired - Fee Related JP3343742B2 (en) | 1992-08-04 | 1992-08-04 | High brightness area attribute detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3343742B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001280951A (en) * | 2000-03-31 | 2001-10-10 | Omron Corp | Optical displacement gage |
JP2002071310A (en) * | 2000-08-28 | 2002-03-08 | Matsushita Electric Works Ltd | Optical displacement measuring device and method therefor |
JP2008292434A (en) * | 2007-05-28 | 2008-12-04 | Panasonic Electric Works Co Ltd | Optical cutting three-dimensional measurement instrument |
KR20130104072A (en) * | 2012-03-12 | 2013-09-25 | 삼성테크윈 주식회사 | Apparatus for protecting image saturation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6326511A (en) * | 1986-07-19 | 1988-02-04 | Fujitsu Ltd | Inspection device for packaging component |
JPS63128207A (en) * | 1986-11-19 | 1988-05-31 | Fujitsu Ltd | Inspecting device for packaging parts |
JPS6421581A (en) * | 1987-07-16 | 1989-01-24 | Omron Tateisi Electronics Co | Projector for image processing |
JPH0291505A (en) * | 1988-09-29 | 1990-03-30 | Omron Tateisi Electron Co | Inspecting device for solder surface of circuit board |
JPH03249508A (en) * | 1990-02-28 | 1991-11-07 | Mitsubishi Heavy Ind Ltd | Three-dimensional shape recognizer |
JPH04117081A (en) * | 1990-05-15 | 1992-04-17 | Toshiba Corp | X-ray diagnostic device |
JPH04127283A (en) * | 1990-09-18 | 1992-04-28 | Mitsubishi Electric Corp | Image tracking device |
-
1992
- 1992-08-04 JP JP20810292A patent/JP3343742B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6326511A (en) * | 1986-07-19 | 1988-02-04 | Fujitsu Ltd | Inspection device for packaging component |
JPS63128207A (en) * | 1986-11-19 | 1988-05-31 | Fujitsu Ltd | Inspecting device for packaging parts |
JPS6421581A (en) * | 1987-07-16 | 1989-01-24 | Omron Tateisi Electronics Co | Projector for image processing |
JPH0291505A (en) * | 1988-09-29 | 1990-03-30 | Omron Tateisi Electron Co | Inspecting device for solder surface of circuit board |
JPH03249508A (en) * | 1990-02-28 | 1991-11-07 | Mitsubishi Heavy Ind Ltd | Three-dimensional shape recognizer |
JPH04117081A (en) * | 1990-05-15 | 1992-04-17 | Toshiba Corp | X-ray diagnostic device |
JPH04127283A (en) * | 1990-09-18 | 1992-04-28 | Mitsubishi Electric Corp | Image tracking device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001280951A (en) * | 2000-03-31 | 2001-10-10 | Omron Corp | Optical displacement gage |
JP2002071310A (en) * | 2000-08-28 | 2002-03-08 | Matsushita Electric Works Ltd | Optical displacement measuring device and method therefor |
JP2008292434A (en) * | 2007-05-28 | 2008-12-04 | Panasonic Electric Works Co Ltd | Optical cutting three-dimensional measurement instrument |
KR20130104072A (en) * | 2012-03-12 | 2013-09-25 | 삼성테크윈 주식회사 | Apparatus for protecting image saturation |
Also Published As
Publication number | Publication date |
---|---|
JP3343742B2 (en) | 2002-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6768509B1 (en) | Method and apparatus for determining points of interest on an image of a camera calibration object | |
CN109215063B (en) | Registration method of event trigger camera and three-dimensional laser radar | |
JP4870779B2 (en) | Digital image exposure and tone scale adjustment | |
JP3312849B2 (en) | Defect detection method for object surface | |
US9305343B2 (en) | Observation device and observation method | |
US7202957B2 (en) | Three-dimensional visual sensor | |
US20020118874A1 (en) | Apparatus and method for taking dimensions of 3D object | |
JPH0869534A (en) | Method and equipment for detection of image quality | |
Várkonyi-Kóczy et al. | Gradient-based synthesized multiple exposure time color HDR image | |
JP2001084944A (en) | Charged particle beam device | |
JP3350822B2 (en) | Edge detection method on image | |
CN115953550A (en) | Point cloud outlier rejection system and method for line structured light scanning | |
JPH0658725A (en) | Detecting method of attribute of high-luminance area | |
CN103262524A (en) | Auto-focus image system | |
JPH11278182A (en) | Fog status detection device for vehicle | |
JP2981382B2 (en) | Pattern matching method | |
JP2961140B2 (en) | Image processing method | |
JPH0443204B2 (en) | ||
JPH0376449B2 (en) | ||
JPH085348A (en) | Three-dimensional shape inspection method | |
JPS58163339A (en) | Subtraction treatment of x-ray image | |
JP4447464B2 (en) | Method for determining regions of interest in skin-pattern images | |
JP2965370B2 (en) | Defect detection device | |
JP2000207557A (en) | Method for measuring quantity of positional deviation | |
JP3055721B2 (en) | Method for searching corresponding points of images captured by left and right cameras |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070830 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080830 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090830 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090830 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100830 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100830 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110830 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |