[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0639644B2 - Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery - Google Patents

Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery

Info

Publication number
JPH0639644B2
JPH0639644B2 JP1273404A JP27340489A JPH0639644B2 JP H0639644 B2 JPH0639644 B2 JP H0639644B2 JP 1273404 A JP1273404 A JP 1273404A JP 27340489 A JP27340489 A JP 27340489A JP H0639644 B2 JPH0639644 B2 JP H0639644B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
negative electrode
hydrogen
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1273404A
Other languages
Japanese (ja)
Other versions
JPH02263944A (en
Inventor
英和 土井
立衛 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1273404A priority Critical patent/JPH0639644B2/en
Publication of JPH02263944A publication Critical patent/JPH02263944A/en
Publication of JPH0639644B2 publication Critical patent/JPH0639644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、MgZn型結晶構造、すなわち六方晶C
14型結晶構造をもった水素吸蔵Ni−Zr系合金、並び
にこの水素吸蔵Ni−Zr系合金を負極活性物質として
用いてなる密閉型Ni−水素蓄電池に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a MgZn 2 type crystal structure, that is, hexagonal C
The present invention relates to a hydrogen storage Ni-Zr alloy having a 14-type crystal structure, and a sealed Ni-hydrogen storage battery using this hydrogen storage Ni-Zr alloy as a negative electrode active material.

〔従来の技術〕[Conventional technology]

一般に、密閉型Ni−水素蓄電池が、水素吸蔵合金を活
物質として用いてなる負極と、Ni正極と、さらにセパ
レータおよびアルカリ電解液で構成され、かつ前記負極
を構成する水素吸蔵合金には、 (a) 室温付近での水素吸蔵・放出能が大きい。
Generally, a sealed Ni-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, a Ni positive electrode, a separator and an alkaline electrolyte, and a hydrogen storage alloy constituting the negative electrode includes a) Hydrogen storage / release capacity is high near room temperature.

(b) PCT曲線における室温付近の温度でのプラトー
圧に相当する平衡水素解離圧が比較的低い(5気圧以
下)。
(b) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure at a temperature near room temperature in the PCT curve is relatively low (5 atm or less).

(c) アルカリ電解液中で耐食性および耐久性(耐劣化
性)がある。
(c) Corrosion resistance and durability (deterioration resistance) in alkaline electrolyte.

(d) 水素酸化能(触媒作用)が大きい。(d) Hydrogen oxidization capacity (catalysis) is large.

(e) 水素の吸蔵・放出の繰返しに伴う微粉化が起り難
い。
(e) It is difficult for pulverization to occur due to repeated storage and release of hydrogen.

(f) 無(低)公害である。(f) No (low) pollution.

(g) 低コストである。(g) Low cost.

以上(a)〜(g)の性質を具備することが望まれ、さらにこ
のような性質を具備した水素吸蔵合金を負極の活物質と
して用いてなる密閉型Ni−水素蓄電池は、大きな放電
容量、長い充・放電サイクル寿命、すぐれた急速充・放
電特性、および低自己放電などの好ましい性能を発揮す
るようになることも良く知られるところである。
It is desired to have the above properties (a) to (g), and further, a sealed Ni-hydrogen storage battery using a hydrogen storage alloy having such properties as an active material of a negative electrode has a large discharge capacity, It is also well known that favorable characteristics such as long charge / discharge cycle life, excellent rapid charge / discharge characteristics, and low self-discharge will be exhibited.

したがって、特に密閉型Ni−水素蓄電池の負極を構成
する活物質として用いるのに適した水素吸蔵合金の開発
が盛んに行なわれ、例えば特開昭61−45563号公報に記
載されるMgZn型結晶構造、すなわち六方晶C14型
結晶構造をもった水素吸蔵合金はじめ、多数の水素吸蔵
合金が提案されている。
Therefore, particularly, a hydrogen storage alloy suitable for use as an active material constituting a negative electrode of a sealed Ni-hydrogen storage battery has been actively developed, and for example, MgZn 2 type crystal described in JP-A-61-45563. A number of hydrogen storage alloys have been proposed, including a hydrogen storage alloy having a structure, that is, a hexagonal C14 type crystal structure.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、すでに提案されているいずれの水素吸蔵合金も
密閉型Ni−水素蓄電池の負極活性物質として用いる場
合に要求される上記の性質をすべて満足して具備するも
のではなく、より一層の開発が望まれているのが現状で
ある。
However, none of the hydrogen storage alloys that have already been proposed satisfy all of the above properties required when used as a negative electrode active material of a sealed Ni-hydrogen storage battery, and further development is desired. The current situation is that it is rare.

〔課題を解決するための手段〕[Means for Solving the Problems]

そこで、本発明者等は、上述のような観点から、特に密
閉型Ni−水素蓄電池の負極活物質として用いるのに適
した水素吸蔵合金を開発すべく研究を行なった結果、重
量%で(以下%は重量%を示す)、 Ti−5〜20%、Zr:10〜37%、 Mn:5〜30%、W:0.01〜15%、 Fe:1〜30%、 を含有し、さらに必要に応じて、 Cr:0.05〜6%およびAl:0.01〜5%、のうちの1
種または2種、 を含有し、残りがNiと不可避不純物からなる組成を有
する水素吸蔵Ni−Zr系合金は、MgZn型結晶構
造(六方晶C14型結晶構造)をもち、密閉型Ni−水素
蓄電池の負極活物質として用いる場合に要求される上記
(a)〜(g)の性質を十分満足した状態で具備し、したがっ
てこれを負極活物質として用いてなる密閉型Ni−水素
蓄電池は、大きなエネルギー密度と電気容量をもち、か
つ長いサイクル寿命を示すようになるほか、自己放電が
小さくなり、さらに高率充・放電特性にもすぐれ、無公
害および低コストと合わせて、すぐれた性能を発揮する
ようになるという知見を得たのである。
Therefore, the present inventors conducted research to develop a hydrogen storage alloy that is particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery from the above viewpoints, and as a result, % Represents% by weight), Ti-5 to 20%, Zr: 10 to 37%, Mn: 5 to 30%, W: 0.01 to 15%, Fe: 1 to 30%, and if necessary. Depending on: Cr: 0.05-6% and Al: 0.01-5%, one of
A hydrogen-storing Ni-Zr alloy having a composition containing Ni or Z, and the balance being Ni and inevitable impurities, has a MgZn 2 type crystal structure (hexagonal C 14 type crystal structure), and is a sealed Ni-hydrogen. The above required when used as a negative electrode active material of a storage battery
A sealed Ni-hydrogen storage battery, which has the properties (a) to (g) in a sufficiently satisfied state and therefore uses this as a negative electrode active material, has a large energy density and electric capacity and has a long cycle life. In addition to the above, we have obtained the knowledge that self-discharge is reduced, and high-rate charge / discharge characteristics are also excellent, and excellent performance is exhibited together with no pollution and low cost.

この発明は上記知見にもとづいてなされたものであっ
て、 Ti−5〜20%、Zr:10〜37%、 Mn:5〜30%、W:0.01〜15%、 Fe:1〜30%、 を含有し、さらに必要に応じて、 Cr:0.05〜6%およびAl:0.01〜5%、 のうちの1種または2種、 を含有し、残りがNiと不可避不純物からなる組成を有
するMgZn型結晶構造(六方晶C14型結晶構造)を
もった水素吸蔵Ni−Zr系合金、およびこの水素吸蔵
Ni−Zr系合金を負極活物質として用いてなる密閉型
Ni−水素蓄電池に特徴を有するものである。
The present invention has been made based on the above findings, Ti-5 to 20%, Zr: 10 to 37%, Mn: 5 to 30%, W: 0.01 to 15%, Fe: 1 to 30%, MgZn 2 having a composition containing Cr, 0.05 to 6% and Al: 0.01 to 5%, one or two of: and the balance Ni and inevitable impurities. Characterized by a hydrogen-storing Ni-Zr-based alloy having a C-type crystal structure (hexagonal C14-type crystal structure) and a sealed Ni-H2 battery using the hydrogen-storing Ni-Zr-based alloy as a negative electrode active material Is.

つぎに、この発明の水素吸蔵Ni−Zr系合金におい
て、成分組成を上記の通りに限定した理由を説明する。
Next, the reason why the component composition of the hydrogen storage Ni—Zr alloy of the present invention is limited as described above will be explained.

(a) TiおよびZr これらの成分には、共存した状態で合金に望ましい水素
吸蔵・放出特性を具備せしめると共に、室温における平
衡水素解離圧(プラトー圧)を、例えば5気圧以下に低
める作用があるが、その含有量がそれぞれTi:5%未
満およびZr:10%未満では前記作用に所望の効果が得
られず、一方Tiの含有量が20%越えると、平衡水素解
離圧が例えば5気圧以上に上昇するようになり、大きな
放電容量を確保するためには高い水素解離圧を必要とす
るようになって蓄電池として好ましくないものとなり、
またZrの含有量が37%を越えると、放電容量の水素解
離圧依存の点では問題はないが、水素吸蔵・放出能が低
下するようになることから、その含有量を、それぞれT
i:5〜20%、Zr:10〜37%と定めた。
(a) Ti and Zr These components have the effect of lowering the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atm or less, while coexisting to provide the alloy with desirable hydrogen storage / release characteristics. However, if their contents are less than 5% of Ti and less than 10% of Zr, respectively, the desired effects cannot be obtained. On the other hand, if the content of Ti exceeds 20%, the equilibrium hydrogen dissociation pressure is, for example, 5 atm or more. The high hydrogen dissociation pressure is required to secure a large discharge capacity, which is unfavorable as a storage battery.
Also, if the Zr content exceeds 37%, there is no problem in the dependence of the discharge capacity on the hydrogen dissociation pressure, but the hydrogen storage / release capacity will decrease.
i: 5 to 20%, Zr: 10 to 37%.

(b) Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、蓄電池の負極活物質としての実用に際して自己
放電を抑制する作用があるが、その含有量が5%未満で
は前記作用に所望の効果が得られず、一方その含有量が
30%を越えると、水素吸蔵・放出特性が損なわれるよう
になることから、その含有量を5〜30%と定めた。
(b) Mn The Mn component not only improves hydrogen storage / release capacity and corrosion resistance and durability of the alloy in alkaline electrolyte, but also suppresses self-discharge during practical use as a negative electrode active material for storage batteries. There is an action, but if the content is less than 5%, the desired effect cannot be obtained on the other hand, while the content is
If it exceeds 30%, the hydrogen storage / release characteristics will be impaired, so the content was defined as 5-30%.

(c) W W成分には、アルカリ電解液中での合金の耐食性を一段
と向上させると共に、耐久性も向上させ、さらに蓄電池
の負極活物質としての実用に際して自己放電を抑制する
作用があるが、その含有量が0.01%未満では前記作用に
所望の効果が得られず、一方、その含有量が15%を越え
ると、水素吸蔵・放出特性が損なわれるようになること
から、その含有量を0.01〜15%と定めた。
(c) The WW component has the effect of further improving the corrosion resistance of the alloy in an alkaline electrolyte and also improving the durability, and further suppressing self-discharge during practical use as a negative electrode active material of a storage battery, If the content is less than 0.01%, the desired effect cannot be obtained, while if the content exceeds 15%, the hydrogen storage / release characteristics will be impaired. It was set at ~ 15%.

(d) Fe Fe成分には、水素化物を一段と安定化し、もって蓄電
池性能の安定化に寄与する作用があるほか、Niの一部
代替成分として用いてもNiによってもたらされる作用
効果が損なわれることがないので、経済性を考慮して含
有されるが、その含有量が1%未満で前記作用に所望の
効果が得られず、一方その含有量が30%を越えると、水
素吸蔵能が低下するようになることから、その含有量を
1〜30%と定めた。
(d) Fe The Fe component has a function of further stabilizing the hydride and thus contributing to the stabilization of the storage battery performance, and even if it is used as a partial replacement component of Ni, the function and effect brought about by Ni are impaired. Therefore, if the content is less than 1%, the desired effect cannot be obtained, and if the content exceeds 30%, the hydrogen storage capacity decreases. Therefore, the content is defined as 1 to 30%.

(e) CrおよびAl これらの成分には、水素吸蔵・放出能を低下させること
なく、アルカリ電解液中での耐食性を一段と向上させる
作用があるので、必要に応じて含有されるが、その含有
量がそれぞれCr:0.05%未満およびAl:0.01%未満
では所望の耐食性向上効果が得られず、一方その含有量
がそれぞれCr:6%およびAl:5%を越えると、水
素吸蔵・放出能が低下するようになることから、その含
有量をそれぞれCr:0.05〜6%、Al:0.01〜5%と
定めた。
(e) Cr and Al These components have a function of further improving the corrosion resistance in an alkaline electrolyte without lowering the hydrogen storage / release capacity, so they are contained as necessary. If the amounts of Cr: less than 0.05% and Al: less than 0.01%, the desired effect of improving corrosion resistance cannot be obtained, while if their contents exceed Cr: 6% and Al: 5%, respectively, the hydrogen storage / release capacity is reduced. Since the content of Cr decreases, the contents are determined to be Cr: 0.05-6% and Al: 0.01-5%, respectively.

〔実施例〕 つぎに、この発明の水素吸蔵Ni−Zr系合金を実施例
により具体的に説明する。
Example Next, the hydrogen storage Ni—Zr alloy of the present invention will be specifically described by way of examples.

通常の高周波誘導溶解炉を用い、Ar雰囲気中にてそれ
ぞれ第1表に示される成分組成のNi合金溶湯を調製
し、銅鋳型に鋳造してインゴットとした後、このインゴ
ットをAr雰囲気中、900〜1000℃の範囲内の所定温度
に5時間保持の条件で焼鈍し、ついでジョークラッシャ
を用い、粗粉砕して直径:2mm以下の粗粒とし、さらに
ボールミルを用いて微粉砕して350mesh以下の粒度とす
ることによりいずれもMgZn型結晶構造をもった本
発明水素吸蔵合金1〜20、比較水素吸蔵合金1〜9、お
よび従来水素吸蔵合金をそれぞれ製造した。
Using a normal high frequency induction melting furnace, a Ni alloy melt having the composition shown in Table 1 was prepared in an Ar atmosphere, cast into a copper mold to form an ingot, and the ingot was heated in an Ar atmosphere at 900 Annealed at a predetermined temperature within the range of up to 1000 ° C for 5 hours, then coarsely crushed using a jaw crusher to obtain coarse particles with a diameter of 2 mm or less, and further finely crushed with a ball mill to 350 mesh or less. The hydrogen storage alloys 1 to 20 of the present invention, the comparative hydrogen storage alloys 1 to 9 and the conventional hydrogen storage alloys each having the MgZn 2 type crystal structure were manufactured by changing the grain size.

ついで、この結果得られた各種の粉末状水素吸蔵合金を
活物質として用い、まず、これにピリビニールアルコー
ル(PVA)の2%水溶液を添加してペースト化した
後、95%の多孔度を有する市販のNiウイスカー不織布
に充填し、乾燥し、さらに加圧して、平面寸法;42mm×
35mmにして、厚さ:0.60〜0.65mmの形状(活物質充填
量:約2.8g)とし、これの一辺にリードとなるNi薄
板を溶接により取付けて負極を製造し、一方正極として
同寸法のNi焼結板を2枚用意し、これを前記負極の両
側に配置し、30%KOH水溶液を装入することにより密
閉型Ni−水素蓄電池を製造した。
Then, various powdery hydrogen storage alloys obtained as a result were used as active materials, and first, a 2% aqueous solution of pyrivinyl alcohol (PVA) was added to form a paste, which had a porosity of 95%. Fill a commercially available Ni whisker non-woven fabric, dry it, and pressurize it to obtain a planar dimension of 42 mm x
The thickness is 35 mm and the thickness is 0.60 to 0.65 mm (active material filling amount: about 2.8 g). A Ni thin plate to be a lead is attached by welding to one side of this to manufacture a negative electrode. Two Ni sintered plates were prepared, placed on both sides of the negative electrode, and charged with a 30% KOH aqueous solution to manufacture a sealed Ni-hydrogen storage battery.

なお、この結果得られた各種の蓄電池を、いずれも開放
電池とし、かつ正極の容量を負極の容量より著しく大き
くすることにより負極の容量を測定できるようにした。
The various storage batteries obtained as a result were all open batteries, and the capacity of the negative electrode was made significantly larger than the capacity of the negative electrode so that the capacity of the negative electrode could be measured.

また、上記比較水素吸蔵合金1〜9は、これを構成する
成分含有量(第1表に※印を付したもの)が、この発明
の範囲から外れたものである。
Further, in the above comparative hydrogen storage alloys 1 to 9, the content of the constituent components (marked with * in Table 1) is out of the range of the present invention.

つぎに、これらの各種の蓄電池について、充放電速度:
0.2C、充電電気量:負極容量の130% の条件で充・放電試験を行ない、1回の充電と放電を1
サイクルとし、100サイクル後、200サイクル後、および
300サイクル後における放電容量をそれぞれ測定し、さ
らに上記の各種粉末状水素吸蔵合金を負極として用い、
いずれも正極規制のAAサイズ(容量:1000mAh)の密
閉型Ni−水素蓄電池をそれぞれ組立て、これについて
自己放電試験を行ない、その結果を第1表に示した。
Next, for these various storage batteries, the charge / discharge rate:
0.2C, amount of electricity charged: 130% of negative electrode capacity Charge / discharge test is performed under the conditions
Cycle, 100 cycles, 200 cycles, and
The discharge capacity after 300 cycles was measured, and each of the above powdery hydrogen storage alloys was used as a negative electrode.
In each case, an AA size (capacity: 1000 mAh) sealed Ni-hydrogen storage battery regulated by the positive electrode was assembled, and a self-discharge test was conducted for each, and the results are shown in Table 1.

さらに、詳述すれば第1表に示される粉末状水素吸蔵合
金粉末を用い、平面サイズを90mm×40mm、厚さ:0.60〜
0.65mmとして、容量:1450〜1500mAh(活物質充填量:
約6g)とする以外は、上記の充放電試験で用いた蓄電
池の負極板と同一の条件で負極板を製造し、一方正極板
は、95%の多孔度を有するNiウイスカー不織布に水酸
化ニッケル〔Ni(OH)〕を活物質として充填し、
乾燥し、さらにプレス加工した後、リードを取付けて、
平面寸法:70mm×40mm、厚さ:0.65〜0.70mmの形状(容
量:1000〜1050mAh)とすることにより製造し、この結
果得られた負極板と正極板を、セパレータを介してうず
巻き状にした状態で、電解液と共にケース(これは端
子と兼用)の中に収容した構造の密閉型Ni−水素蓄電
池を製造した。
Furthermore, in detail, the powdery hydrogen storage alloy powder shown in Table 1 is used, the plane size is 90 mm × 40 mm, the thickness: 0.60 ~
As 0.65 mm, capacity: 1450 to 1500 mAh (active material filling amount:
A negative electrode plate was manufactured under the same conditions as the negative electrode plate of the storage battery used in the above charge / discharge test except that the amount was about 6 g), while the positive electrode plate was a Ni whisker nonwoven fabric having a porosity of 95% and nickel hydroxide. [Ni (OH) 2 ] is filled as an active material,
After drying and pressing, attach the leads,
Planar dimensions: 70 mm x 40 mm, thickness: 0.65 to 0.70 mm (capacity: 1000 to 1050 mAh), and the resulting negative electrode plate and positive electrode plate were spirally wound through a separator. In this state, a sealed Ni-hydrogen storage battery having a structure of being housed in a case (which also serves as a terminal) together with an electrolytic solution was manufactured.

なお、上記の各種密閉型Ni−水素蓄電池において、正
極容量より負極容量を大きくしたのは、正極律則の蓄電
池を構成するためである。
In addition, in the above various sealed Ni-hydrogen storage batteries, the reason why the negative electrode capacity was made larger than the positive electrode capacity was to configure a storage battery of positive electrode law.

また、自己放電試験は、まず室温で 0.2C(200mA)で
7時間充電し、ついで蓄電池を45℃に温度をセットして
ある恒温槽中に開路状態(電池に負荷をかけない状態)
で、1週間放置および2週間放置し、放置後、とり出し
て、室温で 0.2C(200mA)放電を行ない、容量残存率を
求めることにより行なった。
In the self-discharge test, first charge at room temperature 0.2C (200mA) for 7 hours, then open the storage battery in the thermostat with the temperature set to 45 ° C (no load on the battery).
The sample was left for 1 week and 2 weeks, taken out, discharged at room temperature for 0.2 C (200 mA), and the residual capacity ratio was determined.

さらに、上記の各種の水素吸蔵合金について、一般にH
uey試験と呼ばれている方法を用い、試験片を上記のイ
ンゴットより切り出してプラスチック樹脂に埋め込み、
腐食面をエメリーペーパー#600 で研磨仕上げした状態
で、コールドフィンガー型コンデンサー付三角フラスコ
に装入し、沸騰した30%KOH水溶液中に 144時間保持
の条件でアルカリ電解液腐食試験を行ない、試験後の腐
食減量を測定した。これらの測定結果も第1表に示し
た。
Furthermore, regarding the above various hydrogen storage alloys, in general, H
Using a method called uey test, cut out the test piece from the above ingot and embed it in plastic resin,
After the corroded surface was polished with Emery Paper # 600, put it in an Erlenmeyer flask equipped with a cold finger type condenser, and perform an alkaline electrolyte corrosion test in a boiling 30% KOH aqueous solution for 144 hours. The corrosion weight loss was measured. The results of these measurements are also shown in Table 1.

〔発明の効果〕〔The invention's effect〕

第1表に示される結果から、本発明水素吸蔵合金1〜20
は、いずれも従来水素吸蔵合金に比して、アルカリ電解
液に対してすぐれた耐食性を示し、さらにこれを負極活
物質として用いてなる蓄電池は、いずれも高容量であ
り、かつ従来水素吸蔵合金を用いた蓄電池に比して充・
放電サイクルを繰り返した場合の容量低下が著しく小さ
いという好ましい結果を示すのに対して、比較水素吸蔵
合金1〜9に見られるように、構成成分のうちのいずれ
かの含有量でもこの発明の範囲から外れると、アルカリ
電解液に対する耐食性が低下したり、またこれを蓄電池
の負極活物質として用いた場合には、蓄電池の放電容量
や自己放電に劣化傾向が現われるようになることが明ら
かです。
From the results shown in Table 1, the present hydrogen storage alloys 1 to 20
Are both excellent in corrosion resistance to alkaline electrolytes as compared with conventional hydrogen storage alloys, and storage batteries using this as a negative electrode active material are both high-capacity and conventional hydrogen storage alloys. Compared to storage batteries using
In contrast to the preferable result that the capacity decrease when the discharge cycle is repeated is remarkably small, the content of any one of the constituent components falls within the scope of the present invention as seen in Comparative Hydrogen Storage Alloys 1 to 9. If it is out of the range, it is clear that the corrosion resistance to the alkaline electrolyte decreases, and that if it is used as the negative electrode active material of the storage battery, the discharge capacity and self-discharge of the storage battery will tend to deteriorate.

上述のように、この発明の水素吸蔵Ni−Zr系合金
は、アルカリ電解液に対する耐食性にすぐれているほ
か、特に密閉型Ni−水素蓄電池の負極活物質として用
いた場合に、負極活物質に要求される特性をすべて十分
満足する状態で具備しているので、蓄電池の自己放電が
著しく低減し、さらに長いサイクル寿命に亘って大きな
放電容量が確保されるようになるなど工業上有用な特性
を有するのである。
As described above, the hydrogen-absorbing Ni-Zr alloy of the present invention has excellent corrosion resistance to an alkaline electrolyte, and particularly when used as a negative electrode active material of a sealed Ni-hydrogen storage battery, it is required as a negative electrode active material. It has industrially useful characteristics such as self-discharge of the storage battery is significantly reduced and a large discharge capacity is secured over a long cycle life because it has all the characteristics described above in a state of being sufficiently satisfied. Of.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Ti :5〜20%、Zr :10〜37%、 Mn :5〜30%、W :0.01〜15%、 Fe :1〜30%、 を含有し、残りがNi と不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn型結晶
構造をもった水素吸蔵Ni−Zr 系合金。
1. Ti: 5 to 20%, Zr: 10 to 37%, Mn: 5 to 30%, W: 0.01 to 15%, Fe: 1 to 30%, the rest being Ni and inevitable impurities. A hydrogen storage Ni-Zr-based alloy having a MgZn 2 type crystal structure, characterized in that it has a composition of (at least by weight).
【請求項2】Ti :5〜20%、Zr :10〜37%、 Mn :5〜30%、W :0.01〜15%、 Fe :1〜30%、 を含有し、残りがNi と不可避不純物からなる組成(以
上重量%)を有するMgZn型結晶構造をもった水素
吸蔵Ni−Zr系合金を負極活物質として用いてなる密閉
型Ni −水素蓄電池。
2. Ti: 5 to 20%, Zr: 10 to 37%, Mn: 5 to 30%, W: 0.01 to 15%, Fe: 1 to 30%, and the balance Ni and inevitable impurities. A sealed Ni-hydrogen storage battery using as a negative electrode active material a hydrogen storage Ni-Zr-based alloy having a MgZn 2 type crystal structure having a composition of (at least by weight).
【請求項3】Ti :5〜20%、Zr :10〜37%、 Mn :5〜30%、W :0.01〜15%、 Fe :1〜30%、 を含有し、さらに、 Cr :0.05〜6%およびAl :0.01〜5%、のうちの1
種または2種、 を含有し、残りがNi と不可避不純物からなる組成(以
上重量%)を有することを特徴とするMgZn型結晶
構造をもった水素吸蔵Ni−Zr 系合金。
3. Ti: 5-20%, Zr: 10-37%, Mn: 5-30%, W: 0.01-15%, Fe: 1-30%, and Cr: 0.05-. 6% and Al: 0.01-5%, one of
A hydrogen-storing Ni-Zr-based alloy having a MgZn 2 type crystal structure, characterized in that the hydrogen-storing Ni-Zr-based alloy has a composition (containing at least wt.
【請求項4】Ti :5〜20%、Zr :10〜37%、 Mn :5〜30%、W :0.01〜15%、 Fe :1〜30%、 を含有し、さらに、 Cr :0.05〜6%およびAl :0.01〜5%、のうちの1
種または2種、 を含有し、残りがNi と不可避不純物からなる組成(以
上重量%)を有するMgZn型結晶構造をもった水素
吸蔵Ni−Zr系合金を負極活物質として用いてなる密閉
型Ni−水素蓄電池。
4. Ti: 5-20%, Zr: 10-37%, Mn: 5-30%, W: 0.01-15%, Fe: 1-30%, and Cr: 0.05-. 6% and Al: 0.01-5%, one of
Sealed type using as a negative electrode active material a hydrogen storage Ni—Zr alloy having a MgZn 2 type crystal structure having a composition of Ni and unavoidable impurities (above wt%) Ni-hydrogen storage battery.
JP1273404A 1988-12-27 1989-10-20 Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery Expired - Lifetime JPH0639644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273404A JPH0639644B2 (en) 1988-12-27 1989-10-20 Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33042388 1988-12-27
JP63-330423 1988-12-27
JP1273404A JPH0639644B2 (en) 1988-12-27 1989-10-20 Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH02263944A JPH02263944A (en) 1990-10-26
JPH0639644B2 true JPH0639644B2 (en) 1994-05-25

Family

ID=18232443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273404A Expired - Lifetime JPH0639644B2 (en) 1988-12-27 1989-10-20 Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH0639644B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293660B1 (en) * 1987-05-15 1993-06-16 Matsushita Electric Industrial Co., Ltd. Hydrogen storage electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293660B1 (en) * 1987-05-15 1993-06-16 Matsushita Electric Industrial Co., Ltd. Hydrogen storage electrodes

Also Published As

Publication number Publication date
JPH02263944A (en) 1990-10-26

Similar Documents

Publication Publication Date Title
EP0342654B1 (en) Hydrogen absorbing ni-based alloy and rechargeable alkaline battery
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2762715B2 (en) Hydrogen storage Ni-Zr alloy
JP2762717B2 (en) Hydrogen storage Ni-Zr alloy
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JP2762713B2 (en) Hydrogen storage Ni-Zr alloy
JP2762663B2 (en) Hydrogen storage Ni-Zr alloy
JP2762667B2 (en) Hydrogen storage Ni-Zr alloy
JP2762702B2 (en) Hydrogen storage Ni-Zr alloy
JP2762701B2 (en) Hydrogen storage Ni-Zr alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy
JP2762700B2 (en) Hydrogen storage Ni-Zr alloy
JP2806013B2 (en) Hydrogen storage Ni-Zr alloy
JP2762668B2 (en) Hydrogen storage Ni-Zr alloy
JP2806011B2 (en) Hydrogen storage Ni-Zr alloy
JP2762662B2 (en) Hydrogen storage Ni-Zr alloy
JPH0639644B2 (en) Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery
JPH0675398B2 (en) Sealed alkaline storage battery
JP2806010B2 (en) Hydrogen storage Ni-Zr alloy
JP2847931B2 (en) Hydrogen storage Ni-Zr alloy
JP2806012B2 (en) Hydrogen storage Ni-Zr alloy
JPH0639646B2 (en) Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery
JP2762714B2 (en) Hydrogen storage Ni-Zr alloy
JPH0639645B2 (en) Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery
JP2762671B2 (en) Hydrogen storage Ni-Zr alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 16