JP2762669B2 - Hydrogen storage Ni-Zr alloy - Google Patents
Hydrogen storage Ni-Zr alloyInfo
- Publication number
- JP2762669B2 JP2762669B2 JP2083482A JP8348290A JP2762669B2 JP 2762669 B2 JP2762669 B2 JP 2762669B2 JP 2083482 A JP2083482 A JP 2083482A JP 8348290 A JP8348290 A JP 8348290A JP 2762669 B2 JP2762669 B2 JP 2762669B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- alloy
- hydrogen
- negative electrode
- capacity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、MgZn2型結晶構造、すなわち六方晶C14型
結晶構造をもち、特に密閉型Ni−水素蓄電池の負極活物
質として用いるのに適した水素吸蔵Ni-Zr系合金に関す
るものである。The present invention has a MgZn 2 type crystal structure, that is, a hexagonal C14 type crystal structure, and is particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery. And a hydrogen storage Ni-Zr alloy.
一般に、密閉型Ni−水素蓄電池が、水素吸蔵合金を活
物質として用いてなる負極と、Ni正極と、さらにセパレ
ータおよびアルカリ電解液で構成され、かつ前記負極を
構成する水素吸蔵合金には、 (a) 室温付近での水素吸蔵・放出能が大きい。Generally, a sealed Ni-hydrogen storage battery is composed of a negative electrode using a hydrogen storage alloy as an active material, a Ni positive electrode, a separator and an alkaline electrolyte, and a hydrogen storage alloy constituting the negative electrode includes the following: a) Large hydrogen storage / release capability near room temperature.
(b) PCT曲線における室温付近の温度でのプラトー
圧に相当する平衡水素解離圧が比較的低い(5気圧以
下)。(B) The equilibrium hydrogen dissociation pressure corresponding to the plateau pressure near room temperature in the PCT curve is relatively low (5 atm or less).
(c) アルカリ電解液中で耐食性および耐久性(耐劣
化性)がある。(C) Corrosion resistance and durability (deterioration resistance) in an alkaline electrolyte.
(d) 水素酸化能(触媒作用)が大きい。(D) Hydrogen oxidation ability (catalysis) is large.
(e) 水素の吸蔵・放出の繰返しに伴う微粉化が起り
難い。(E) Pulverization hardly occurs due to repeated storage and release of hydrogen.
(f) 無(低)公害である。(F) There is no (low) pollution.
(g) 低コストである。(G) Low cost.
以上(a)〜(g)の性質を具備することが望まれ、
さらにこのような性質を具備した水素吸蔵合金を負極の
活物質として用いてなる密閉型Ni−水素蓄電池は、大き
な放電容量、長い充・放電サイクル寿命、すぐれた急速
充・放電特性、および低自己放電などの好ましい性能を
発揮するようになることも良く知られるところである。It is desired to have the above properties (a) to (g),
Furthermore, a sealed Ni-Hydrogen storage battery using a hydrogen storage alloy having such properties as an active material of a negative electrode has a large discharge capacity, a long charge / discharge cycle life, excellent rapid charge / discharge characteristics, and low self-charge characteristics. It is also well known that preferable performance such as discharge is exhibited.
したがって、特に密閉型Ni−水素蓄電池の負極を構成
する活物質として用いるのに適した水素吸蔵合金の開発
が盛んに行なわれ、例えば特開昭61-45563号公報に記載
されるMgZn2型結晶構造、すなわち六方晶C14型結晶構造
をもった水素吸蔵合金はじめ、多数の水素吸蔵合金が提
案されている。Therefore, development of a hydrogen storage alloy particularly suitable for use as an active material constituting a negative electrode of a sealed Ni-hydrogen storage battery has been actively conducted, for example, MgZn type 2 crystal described in JP-A-61-45563. Many hydrogen storage alloys have been proposed, including a hydrogen storage alloy having a structure, that is, a hexagonal C14 type crystal structure.
しかし、すでに提案されているいずれの水素吸蔵合金
も密閉型Ni−水素蓄電池の負極活物質として用いる場合
に要求される上記の性質をすべて満足して具備するもの
ではなく、より一層の開発が望まれているのが現状であ
る。However, none of the hydrogen storage alloys already proposed satisfy all of the above properties required when used as a negative electrode active material of a sealed Ni-hydrogen storage battery, and further development is desired. It is the present situation.
そこで、本発明者等は、上述のような観点から、特に
密閉型Ni−水素蓄電池の負極活物質として用いるのに適
した水素吸蔵合金を開発すべく研究を行なった結果、重
量%で(以下%は重量%を示す)、 Zr:10〜37%、Ti:5〜30%、 Mn:5〜30%、Fe:1〜30%、 Co:0.5〜20%、W :0.01〜15%、 Al:0.01〜5%、 を含有し、さらに必要に応じて、 Cu:0.1〜16%、Cr:0.1〜15%、 を含有し、残りがNiと不可避不純物からなる組成を有す
る水素吸蔵Ni-Zr系合金は、MgZn2型結晶構造(六方晶C1
4型結晶構造)をもち、密閉型Ni−水素蓄電池の負極活
物質として用いる場合に要求される上記(a)〜(g)
の性質を十分満足した状態で具備し、したがってこれを
負極活物質として用いた密閉型Ni−水素蓄電池は、大き
なエネルギー密度と電気容量をもち、かつ長いサイクル
寿命を示すようになるほか、自己放電が小さくなり、さ
らに高率充・放電特性にもすぐれ、無公害および低コス
トと合わせて、すぐれた性能を発揮するようになるとい
う研究結果を得たのである。In view of the above, the present inventors have conducted research to develop a hydrogen storage alloy particularly suitable for use as a negative electrode active material of a sealed Ni-hydrogen storage battery, and as a result, the weight% % Indicates weight%), Zr: 10-37%, Ti: 5-30%, Mn: 5-30%, Fe: 1-30%, Co: 0.5-20%, W: 0.01-15%, Al: 0.01 to 5%, and further, if necessary, Cu: 0.1 to 16%, Cr: 0.1 to 15%, with the balance being Ni and unavoidable impurities. The Zr-based alloy has a MgZn type 2 crystal structure (hexagonal C1
(A) to (g) required when used as a negative electrode active material of a sealed Ni-hydrogen storage battery
The sealed Ni-Hydrogen storage battery using this as a negative electrode active material has a large energy density and electric capacity, has a long cycle life, and has a self-discharge property. The research results have shown that, in addition to the low charge and discharge characteristics, excellent performance can be achieved in combination with low pollution and low cost.
この発明は、上記研究結果にもとづいてなされたもの
であって、以下に上記水素吸蔵Ni-Zr系合金の成分組成
を上記の通りに限定した理由を説明する。The present invention has been made based on the above research results, and the reason for limiting the component composition of the above-mentioned hydrogen-absorbing Ni-Zr-based alloy as described above will be described below.
(a) ZrおよびTi これらの成分には、共存した状態で合金に望ましい水
素吸蔵・放出特性を具備せしめると共に、室温における
平衡水素解離圧(プラトー圧)を、例えば5気圧以下に
低下させる作用があるが、その含有量がそれぞれZr:10
%未満およびTi:5%未満では前記作用に所望の効果が得
られず、一方Zrの含有量が37%を越えると、放電容量の
水素解離圧依存の点では問題はないが、水素吸蔵・放出
能が低下するようになり、またTiの含有量が30%を越え
ると、平衡水素解離圧が例えば5気圧以上に上昇するよ
うになり、大きな放電容量を確保するためには高い水素
解離圧を必要とするようになって蓄電池として好ましく
ないものとなることから、その含有量を、それぞれZr:1
0〜37%、Ti:5〜30%と定めた。(A) Zr and Ti These components not only provide the alloy with desirable hydrogen storage / release characteristics in the coexisting state, but also reduce the equilibrium hydrogen dissociation pressure (plateau pressure) at room temperature to, for example, 5 atm or less. However, its content is Zr: 10
% And Ti: less than 5%, the desired effect cannot be obtained. On the other hand, if the Zr content exceeds 37%, there is no problem in terms of the discharge capacity depending on the hydrogen dissociation pressure. When the release capacity decreases and the Ti content exceeds 30%, the equilibrium hydrogen dissociation pressure increases, for example, to 5 atmospheres or more, and in order to secure a large discharge capacity, a high hydrogen dissociation pressure is required. Is required as a storage battery, so that its content is Zr: 1
0 to 37%, Ti: 5 to 30%.
(b) Mn Mn成分には、水素吸蔵・放出能を向上させ、かつアル
カリ電解液中での合金の耐食性および耐久性を向上させ
るほか、蓄電池の負極活物質として用いた場合に自己放
電を抑制する作用があるが、その含有量が5%未満では
前記作用に所望の効果が得られず、一方その含有量が30
%を越えると、水素吸蔵・放出特性が損なわれるように
なることから、その含有量を5〜30%と定めた。(B) Mn The Mn component improves hydrogen storage / release capability, improves the corrosion resistance and durability of the alloy in an alkaline electrolyte, and suppresses self-discharge when used as a negative electrode active material for storage batteries. However, if the content is less than 5%, the desired effect cannot be obtained, while the content is less than 30%.
%, The hydrogen storage / release characteristics are impaired, so the content was determined to be 5 to 30%.
(c) Fe Fe成分には、水素化物を一段と安定化し、もって蓄電
池性能の安定化に寄与する作用があるほか、Niの一部代
替成分として用いてもNiによってもたらされる作用効果
が損なわれることがないので、経済性を考慮して含有さ
れるが、その含有量が1%未満では前記作用に所望の効
果が得られず、一方その含有量が30%を越えると、水素
吸蔵能が低下するようになることから、その含有量を1
〜30%と定めた。(C) Fe The Fe component has the effect of further stabilizing hydrides, thereby contributing to the stabilization of storage battery performance, and the effect of Ni is impaired even when used as a partial substitute for Ni. However, if the content is less than 1%, the desired effect cannot be obtained, whereas if the content exceeds 30%, the hydrogen storage capacity is reduced. The content is 1
~ 30%.
(d) Co Co成分には、水素吸蔵能を一段と増大させ、もってNi
−水素蓄電池の負極活物質として用いた場合に放電容量
を増加させて、その使用寿命の著しい延命化に寄与する
作用があるが、その含有量が0.5%未満では前記作用に
所望の効果が得られず、一方その含有量が20%を越えて
も前記作用により一層の向上効果が見られないことか
ら、経済性を考慮して、その含有量を0.5〜20%と定め
た。(D) Co In the Co component, the hydrogen storage capacity is further increased,
-When used as a negative electrode active material of a hydrogen storage battery, it has an effect of increasing the discharge capacity and contributing to significantly prolonging the service life of the battery. However, if the content is less than 0.5%, a desired effect can be obtained in the above-mentioned effect. On the other hand, even if the content exceeds 20%, no further improvement effect is seen by the above-mentioned action, so that the content is set to 0.5 to 20% in consideration of economy.
(e) W W成分には、アルカリ電解液中での合金の耐食性を一
段と向上させると共に、耐久性も向上させ、さらに蓄電
池の負極活物質としての実用に際して自己放電を抑制す
る作用があるが、その含有量が0.01%未満では前記作用
に所望の効果が得られず、一方、その含有量が15%を越
えると、水素吸蔵・放出特性が損なわれるようになるこ
とから、その含有量を0.01〜15%と定めた。(E) W The W component has the effect of further improving the corrosion resistance of the alloy in an alkaline electrolyte, improving the durability, and suppressing self-discharge in practical use as a negative electrode active material of a storage battery. If the content is less than 0.01%, the desired effect cannot be obtained in the above-mentioned action. On the other hand, if the content exceeds 15%, the hydrogen storage / release characteristics will be impaired. ~ 15%.
(f) Al Al成分には、水素吸蔵・放出能を低下させることな
く、合金の耐食性を一段と向上させ、もって蓄電池の自
己放電を一層抑制する作用があるが、その含有量が0.01
%未満では前記作用に所望の効果が得られず、一方その
含有量が5%を越えると、水素吸蔵・放出能が目立って
低下するようになることから、その含有量を0.01〜5%
と定めた。(F) Al The Al component has the effect of further improving the corrosion resistance of the alloy without deteriorating the ability to absorb and release hydrogen, thereby further suppressing self-discharge of the storage battery.
If the content is less than 5%, the desired effect cannot be obtained. If the content is more than 5%, the hydrogen storage / release ability will be remarkably reduced.
It was decided.
(g) Cu Cu成分には、水素吸蔵・放出量の増大および平衡水素
圧の適正化を一段と促進する作用があるので、必要に応
じて含有されるが、その含有量が1%未満では前記作用
に所望の向上効果が得られず、一方その含有量が7%を
越えると、水素吸蔵・放出量の低下を招き、放電容量が
低下するようになることから、その含有量を1〜7%と
定めた。(G) Cu The Cu component has an effect of further increasing the amount of hydrogen occlusion and release and further optimizing the equilibrium hydrogen pressure. Therefore, the Cu component is contained as necessary. If the desired effect is not obtained, the content exceeds 7%. On the other hand, if the content exceeds 7%, the amount of hydrogen occlusion and release is reduced, and the discharge capacity is reduced. %.
(h) Cr Cr成分には、水素吸蔵・放出能を低下させることな
く、アルカリ電解液中での耐食性を一段と向上させる作
用があるので、必要に応じて含有されるが、その含有量
が0.1%未満では前記作用に所望の向上効果が得られ
ず、一方その含有量が15%を越えると、水素吸蔵・放出
能が低下するようになることから、その含有量を0.1〜1
5%と定めた。(H) Cr The Cr component has an effect of further improving the corrosion resistance in the alkaline electrolyte without lowering the hydrogen absorbing / desorbing ability, and is contained as necessary. When the content is less than 15%, the desired effect of improving the effect cannot be obtained. On the other hand, when the content is more than 15%, the ability to absorb and release hydrogen is reduced.
It was set at 5%.
つぎに、この発明の水素吸蔵Ni-Zr系合金を実施例に
より具体的に説明する。Next, the hydrogen-absorbing Ni-Zr-based alloy of the present invention will be specifically described with reference to examples.
通常の高周波誘導溶解炉を用い、Ar雰囲気中にてそれ
ぞれ第1表に示される成分組成をもったNi-Zr系合金溶
湯を調製し、銅鋳型に鋳造してインゴットとした後、こ
のインゴットをAr雰囲気中、900〜1000℃の範囲内の所
定温度に5時間保持の条件で焼鈍し、ついでジョークラ
ッシャを用い、粗粉砕して直径:2mm以下の粗粒とし、さ
らにボールミルを用いて微粉砕して350mesh以下の粒度
とすることによりいずれもMgZn2型結晶構造をもった本
発明水素吸蔵合金1〜23、比較水素吸蔵合金1〜10、お
よび従来水素吸蔵合金をそれぞれ製造した。Using a normal high-frequency induction melting furnace, a molten Ni-Zr alloy having the component composition shown in Table 1 was prepared in an Ar atmosphere, and cast into a copper mold to form an ingot. In an Ar atmosphere, annealed at a predetermined temperature in the range of 900 to 1000 ° C. for 5 hours, then coarsely pulverized using a jaw crusher to coarse particles having a diameter of 2 mm or less, and further finely pulverized using a ball mill. By adjusting the particle size to 350 mesh or less, the hydrogen storage alloys 1 to 23 of the present invention, the comparative hydrogen storage alloys 1 to 10, and the conventional hydrogen storage alloys each having an MgZn 2 type crystal structure were produced.
ついで、この結果得られた各種の粉末状水素吸蔵合金
を活物質として用い、まず、これにポリビニールアルコ
ール(PVA)の2%水溶液を添加してペースト化した
後、95%の多孔度を有する市販のNiウイスカー不織布に
充填し、乾燥し、さらに加圧して、平面寸法:42mm×35m
mにして、厚さ:0.60〜0.65mmの形状(活物質充填量:約
2.8 g)とし、これの一辺にリードとなるNi薄板を溶接によ
り取付けて負極を製造し、一方正極として同寸法のNi焼
結板を2枚用意し、これを前記負極の両側に配置し、30
%KOH水溶液を装入することにより密閉型Ni−水素蓄電
池を製造した。Then, various powdered hydrogen storage alloys obtained as a result are used as an active material. First, a 2% aqueous solution of polyvinyl alcohol (PVA) is added to the paste to form a paste, and the paste has a porosity of 95%. Filled into a commercially available Ni whisker non-woven fabric, dried, and further pressurized, planar dimensions: 42 mm x 35 m
m, thickness: 0.60-0.65mm (Active material filling: approx.
2.8 g), and a Ni thin plate serving as a lead is attached to one side of the negative electrode by welding to produce a negative electrode. On the other hand, two Ni sintered plates having the same dimensions as a positive electrode are prepared, and placed on both sides of the negative electrode.
A sealed Ni-hydrogen storage battery was manufactured by charging an aqueous solution of 0.1% KOH.
なお、この結果得られた各種の蓄電池を、いずれも開
放電池とし、かつ正極の容量を負極の容量より著しく大
きくすることにより負極の容量を測定し易くした。The resulting storage batteries were all open batteries, and the capacity of the negative electrode was easily measured by making the capacity of the positive electrode significantly larger than the capacity of the negative electrode.
また、上記比較水素吸蔵合金1〜10は、いずれも構成
成分のうちのいずれかの成分含有量(第1表に※印を付
す)がこの発明の範囲から外れた組成をもつものであ
る。Each of the comparative hydrogen storage alloys 1 to 10 has a composition in which the content of any one of the constituent components (marked with * in Table 1) is out of the range of the present invention.
つぎに、これらの各種の蓄電池について、充放電速
度:0.2C、充電電気量:負極容量の130%の条件で充・放
電試験を行い、1回の充電と放電を1サイクルとし、11
0サイクル後、220サイクル後、および330サイクル後に
おける放電容量をそれぞれ測定した。Next, with respect to these various storage batteries, a charge / discharge test was performed under the conditions of a charge / discharge rate of 0.2 C and a charged amount of electricity: 130% of the negative electrode capacity.
The discharge capacity was measured after 0 cycles, after 220 cycles, and after 330 cycles.
また、さらに第1表に示される組成をもった各種の粉
末状水素吸蔵合金を用い、平面サイズを90mm×40mm、厚
さ:0.60〜0.65mmとして、容量:1450〜1500mAh(活物質
充填量:約6g)とする以外は、上記の充・放電試験を用
いた蓄電池の負極板と同一の条件で負極板を製造し、一
方正極板は、95%の多孔度を有するNiウイスカー不織布
に水酸化ニッケル〔Ni(OH)2〕を活物質として充填し、
乾燥し、さらにプレス加工した後、リードを取付けて、
平面寸法:70mm×40mm、厚さ:0.65〜0.70mmの形状(容
量:1000〜1050mAh)とするこにより製造し、この結果得
られた負極板と正極板を、セパレータを介してうず巻き
状にした状態で、電解液と共にケース(これは端子と
兼用)の中に収容した構造の密閉型Ni−水素蓄電池とし
た。なお、この蓄電池においては、正極容量より負極容
量を大きくして正極律則の蓄電池を構成した。Further, using various powdered hydrogen storage alloys having the compositions shown in Table 1, the plane size was 90 mm × 40 mm, the thickness was 0.60 to 0.65 mm, and the capacity was 1450 to 1500 mAh (active material filling amount: A negative plate was manufactured under the same conditions as the negative plate of the storage battery using the charge / discharge test described above, except that the weight was about 6 g). Filling nickel (Ni (OH) 2 ) as an active material,
After drying and pressing further, attach the lead,
Plane dimensions: 70 mm x 40 mm, thickness: 0.65 to 0.70 mm (capacity: 1000 to 1050 mAh), and the resulting negative and positive plates were spirally wound through a separator. In this state, a sealed Ni-hydrogen storage battery having a structure housed in a case (also used as a terminal) together with the electrolytic solution was obtained. In addition, in this storage battery, the storage capacity of the positive electrode rule was configured by making the negative electrode capacity larger than the positive electrode capacity.
また、これらの蓄電池に対する自己放電試験は、まず
室温で0.2C(200mA)で7時間充電し、ついで蓄電池を4
5℃に温度セットしてある恒温槽中に開路状態(電池に
負荷をかけない状態)で、1週間および2週間放置し、
放置後、とり出して、室温で0.2C(200mA)放電を行な
い、容量残存率を求めることにより行なった。In the self-discharge test for these batteries, the batteries were charged at room temperature for 7 hours at 0.2 C (200 mA), and then the batteries were charged for 4 hours.
Leave it open for 1 week and 2 weeks in the open circuit condition (with no load on the battery) in a thermostat set at a temperature of 5 ° C.
After leaving, the battery was taken out, discharged at 0.2 C (200 mA) at room temperature, and the remaining capacity was determined.
さらに、同じく第1表に示される成分組成をもった各
種の水素吸蔵合金について、一般にHuey試験と呼ばれて
いる方法を用い、試験片を上記のインゴットより切り出
してプラスチック樹脂に埋め込み、腐食面をエメリーペ
ーパー♯600で研磨仕上げした状態で、コールドフィン
ガー型コンデンサー付三角フラスコに装入し、沸騰した
30%KOH水溶液中に240時間保持の条件でアルカリ電解液
腐食試験を行ない、試験後の腐食減量を測定した。これ
らの測定結果を第1表に示した。Further, with respect to various hydrogen storage alloys having the component compositions shown in Table 1 as well, a test piece was cut out from the above ingot and embedded in a plastic resin using a method generally called a Huey test, and a corroded surface was formed. After being polished and finished with Emery Paper # 600, it was charged into a conical flask with a cold finger condenser and boiled.
An alkaline electrolyte corrosion test was carried out for 240 hours in a 30% KOH aqueous solution, and the corrosion loss after the test was measured. Table 1 shows the results of these measurements.
第1表に示される結果から、本発明水素吸蔵合金1〜
23は、いずれも従来水素吸蔵合金に比して、アルカリ電
解液に対してすぐれた耐食性を示し、さらにこれを密閉
型Ni−水素蓄電池の負極活物質として用いた場合、蓄電
池は高容量をもつようになり、従来水素吸蔵合金を用い
た蓄電池に比して充・放電サイクルを繰り返した場合の
容量低下が著しく小さいという好ましい結果を示すこと
が明らかであり、一方比較水素吸蔵合金1〜10に見られ
るように、構成成分のうちのいずれかの成分含有量でも
この発明の範囲から外れると、本発明水素吸蔵合金に比
して、アルカリ電解液に対する耐食性、並びにこれを蓄
電池の負極活物質として用いた場合の蓄電池の放電容量
および自己放電のうちの少なくともいずれかの特性が劣
ったものになることが明らかである。From the results shown in Table 1, the hydrogen storage alloys of the present invention 1 to
No. 23 shows superior corrosion resistance to alkaline electrolyte compared to conventional hydrogen storage alloys, and when this is used as a negative electrode active material of a sealed Ni-hydrogen storage battery, the storage battery has a high capacity Thus, it is clear that the capacity decrease when the charge / discharge cycle is repeated is remarkably small as compared with the storage battery using the conventional hydrogen storage alloy, and it is clear that the comparative hydrogen storage alloys 1 to 10 show favorable results. As can be seen, even if the content of any of the constituents deviates from the scope of the present invention, compared to the hydrogen storage alloy of the present invention, the corrosion resistance to the alkaline electrolyte, and as a negative electrode active material of the storage battery It is clear that the characteristics of at least one of the discharge capacity and self-discharge of the storage battery when used are inferior.
上述のように、この発明の水素吸蔵Ni-Zr系合金は、
アルカリ電解液に対する耐食性にすぐれているほか、特
に密閉型Ni−水素蓄電池の負極活物質として用いた場合
に、負極活物質に要求される特性をすべて十分満足する
状態で具備しているので、蓄電池の自己放電が著しく低
減し、さらに長いサイクル寿命に亘って大きな放電容量
が確保されるようになるなど工業上有用な特性を有する
のである。As described above, the hydrogen storage Ni-Zr-based alloy of the present invention is:
In addition to having excellent corrosion resistance to alkaline electrolytes, and especially when used as a negative electrode active material for sealed Ni-Hydrogen batteries, it has all the characteristics required for the negative electrode active material in a state that fully satisfies it. This has industrially useful characteristics such as a significant reduction in self-discharge and a large discharge capacity over a long cycle life.
Claims (4)
重量%)を有することを特徴とするMgZn2型結晶構造を
もった水素吸蔵Ni-Zr系合金。[Claim 1] Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Co: 0.5 to 20%, W: 0.01 to 15%, Al: 0.01 A hydrogen-absorbing Ni-Zr-based alloy having a MgZn 2- type crystal structure, characterized in that the alloy contains Ni and inevitable impurities (the weight percentage being at least 5%).
重量%)を有することを特徴とするMgZn2型結晶構造を
もった水素吸蔵Ni-Zr系合金。2. Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Co: 0.5 to 20%, W: 0.01 to 15%, Al: 0.01 A MgZn type 2 crystal structure characterized in that the composition contains Cu: 0.1 to 16%, and the balance has a composition (more than weight%) consisting of Ni and unavoidable impurities. Hydrogen storage Ni-Zr alloy.
重量%)を有することを特徴とするMgZn2型結晶構造を
もった水素吸蔵Ni-Zr系合金。3. Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Co: 0.5 to 20%, W: 0.01 to 15%, Al: 0.01 5%, containing further, Cr: 0.1 to 15%, containing, rest with MgZn 2 type crystal structure and having a composition consisting of Ni and inevitable impurities (% by weight or more) Hydrogen storage Ni-Zr alloy.
重量%)を有することを特徴とするMgZn2型結晶構造を
もった水素吸蔵Ni-Zr系合金。4. Zr: 10 to 37%, Ti: 5 to 30%, Mn: 5 to 30%, Fe: 1 to 30%, Co: 0.5 to 20%, W: 0.01 to 15%, Al: 0.01 MgZn, characterized in that the composition further comprises: Cu: 0.1 to 16%, Cr: 0.1 to 15%, and the balance is composed of Ni and unavoidable impurities (more than weight%). A hydrogen-absorbing Ni-Zr alloy with a type 2 crystal structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2083482A JP2762669B2 (en) | 1990-03-30 | 1990-03-30 | Hydrogen storage Ni-Zr alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2083482A JP2762669B2 (en) | 1990-03-30 | 1990-03-30 | Hydrogen storage Ni-Zr alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03285037A JPH03285037A (en) | 1991-12-16 |
JP2762669B2 true JP2762669B2 (en) | 1998-06-04 |
Family
ID=13803691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2083482A Expired - Lifetime JP2762669B2 (en) | 1990-03-30 | 1990-03-30 | Hydrogen storage Ni-Zr alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2762669B2 (en) |
-
1990
- 1990-03-30 JP JP2083482A patent/JP2762669B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03285037A (en) | 1991-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2805994B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762715B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762717B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762663B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762667B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762669B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762699B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762668B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762702B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762713B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2806013B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762662B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762701B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2806011B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762700B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2806012B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2847931B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762714B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2806010B2 (en) | Hydrogen storage Ni-Zr alloy | |
JP2762671B2 (en) | Hydrogen storage Ni-Zr alloy | |
JPH0675398B2 (en) | Sealed alkaline storage battery | |
JPH0639646B2 (en) | Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery | |
JPH07103434B2 (en) | Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery | |
JPH0639645B2 (en) | Hydrogen storage Ni-Zr alloy and sealed Ni-hydrogen storage battery | |
JPH0639644B2 (en) | Hydrogen storage N-below i-Zr alloy and sealed Ni-hydrogen storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080327 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100327 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100327 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100327 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110327 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110327 Year of fee payment: 13 |