[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06331515A - Gas-in-oil analyzer - Google Patents

Gas-in-oil analyzer

Info

Publication number
JPH06331515A
JPH06331515A JP5125958A JP12595893A JPH06331515A JP H06331515 A JPH06331515 A JP H06331515A JP 5125958 A JP5125958 A JP 5125958A JP 12595893 A JP12595893 A JP 12595893A JP H06331515 A JPH06331515 A JP H06331515A
Authority
JP
Japan
Prior art keywords
gas
oil
extracted
calibration tube
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5125958A
Other languages
Japanese (ja)
Other versions
JP3203608B2 (en
Inventor
Youichi Tenbou
洋一 天皃
Toshiki Shirahata
年樹 白畑
Yoshihiko Kaneko
好彦 金子
Takashi Kiryu
隆 桐生
Tsukasa Yoneyama
司 米山
Koichi Murata
孝一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP12595893A priority Critical patent/JP3203608B2/en
Publication of JPH06331515A publication Critical patent/JPH06331515A/en
Application granted granted Critical
Publication of JP3203608B2 publication Critical patent/JP3203608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To remarkably improve the analyzing efficiency and to also improve the analyzing accuracy. CONSTITUTION:Since a degassing unit 19 and a calibration tube 4 are evacuated in vacuum, dissolved gas in the unit 19 is extracted by utilizing the pressure difference between the unit 19 and an oil thief bin 2 and extracted gas is fed to the tube 4 by utilizing the pressure difference between the unit 9 and the tube 4, the gas can be rapidly extracted from insulation oil 1, and the extracted gas which is not diluted is sent to a separator 5 to be separated to gases each consisting of a single ingredient. Since the gases are detected by corresponding sensors 8, 7, 6, the separating accuracy of the separator 5 can be sufficiently good, and the detecting accuracy of the gas consisting of a single ingredient can be sufficiently obtained. As a result, analysis having a high accuracy can be effectively executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、油入電気機器の絶縁油
中に混入しているガス成分の分析装置に係り、特に油入
変圧器の劣化診断を行うのに好適な分析装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analyzer for gas components mixed in insulating oil of oil-filled electrical equipment, and more particularly to an analyzer suitable for diagnosing deterioration of an oil-filled transformer. Is.

【0002】[0002]

【従来の技術】油中に混入しているガスを分析する第一
の従来技術としては、電気学会技術報告書(電気学会
(2)部 第344号)において論じられている。即
ち、その従来技術は、油入電気機器から絶縁油を採取し
た後、その絶縁油から各種ガス抽出法(トリチェリ法,
テプラーポンプ法等)により油中溶存ガスを抽出し、そ
の油中溶存ガスをガスクロマトグラフ内のガス分離装置
に通過させることにより、混合ガスを単一成分ガスに分
離して分析を行うことが開示されている。また第二の従
来技術として、特開昭54−126591号公報に示さ
れるものがある。即ち、この第二の従来技術は、絶縁油
中に混入しているガスを、気体を吹き込むことによって
抽出し、該抽出したガスに含まれる可燃性ガスを混合成
分のまま検出するようにしている。さらに、第三の従来
技術として、図4乃至図7に示す技術のものがある。即
ち、図4及び図5に示す従来技術のものは、絶縁油1を
入れた採油ビン2をバブリングヘッド3で塞ぎ、その採
油ビン2に送風ポンプ11でエアを送り込むことによっ
てガスを抽出し、そのガスを流路切換弁13を介し検量
管4に送り出す。そして、流路切換弁13を切換える
と、予め水蒸気除去フィルタ10によって水分が除去さ
れかつキャリアエアとしての空気が、流路切換弁13を
介し検量管4に送り込まれることにより該検量管4内の
ガスが、流路切換弁13の所定通路を介し二酸化炭素検
知器7を通過する。その際、二酸化炭素検知器7を通過
することによって二酸化炭素が検出され、また該検知器
7を通過したガスの一部が、ガス分離装置5を経ること
によって個々の成分のガスに分離され、分離されたガス
が可燃性ガス検知器8を経ることによって可燃性ガスの
みが検知され、その後、分離されたガスと前記二酸化炭
素検知器7を通過した残りのガスとに基づき演算装置9
によって演算処理することにより、種々のガスを単一成
分毎に分析するように構成されている。なお、図5は二
酸化炭素検知器7及び可燃性ガス検知器8の出力波形を
示している。また、図6及び図7に示す従来技術のもの
は、検量管4内のガスが、方向切換弁13を介し二酸化
炭素検知器7を通過した後、一酸化炭素検知器6によっ
て一酸化炭素が検出され、その後、ポンプ11′を介し
可燃性ガス検知器8を通過することによって可燃性ガス
が検知され、その検知されたガスが演算装置9によって
分析されるようにしている。なお図7は二酸化炭素検知
器7,一酸化炭素検知器6,可燃性ガス検知器8の出力
波形を夫々示している。
2. Description of the Related Art The first conventional technique for analyzing gas mixed in oil is discussed in the Technical Report of the Institute of Electrical Engineers of Japan (The Institute of Electrical Engineers of Japan (2) No. 344). That is, the related art is that after collecting insulating oil from an oil-filled electrical device, various gas extraction methods (Tricheri method,
Dissolved gas in oil is extracted by the Tepler pump method, etc., and the dissolved gas in oil is passed through a gas separation device in a gas chromatograph to separate the mixed gas into single component gases for analysis. Has been done. A second conventional technique is disclosed in Japanese Patent Application Laid-Open No. 54-126591. That is, in the second conventional technique, the gas mixed in the insulating oil is extracted by blowing the gas, and the flammable gas contained in the extracted gas is detected as the mixed component. . Further, as a third conventional technique, there is a technique shown in FIGS. That is, in the prior art shown in FIGS. 4 and 5, the oil collecting bottle 2 containing the insulating oil 1 is closed by the bubbling head 3, and air is sent to the oil collecting bottle 2 by the blower pump 11 to extract gas, The gas is sent to the calibration tube 4 via the flow path switching valve 13. Then, when the flow path switching valve 13 is switched, water is removed in advance by the water vapor removal filter 10 and air as carrier air is sent to the calibration tube 4 via the flow path switching valve 13 to cause the inside of the calibration tube 4 to change. The gas passes through the carbon dioxide detector 7 through a predetermined passage of the flow path switching valve 13. At that time, carbon dioxide is detected by passing through the carbon dioxide detector 7, and a part of the gas passing through the detector 7 is separated into individual component gases by passing through the gas separation device 5, Only the combustible gas is detected by passing the separated gas through the combustible gas detector 8, and thereafter, based on the separated gas and the remaining gas that has passed through the carbon dioxide detector 7, an arithmetic unit 9
It is configured to analyze various gases for each single component by performing arithmetic processing by. Note that FIG. 5 shows output waveforms of the carbon dioxide detector 7 and the combustible gas detector 8. Further, in the conventional technology shown in FIGS. 6 and 7, after the gas in the calibration tube 4 passes through the carbon dioxide detector 7 through the direction switching valve 13, the carbon monoxide detector 6 removes carbon monoxide. After being detected, the combustible gas is detected by passing through the combustible gas detector 8 via the pump 11 ′, and the detected gas is analyzed by the arithmetic unit 9. Note that FIG. 7 shows output waveforms of the carbon dioxide detector 7, the carbon monoxide detector 6, and the combustible gas detector 8, respectively.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記に示す
従来技術は以下の点について配慮されていない。即ち、
第一の従来技術は、絶縁油から各種ガス抽出法で溶存ガ
スを抽出し、また抽出したガスを単一成分のガスに分離
するので、ガスの抽出装置と分離装置とが別々の装置に
なっており、そのため、夫々の装置の操作が複雑である
ばかりでなく、最終的に分析するまでに時間がかかり過
ぎる問題がある。またこのような時間がかかり過ぎる装
置にあっては、分析調査の対象となる油入電気機器の台
数が多いと、一定時間内での調査台数が限られてしまう
ので、実際の作業には不向きとなるのが現状である。第
二の従来技術は、ガスを単一成分ガス毎に検知するもの
ではなく、可燃性ガスだけを混合したままの状態で検知
するので、特に単一成分ガスの濃度を測定すると云う油
入変圧器の劣化診断には不十分な問題がある。第三の従
来技術において、採油ビン2,検量管4,ポンプ11か
らなるガスの抽出部と、抽出されたガスから対応する種
類のガスを検出することによって分析し、かつ二酸化炭
素検知器7,分離装置5若しくは一酸化炭素検知器6,
ポンプ11′,可燃性ガス検知器8,演算装置からなる
分析部とが一体的に構成されているので、採油した絶縁
油を抽出部に設置するだけでガスの抽出及び分析を夫々
行うことができ、第一の従来技術に比較し、それだけ手
間のかかることがないものの、よりいっそうの時間短縮
をさせることが難しい。即ち、第三の従来技術のもの
は、例えば、分析対象となる一台目の油入変圧器からの
絶縁油を分析した後、次の油入変圧器からの絶縁油を分
析しようとすると、その前に図4に示すものと図6に示
すものとの何れも、抽出部と分析部との間で、前回の分
析調子したガスを完全に除去しなければならず、そのた
め、配管内を洗浄する必要があり、それに手間がかる難
点がある。その結果、油入電気機器の台数が多い場合、
第一の従来技術に比較し処理台数が上回るものの、一定
の時間内で良好な処理効率を得ることができない問題が
ある。
By the way, the prior art described above does not consider the following points. That is,
In the first conventional technique, dissolved gas is extracted from insulating oil by various gas extraction methods, and the extracted gas is separated into a single component gas, so that the gas extraction device and the separation device are separate devices. Therefore, not only is the operation of each device complicated, but there is also the problem that it takes too much time for the final analysis. In addition, in such a device that takes too much time, if the number of oil-filled electrical devices subject to analysis and survey is large, the number of surveys within a certain period of time will be limited, so it is not suitable for actual work. Is the current situation. The second conventional technique does not detect the gas for each single component gas, but detects only the combustible gas in a mixed state, so that the concentration of the single component gas is particularly measured. There is an unsatisfactory problem in diagnosing deterioration of vessels. In the third conventional technique, a gas extraction unit consisting of an oil collecting bottle 2, a calibration tube 4 and a pump 11 and a gas of a corresponding type are detected from the extracted gas for analysis, and a carbon dioxide detector 7, Separator 5 or carbon monoxide detector 6,
Since the pump 11 ', the combustible gas detector 8, and the analysis unit including the arithmetic unit are integrally configured, the gas extraction and analysis can be performed only by installing the collected insulating oil in the extraction unit. Although it is possible and less troublesome than the first conventional technique, it is difficult to further reduce the time. That is, in the third conventional technology, for example, when the insulating oil from the first oil-filled transformer to be analyzed is analyzed and then the insulating oil from the next oil-filled transformer is analyzed, Before that, in both the one shown in FIG. 4 and the one shown in FIG. 6, it is necessary to completely remove the gas in the previous analysis condition between the extraction section and the analysis section. It has to be cleaned, which is a difficult task. As a result, when there are many oil-filled electrical devices,
Although the number of processed units is higher than that of the first conventional technique, there is a problem that good processing efficiency cannot be obtained within a fixed time.

【0004】本発明の目的は、上記従来技術の問題点に
鑑み、分析作業効率を大幅に向上できると共に分析精度
も向上でき、以て実用的で信頼性の高い油中ガスの分析
装置を提供することにある。
In view of the above problems of the prior art, an object of the present invention is to provide a practical and highly reliable analyzer for gas in oil, which can greatly improve the analysis work efficiency and the analysis accuracy. To do.

【0005】[0005]

【課題を解決するための手段】本発明の油中ガスの分析
装置においては、採油ビン内の絶縁油から溶存ガスを抽
出する脱気部,脱気部内の抽出ガスを取り込む検量管を
有する抽出機構と、検量管からの抽出ガスを夫々の単一
成分毎に分離する分離部と、分離部によって分離された
単一成分毎のガスを種類別に検知する夫々の検知器と、
夫々の検知器の検出に基づき単一成分毎のガスの濃度を
分析する演算部とを備え、前記抽出機構が、検量管及び
脱気部間を真空引きし、かつ該脱気部内の圧力と採油ビ
ン内の圧力との差によって脱気部内に絶縁油中の溶存ガ
スを抽出させ、かつ脱気部内の圧力と検量管内との圧力
との差によって抽出ガスを検量管内に取り込む真空手段
を有している。
In the analyzer for gas in oil of the present invention, an extraction having a degassing section for extracting dissolved gas from insulating oil in an oil collecting bottle and a calibration tube for taking in the extracted gas in the degassing section A mechanism, a separation unit that separates the extracted gas from the calibration tube for each single component, and a detector that detects each single component gas separated by the separation unit by type,
And a calculation unit that analyzes the concentration of gas for each single component based on the detection of each detector, the extraction mechanism evacuates between the calibration tube and the degassing unit, and the pressure in the degassing unit. There is a vacuum means that causes the dissolved gas in the insulating oil to be extracted into the degassing section by the difference between the pressure inside the oil collection bottle and the extraction gas into the calibration tube due to the difference between the pressure inside the degassing section and the pressure inside the calibration tube. is doing.

【0006】[0006]

【作用】本発明では上述の如く、真空手段によって検量
管及び脱気部間を真空引きし、抽出機構の脱気部内と採
油ビン内の圧力差を利用することによって脱気部内に溶
存ガスを抽出し、また抽出したガスを脱気部内と検量管
内との圧力差を利用することによって検量管に送り込む
ので、溶存ガスを絶縁油から迅速に抽出することができ
る。また、真空引きしておいた検量管に脱気部からの抽
出ガスを送り込むので、抽出ガスが検量管内の空気によ
って希釈されると云うおそれがなく、しかも希釈されな
い抽出ガスを分離部に送って単一成分のガスに分離し、
その単一成分のガスを、対応する夫々の検知器で検出す
るので、分離部の分離精度を十分確保できるばかりでな
く、単一成分のガスの検出精度も十分確保できる結果、
精度の高い分析を確実に行うことができる。さらに、一
つの試料の分析が終了した後、次の試料を分析するた
め、真空手段で真空引きすることによって抽出機構を洗
浄するので、洗浄時間を短縮できるばかりでなく、洗浄
作業も簡単かつ容易となる。従って、分析処理時間の大
幅な短縮と分析精度の向上により、実用的で信頼性の高
い分析装置を提供でき、特に油入電気機器の台数が多い
場合にはいっそう顕著な効果がある。
In the present invention, as described above, the vacuum means is evacuated between the calibration tube and the degassing section and the pressure difference between the degassing section of the extraction mechanism and the oil collecting bottle is utilized to dissolve the dissolved gas in the degassing section. Since the extracted gas is sent to the calibration tube by utilizing the pressure difference between the degassing section and the calibration tube, the dissolved gas can be quickly extracted from the insulating oil. Further, since the extraction gas from the degassing section is sent to the evacuated calibration tube, there is no fear that the extraction gas will be diluted by the air in the calibration tube, and the undiluted extraction gas is sent to the separation section. Separated into single component gases,
Since the single component gas is detected by each corresponding detector, not only the separation accuracy of the separation unit can be sufficiently secured, but also the detection accuracy of the single component gas can be sufficiently secured.
Highly accurate analysis can be reliably performed. Furthermore, after the analysis of one sample is completed, the extraction mechanism is cleaned by vacuuming with the vacuum means to analyze the next sample, so not only the cleaning time can be shortened, but also the cleaning work is simple and easy. Becomes Therefore, the analysis processing time is greatly shortened and the analysis accuracy is improved, so that a practical and highly reliable analysis device can be provided, and particularly when the number of oil-filled electrical devices is large, a more remarkable effect can be obtained.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1乃至図3によ
り説明する。図1乃至図3において図4乃至図7と同一
部分には同一符号を付してある。実施例の分析装置は、
大別すると、試料としての絶縁油1から溶存ガスを抽出
する抽出機構と、抽出ガスを単一の成分に分離し、かつ
該単一成分のガスを検出する分離・分析機構とを備えて
構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 3, the same parts as those in FIGS. 4 to 7 are designated by the same reference numerals. The analyzer of the example is
When roughly classified, it is provided with an extraction mechanism for extracting a dissolved gas from the insulating oil 1 as a sample, and a separation / analysis mechanism for separating the extracted gas into a single component and detecting the gas of the single component. Has been done.

【0008】具体的に述べると、前記抽出機構は、脱気
部19と、該脱気部19に切換えコック18を介し接続
された検量管4とを有している。脱気部19は、採油ビ
ン2内の試料としての絶縁油1から溶存ガスを抽出する
ものであって、その下方位置に配置される採油ビン2と
切換えコック15を介して接続されており、内部を攪拌
するための攪拌子17を内蔵すると共に、内部を加熱す
るための加熱手段(図示せず)を設けている。また脱気
部19の上部には内部の圧力を測定する圧力計16が取
付けられ、しかもその上部のガス出口側が、切換えコッ
ク18を介し検量管4の取り込み側4aに接続されてい
る。一方、検量管4は取り込み側4a及び送り込み側4
bは図1に示すように流路切換弁13の一方に接続さ
れ、取り込み側4aの途中位置が上述の如く脱気部19
のガス出口側に接続されている。流路切換弁13は本例
では六方弁で構成され、溶存ガスの抽出時、図1に示す
如く切換えられ、また抽出ガスの分離・分析時、図2に
示す如く切換えられるようにしている。前記抽出機構
は、絶縁油1からの溶存ガスを脱気部19に抽出させ、
かつ該抽出したガスを検量管4に送り込ませる真空引き
手段を有している。該真空引き手段は、検量管4の送り
込み側4bの途中位置に接続された真空ポンプ20と、
検量管4の取り込み側4a及び脱気部19間の配管に設
置された前記切換えコック18と、脱気部19及び採油
ビン2間の配管に設置された切換えコック15とを有し
ている。真空ポンプ20は、溶存ガスの抽出に際し、流
路切換弁13が図1に示す切換え状態にあって、また切
換えコック18が開くと共に切換えコック15が閉じた
とき、真空引きすることによって脱気部19及び検量管
4内を所定のゲージ圧(−760mmHg)まで減圧す
る。そして、脱気部19及び検量管4内が真空引きした
状態にあるとき、切換えコック18を閉じると共に切換
えコック15を開くと、採油ビン2内の圧力と脱気部1
9内の圧力との差により、採油ビン2中の絶縁油を脱気
部19内に吸引すると共に、吸引した絶縁油から溶存ガ
スを脱気部19内の上部に抽出するようにしている。ま
た、この場合、脱気部19内に抽出すると、該脱気部1
9内では真空引きされた当初のゲージ圧より高い圧力
(>−760mmHg)となっており、即ち検量管4内
の圧力より高いので、その状態のときに切換えコック1
5を閉じると共に切換えコック18を開くと、脱気部1
9内の抽出ガスが切換え弁18,取り込み側4aを介し
検量管4に送り出されるようにしている。なお、真空引
きポンプ20は、真空引きした空気を大気に排出する。
More specifically, the extraction mechanism has a degassing section 19 and a calibration tube 4 connected to the degassing section 19 via a switching cock 18. The degassing section 19 is for extracting a dissolved gas from the insulating oil 1 as a sample in the oil collecting bottle 2, and is connected to the oil collecting bottle 2 arranged below the oil collecting bottle 2 via a switching cock 15. A stirrer 17 for stirring the inside is incorporated, and a heating means (not shown) for heating the inside is provided. Further, a pressure gauge 16 for measuring the internal pressure is attached to the upper part of the degassing part 19, and the gas outlet side of the upper part is connected to the intake side 4a of the calibration tube 4 via a switching cock 18. On the other hand, the calibration tube 4 includes the intake side 4a and the feed side 4
As shown in FIG. 1, b is connected to one side of the flow path switching valve 13, and the intermediate position of the intake side 4a is the deaerator 19 as described above.
It is connected to the gas outlet side of. The flow path switching valve 13 is constituted by a six-way valve in this example, and is switched as shown in FIG. 1 when the dissolved gas is extracted, and as shown in FIG. 2 when the extracted gas is separated and analyzed. The extraction mechanism causes the degassing section 19 to extract the dissolved gas from the insulating oil 1,
Further, it has a vacuuming means for sending the extracted gas into the calibration tube 4. The evacuation means is a vacuum pump 20 connected to an intermediate position on the feeding side 4b of the calibration tube 4,
It has the switching cock 18 installed in the pipe between the intake side 4a of the calibration pipe 4 and the degassing unit 19, and the switching cock 15 installed in the pipe between the degassing unit 19 and the oil collecting bottle 2. When extracting the dissolved gas, the vacuum pump 20 has a degassing section by drawing a vacuum when the flow path switching valve 13 is in the switching state shown in FIG. 1 and the switching cock 18 is open and the switching cock 15 is closed. 19 and the inside of the calibration tube 4 are decompressed to a predetermined gauge pressure (-760 mmHg). Then, when the deaeration unit 19 and the inside of the calibration tube 4 are evacuated, when the switching cock 18 is closed and the switching cock 15 is opened, the pressure in the oil collecting bottle 2 and the deaeration unit 1
The insulating oil in the oil collecting bottle 2 is sucked into the degassing section 19 due to the difference in pressure from the inside of the oil collecting bottle 2, and the dissolved gas is extracted from the sucked insulating oil into the upper part of the degassing section 19. Further, in this case, when the gas is extracted into the degassing section 19, the degassing section 1
In 9 the pressure is higher (> -760 mmHg) than the initial gauge pressure after being evacuated, that is, it is higher than the pressure in the calibration tube 4, so in that state the switching cock 1
When 5 is closed and the switching cock 18 is opened, the degassing unit 1
The extracted gas in 9 is sent out to the calibration tube 4 via the switching valve 18 and the intake side 4a. The vacuum pump 20 discharges the vacuumed air to the atmosphere.

【0009】前記分離・分析機構は、分離部5と、夫々
の検知器と、演算部9とを有している。分離部5は内部
に多孔質粒子を有し、検量管4内の抽出ガスが供給され
ると、多孔質粒子の吸脱着作用によって単一成分のガス
に分離するものである。夫々の検知器は、通過する可燃
性ガスを燃焼させることによって検出し、かつ接触燃焼
タイプ若しくは熱線形半導体タイプからなる可燃性ガス
検知器8と、赤外吸収作用によって二酸化炭素を検出す
る二酸化炭素検知器7と、一酸化炭素を定電位電解させ
ることによって検出する一酸化炭素検知器6とからな
り、これら検知器8,7,6が分離部5の出口側に順次
設けられている。前記演算部9は、夫々の検知器6〜8
からの検出信号に基づいて演算することにより、夫々の
ガスの濃度を単一成分毎に求めるものである。また、前
記分離・分析機構は、通常は、流路切換弁13が図1に
示す如く切換えられたとき、ポンプ11からの空気のみ
が供給されることにより、分離部5及び夫々の検知器
8,7,6の機能を安定化させている。即ち、ポンプ1
1からの空気は、通常では分離部5方向に送り込まれる
ことによって分離部5及び夫々の検知器の機能を安定化
させ、また検量管4内に抽出ガスが送り込まれたとき、
流路切換弁13が図2に示す如く切換えられることによ
って取り込み側4aに送り込まれると、検量管4内の抽
出ガスを分離部5方向に送り出すキャリアエアとして機
能するものである。なお、ポンプ11の吸込み側には水
蒸気除去フィルタ10が設けられ、大気から吸い込まれ
た空気の水分が取り除かれる。さらに、前記分離・分析
機構としての前記分離部5と夫々の検知器6〜8を有す
る配管とが恒温槽21に収容されている。該恒温槽21
は、特に可燃性ガス検知器8の周囲の温度が低いと、そ
の検知器8が良好に機能し難いことから、内部を予め設
定された所定の温度に保つことにより、可燃性ガス検知
器8の検知機能を良好に維持し得るように構成されてい
る。そのため、図示していないが、恒温槽21には所定
の温度に保つための加熱手段が設けられている。
The separation / analysis mechanism has a separation unit 5, respective detectors, and a calculation unit 9. The separation part 5 has porous particles inside, and when the extraction gas in the calibration tube 4 is supplied, it is separated into a single component gas by the adsorption / desorption action of the porous particles. Each of the detectors detects a combustible gas passing therethrough by burning, and a combustible gas detector 8 of a catalytic combustion type or a thermal linear semiconductor type, and carbon dioxide for detecting carbon dioxide by an infrared absorption action. It comprises a detector 7 and a carbon monoxide detector 6 for detecting carbon monoxide by conducting a constant potential electrolysis, and these detectors 8, 7, 6 are sequentially provided on the outlet side of the separation section 5. The calculation unit 9 includes the detectors 6 to 8 respectively.
The concentration of each gas is calculated for each single component by performing calculation based on the detection signal from. Further, in the separation / analysis mechanism, normally, when the flow path switching valve 13 is switched as shown in FIG. 1, only the air from the pump 11 is supplied, so that the separation unit 5 and the respective detectors 8 are provided. , 7,6 functions are stabilized. That is, pump 1
The air from 1 stabilizes the functions of the separation unit 5 and the respective detectors by being normally sent toward the separation unit 5, and when the extraction gas is sent into the calibration tube 4,
When the flow path switching valve 13 is switched as shown in FIG. 2 to be sent to the intake side 4a, it functions as carrier air for sending the extracted gas in the calibration tube 4 toward the separation section 5. A water vapor removal filter 10 is provided on the suction side of the pump 11 to remove moisture from the air sucked from the atmosphere. Further, the isolating unit 5 as the separating / analyzing mechanism and a pipe having each of the detectors 6 to 8 are housed in a constant temperature bath 21. The constant temperature bath 21
In particular, when the temperature around the combustible gas detector 8 is low, it is difficult for the detector 8 to function well. Therefore, by keeping the inside at a predetermined temperature, the combustible gas detector 8 is kept. It is configured so that the detection function of can be favorably maintained. Therefore, although not shown, the constant temperature bath 21 is provided with heating means for maintaining a predetermined temperature.

【0010】実施例の分析装置は、上記の如き構成とな
る。次にその動作について述べる。まず溶存ガスの抽出
に際し、流路切換弁13を図1に示す如き状態に切換
え、ポンプ11を運転すると、キャリアエアとしての空
気が外気から水蒸気除去フィルタ10を介してポンプ1
1に吸い込まれ、吸い込まれた空気が流路切換弁13を
経て恒温槽21内に送り込まれると共に、恒温槽21内
が所定の温度に保たれることにより、可燃性ガス8,二
酸化炭素検知器7,一酸化炭素検知器6の夫々が安定し
た状態にあることを確認する。その後、分析調査の対象
となる絶縁油1を予め一定量採取した採油ビン2を、脱
気部19の下方位置にセットした後、切換えコック15
を閉じると共に、切換えコック18を開き、また真空ポ
ンプ20を駆動することによって検量管4及び脱気部1
9間を真空引きし、ゲージ圧(−760mmHg)まで
減圧する。そして、ゲージ圧まで真空にした後、切換え
コック18を閉じると共に、切換えコック15を開く
と、脱気部19内の圧力と採油ビン2内の圧力との差に
より、該採油ビン2内の絶縁油1が切換えコック15を
経て脱気部19内に吸引されると共に、絶縁油1中の溶
存ガスが抽出される。このとき、脱気部19内では吸引
された絶縁油1を攪拌子17によって攪拌すると共に、
図示しない加熱手段によって内部を加熱しているので、
より多くの溶存ガスを抽出することができる。脱気部1
9で溶存ガスを抽出すると、切換えコック18を開くと
共に、切換えコック15を閉じると、脱気部19内の圧
力と検量管4内の圧力との差により、脱気部19内の溶
存ガスが取り込み側4aを経て検量管4内に吸引され
る。これは、溶存ガスが抽出されたときの脱気部19内
の圧力が、真空引きされた当初のゲージ圧より高い圧
(>−760mmHg)となり、その圧力と検量管4内
のゲージ圧との差によって溶存ガスが検量管4に吸引さ
れることによる。しかる後、流路切換弁13を図2に示
す如く切換えると、該流路切換弁13によりポンプ11
の吐出側と検量管4の取り込み側4aとが接続されると
共に、検量管4の送り込み側4bと恒温槽21内の分離
部5とが接続され、キャリアエアとしての空気が検量管
4内の抽出ガスを分離部5に送り込む。恒温槽21にお
いて、抽出ガスが分離部5を通過すると、抽出ガスは該
分離部5によって各々単一成分のガスに分離された後、
可燃性ガス検知器8,二酸化炭素検知器7,一酸化炭素
検知器6を夫々順次通過することにより、対応する種類
のガスが夫々検出される。一方、演算部9は、夫々の検
知器8,7,6が対応する種類のガスを検出すると、図
3に示す如き夫々の出力信号に基づいて演算することに
より、検出されたガスの濃度を求めることとなる。なお
図3において、一酸化炭素及び二酸化炭素の夫々の検知
器6,7に比較し、可燃性ガス検知器8の波形が遅れて
出力された形態となっているが、これは各々のガスの特
性によって検出時間に差があるからである。なお、恒温
槽21を通過したガスは、大気に放出されることとな
る。このようにして一つの試料である絶縁油の分析が終
了すると、次の試料を分析するため、配管内を洗浄する
こととなる。その場合、恒温槽21においては、流路切
換弁13を図1に示す如く切換え、ポンプ11からの空
気を恒温槽21内に通過させることによって恒温槽21
を浄化する。また脱気部19においては、絶縁油1を採
油ビン2或いは図示しない廃油タンクに回収したりする
ことによって空にした後、切換えコック15を閉じると
共に、切換えコック18を開き、その状態で真空ポンプ
20で真空引きすることにより、脱気部19及び検量管
4間を浄化し、その際、ゲージ圧まで減圧することによ
って次の試料に備える。
The analyzing apparatus of the embodiment has the above-mentioned structure. Next, the operation will be described. First, when extracting the dissolved gas, the flow path switching valve 13 is switched to the state as shown in FIG. 1 and the pump 11 is operated, whereby air serving as carrier air is pumped from the outside air through the water vapor removal filter 10 to the pump 1
1, the sucked air is sent into the constant temperature tank 21 through the flow path switching valve 13, and the inside of the constant temperature tank 21 is maintained at a predetermined temperature, whereby the combustible gas 8 and the carbon dioxide detector are detected. 7. Confirm that each of the carbon monoxide detectors 6 is in a stable state. After that, the oil collecting bottle 2 in which a fixed amount of insulating oil 1 to be analyzed is collected in advance is set at a position below the degassing section 19, and then the switching cock 15
Is closed, the switching cock 18 is opened, and the vacuum pump 20 is driven.
A vacuum is drawn between 9 to reduce the gauge pressure (-760 mmHg). Then, after evacuating to a gauge pressure, the switching cock 18 is closed and the switching cock 15 is opened. Due to the difference between the pressure in the deaeration unit 19 and the pressure in the oil collecting bottle 2, insulation in the oil collecting bottle 2 is insulated. The oil 1 is sucked into the degassing part 19 through the switching cock 15, and the dissolved gas in the insulating oil 1 is extracted. At this time, the insulating oil 1 sucked in the deaerator 19 is stirred by the stirrer 17, and
Since the inside is heated by a heating means (not shown),
More dissolved gas can be extracted. Degassing section 1
When the dissolved gas is extracted in 9, the switching cock 18 is opened, and when the switching cock 15 is closed, the dissolved gas in the degassing section 19 is removed due to the difference between the pressure in the degassing section 19 and the pressure in the calibration tube 4. It is sucked into the calibration tube 4 via the intake side 4a. This is because the pressure inside the degassing section 19 when the dissolved gas is extracted becomes a pressure (> -760 mmHg) higher than the initial gauge pressure after being evacuated, and the pressure and the gauge pressure in the calibration tube 4 are This is because the dissolved gas is sucked into the calibration tube 4 due to the difference. Thereafter, when the flow path switching valve 13 is switched as shown in FIG. 2, the pump 11 is switched by the flow path switching valve 13.
Is connected to the intake side 4a of the calibration tube 4, the feed side 4b of the calibration tube 4 is connected to the separation section 5 in the thermostat 21, and air as carrier air is stored in the calibration tube 4. The extraction gas is sent to the separation unit 5. In the constant temperature bath 21, when the extraction gas passes through the separation unit 5, the extraction gas is separated into the single component gas by the separation unit 5,
By sequentially passing through the combustible gas detector 8, the carbon dioxide detector 7, and the carbon monoxide detector 6, the corresponding type of gas is detected. On the other hand, when the detectors 8, 7, and 6 detect the corresponding types of gas, the calculation unit 9 calculates the concentration of the detected gas by calculating based on the respective output signals as shown in FIG. You will be asked. In FIG. 3, the waveform of the combustible gas detector 8 is output with a delay as compared with the detectors 6 and 7 for carbon monoxide and carbon dioxide, respectively. This is because the detection time differs depending on the characteristics. The gas that has passed through the constant temperature bath 21 is released to the atmosphere. When the analysis of the insulating oil which is one sample is completed in this way, the inside of the pipe is washed to analyze the next sample. In that case, in the constant temperature bath 21, the flow path switching valve 13 is changed over as shown in FIG. 1, and the air from the pump 11 is passed through the constant temperature bath 21 to make the constant temperature bath 21.
Purify. In the deaeration unit 19, after the insulating oil 1 is emptied by collecting it in the oil collecting bottle 2 or a waste oil tank (not shown), the switching cock 15 is closed and the switching cock 18 is opened, and the vacuum pump in that state. By vacuuming at 20, the space between the degassing section 19 and the calibration tube 4 is cleaned, and at that time, the gauge pressure is reduced to prepare for the next sample.

【0011】このように、本実施例においては、予め脱
気部19及び検量管4を真空引きしておき、その脱気部
19内と採油ビン2内の圧力差を利用することによって
脱気部19内に溶存ガスを抽出し、また抽出したガスを
脱気部19内と検量管4内との圧力差を利用することに
よって検量管4に送り込むので、溶存ガスを絶縁油1か
ら迅速に抽出することができる。その結果、エアバブリ
ング法で抽出する第三の従来技術では一試料当たり15
分の抽出時間を要していたが、本実施例では1分程度で
済み、極めて迅速に抽出することができる。また、上述
の如く、真空引きしておいた検量管4に脱気部19から
の抽出ガスを送り込むので、抽出ガスが検量管4内の空
気によって希釈されると云うおそれがなく、しかも希釈
されない抽出ガスを分離部5に送って単一成分のガスに
分離し、その単一成分のガスを、対応する夫々の検知器
8,7,6で検出するので、分離部5の分離精度を十分
確保できるばかりでなく、単一成分のガスの検出精度も
十分確保できる結果、精度の高い分析を確実に行うこと
ができる。さらに、一つの試料の分析が終了した後、次
の試料を分析するため、真空ポンプ20で真空引きする
ことによって脱気部19及び検量管4間を洗浄するの
で、洗浄時間を短縮できるばかりでなく、洗浄作業も簡
単かつ容易となる。そのため、ガスの抽出・分析及び配
管内の洗浄時間として、図4及び図6に示す従来技術で
は一試料当たり45分を要していたが、実施例では15
分程度で済むので、一定時間での分析作業効率を大幅に
向上させることができる。またさらに図示実施例では、
脱気部19が攪拌子17と加熱手段とを有し、絶縁油1
を攪拌すると共に加熱するので、絶縁油1中の溶存ガス
の脱気作用をいっそう促進させることができ、第三の従
来技術では約60%の脱気効率であったのに対し、70
%程度に高めることができる。また、分離部5と夫々の
検知器8,7,6を有する配管とが恒温槽21に収容さ
れ、該恒温槽21で温度を保つことで、特に可燃性ガス
検知器8を良好に機能させることができので、それだけ
高い検知精度を維持でき、周囲温度の変化によって検出
機能が不安定となるおそれがない。さらに、真空引き時
や溶存ガスの抽出時、また抽出ガスの分離部5への搬送
時にあっては、真空ポンプ20の運転及び流路切換弁1
3の切換え並びに切換えコック15・18の開閉を手動
で行う例を示したが、それらを自動運転し得る制御手段
を備えれば、自動的に分析することが可能となり、分析
の自動化を達成し得る。そして、本装置によれば、抽出
ガスを高精度に分離・分析することができるので、電協
研第36巻1号に記載の油中溶存ガス劣化診断を行う際
の判定指標となる特定ガスの発生,ガスパターン,組成
比から、油入電気機器の異常部位を的確に診断すること
ができ、異常部位の早期発見が可能となり、事故を未然
に防ぐこともできる。
As described above, in this embodiment, the deaeration unit 19 and the calibration tube 4 are evacuated in advance, and the deaeration is performed by utilizing the pressure difference between the deaeration unit 19 and the oil collecting bottle 2. The dissolved gas is extracted into the portion 19, and the extracted gas is sent to the calibration tube 4 by utilizing the pressure difference between the inside of the degassing portion 19 and the inside of the calibration tube 4, so that the dissolved gas can be quickly supplied from the insulating oil 1. Can be extracted. As a result, in the third conventional technique of extracting by the air bubbling method, 15
Although it took a minute to extract, in the present embodiment, it takes about 1 minute, and the extraction can be performed extremely quickly. Further, as described above, since the extraction gas from the degassing section 19 is sent to the evacuated calibration tube 4, there is no fear that the extraction gas will be diluted by the air in the calibration tube 4, and it is not diluted. The extracted gas is sent to the separation unit 5 to be separated into a single component gas, and the single component gas is detected by the corresponding detectors 8, 7, and 6, so that the separation accuracy of the separation unit 5 is sufficient. Not only can it be ensured, but also the detection accuracy of the gas of the single component can be sufficiently ensured, so that highly accurate analysis can be reliably performed. Furthermore, after the analysis of one sample is completed, in order to analyze the next sample, the space between the degassing section 19 and the calibration tube 4 is cleaned by vacuuming with the vacuum pump 20, so that the cleaning time can be shortened. Also, the cleaning work is simple and easy. Therefore, the gas extraction / analysis and the cleaning time in the pipe required 45 minutes for each sample in the prior art shown in FIGS.
Since it only takes minutes, the efficiency of analysis work in a certain period of time can be greatly improved. Furthermore, in the illustrated embodiment,
The degassing section 19 has a stirrer 17 and heating means, and the insulating oil 1
Since the gas is stirred and heated, the degassing action of the dissolved gas in the insulating oil 1 can be further promoted. In contrast to the degassing efficiency of about 60% in the third conventional technique,
% Can be increased. Further, the separation section 5 and the pipes having the respective detectors 8, 7, and 6 are housed in the constant temperature bath 21, and the temperature is kept in the constant temperature bath 21, so that the combustible gas detector 8 is made to function particularly well. Therefore, the higher detection accuracy can be maintained, and there is no fear that the detection function becomes unstable due to changes in the ambient temperature. Further, at the time of evacuation, extraction of dissolved gas, and transportation of the extracted gas to the separation unit 5, the operation of the vacuum pump 20 and the flow path switching valve 1 are performed.
The example in which the switching of No. 3 and the switching cocks 15 and 18 are manually opened and closed has been shown, but if a control means capable of automatically operating them is provided, it becomes possible to analyze automatically, and automation of analysis is achieved. obtain. Further, according to the present device, since the extracted gas can be separated and analyzed with high accuracy, the specific gas that serves as a determination index when performing the degradation diagnosis of dissolved gas in oil described in Vol. It is possible to accurately diagnose the abnormal part of the oil-filled electrical device from the occurrence of the gas, the gas pattern, and the composition ratio, and it is possible to detect the abnormal part early and prevent accidents.

【0012】[0012]

【発明の効果】以上述べたように、本発明によれば、予
め真空引きしておいた抽出機構の脱気部内と採油ビン内
の圧力差を利用して脱気部内に溶存ガスを抽出し、また
抽出ガスを脱気部内と検量管内との圧力差を利用して検
量管に送り込むように構成したので、溶存ガスを絶縁油
から迅速に抽出でき、しかも希釈されない抽出ガスを分
離部に送って単一成分のガスに分離し、そのガスを、対
応する夫々の検知器で検出するように構成したので、精
度の高い分析を確実に行うことができ、さらに真空引き
することによって抽出機構を洗浄するので、洗浄時間を
短縮できるばかりでなく、洗浄作業も簡単かつ容易とな
り、従って、分析処理時間の大幅な短縮と分析精度の向
上により、実用的で信頼性の高い分析装置を提供できる
効果があり、特に油入電気機器の台数が多い場合にはい
っそう顕著な効果がある。
As described above, according to the present invention, the dissolved gas is extracted into the degassing section by utilizing the pressure difference between the degassing section and the oil collecting bottle of the extraction mechanism which have been evacuated in advance. Moreover, since the extracted gas is sent to the calibration tube by utilizing the pressure difference between the inside of the degassing section and the inside of the calibration tube, the dissolved gas can be quickly extracted from the insulating oil and the undiluted extracted gas is sent to the separation section. Is separated into a single component gas, and each gas is detected by the corresponding detector, so highly accurate analysis can be reliably performed, and the extraction mechanism is further reduced by vacuuming. Since the cleaning is performed, not only the cleaning time can be shortened, but also the cleaning work is simple and easy. Therefore, the analysis processing time can be greatly shortened and the analysis accuracy can be improved to provide a practical and highly reliable analyzer. There are especially If the number of filled electrical equipment often have more remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による油中ガスの分析装置のガス抽出法
の一実施例を示す説明用配管図。
FIG. 1 is an explanatory piping diagram showing an embodiment of a gas extraction method of an analyzer for gas in oil according to the present invention.

【図2】同じく抽出したガスを分析するときの説明用配
管図。
FIG. 2 is a piping diagram for explaining the same when analyzing the extracted gas.

【図3】各検知器の検出状態を夫々示す出力波形図。FIG. 3 is an output waveform diagram showing a detection state of each detector.

【図4】従来技術の一構成例を示す配管図。FIG. 4 is a piping diagram showing a configuration example of a conventional technique.

【図5】図4における各検知器の検出状態を夫々示す出
力波形図。
FIG. 5 is an output waveform diagram showing a detection state of each detector in FIG.

【図6】従来技術の他の構成例を示す配管図。FIG. 6 is a piping diagram showing another configuration example of the conventional technique.

【図7】図6における各検知器の検出状態を夫々示す出
力波形図。
FIG. 7 is an output waveform diagram showing a detection state of each detector in FIG.

【符号の説明】[Explanation of symbols]

1…絶縁油、2…採油ビン、19…脱気部、4…検量
管、5…分離部、6…一酸化炭素検知器、7…二酸化炭
素検知器、8…可燃性ガス検知器、9…演算部、15,
18…切換えコック、20…真空ポンプ、21…恒温
槽。
1 ... Insulating oil, 2 ... Oil collecting bottle, 19 ... Deaeration part, 4 ... Calibration tube, 5 ... Separation part, 6 ... Carbon monoxide detector, 7 ... Carbon dioxide detector, 8 ... Combustible gas detector, 9 ... Calculation unit, 15,
18 ... Switching cock, 20 ... Vacuum pump, 21 ... Constant temperature bath.

フロントページの続き (72)発明者 金子 好彦 新潟県北蒲原郡中条町大字富岡46番地1 株式会社日立製作所中条工場内 (72)発明者 桐生 隆 新潟県北蒲原郡中条町大字富岡46番地1 株式会社日立製作所中条工場内 (72)発明者 米山 司 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内 (72)発明者 村田 孝一 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内(72) Inventor Yoshihiko Kaneko 46-1, Tomioka, Nakajo-machi, Kitakanbara-gun, Niigata Prefecture Nakajo Factory, Hitachi, Ltd. (72) Takashi Kiryu 46-1 Tomioka, Nakajo-machi, Kitakanbara-gun, Niigata Prefecture Hitachi, Ltd. Nakajo Plant (72) Inventor Tsukasa Yoneyama 2-4-1 Nishitsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Company Technical Research Laboratory (72) Inventor Koichi Murata 2-4-1 Nishiazajigaoka, Chofu-shi, Tokyo Electric Power Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 採油ビン内の絶縁油から溶存ガスを抽出
する脱気部,脱気部内の抽出ガスを取り込む検量管を有
する抽出機構と、検量管からの抽出ガスを夫々の単一成
分毎に分離する分離部と、分離部によって分離された単
一成分毎のガスを種類別に検知する夫々の検知器と、夫
々の検知器の検出に基づき単一成分毎のガスの濃度を分
析する演算部とを備え、前記抽出機構が、検量管及び脱
気部間を真空引きし、かつ該脱気部内の圧力と採油ビン
内の圧力との差によって脱気部内に絶縁油中の溶存ガス
を抽出させ、かつ脱気部内の圧力と検量管内との圧力と
の差によって抽出ガスを検量管内に取り込む真空手段を
有していることを特徴とする油中ガスの分析装置。
1. A degassing section for extracting dissolved gas from insulating oil in an oil collecting bottle, an extraction mechanism having a calibration tube for taking in the extraction gas in the degassing section, and the extraction gas from the calibration tube for each single component. Separation unit that separates into two parts, each detector that detects the gas of each single component separated by the separation unit, and a calculation that analyzes the gas concentration of each single component based on the detection of each detector And a vacuum is drawn between the calibration tube and the degassing section, and the dissolved gas in the insulating oil is degassed in the degassing section by the difference between the pressure in the degassing section and the pressure in the oil collecting bottle. An apparatus for analyzing gas in oil, comprising vacuum means for extracting and extracting the extracted gas into the calibration tube by the difference between the pressure inside the degassing section and the pressure inside the calibration tube.
JP12595893A 1993-05-27 1993-05-27 Gas-in-oil analyzer Expired - Fee Related JP3203608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12595893A JP3203608B2 (en) 1993-05-27 1993-05-27 Gas-in-oil analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12595893A JP3203608B2 (en) 1993-05-27 1993-05-27 Gas-in-oil analyzer

Publications (2)

Publication Number Publication Date
JPH06331515A true JPH06331515A (en) 1994-12-02
JP3203608B2 JP3203608B2 (en) 2001-08-27

Family

ID=14923185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12595893A Expired - Fee Related JP3203608B2 (en) 1993-05-27 1993-05-27 Gas-in-oil analyzer

Country Status (1)

Country Link
JP (1) JP3203608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139390A (en) * 2008-12-12 2010-06-24 Hitachi Ltd In-oil gas analyzer, and in-oil gas analysis method
CN107884403A (en) * 2017-11-21 2018-04-06 国网福建省电力有限公司 Dissolved acetylene gas content field fast detection method in a kind of oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139390A (en) * 2008-12-12 2010-06-24 Hitachi Ltd In-oil gas analyzer, and in-oil gas analysis method
CN107884403A (en) * 2017-11-21 2018-04-06 国网福建省电力有限公司 Dissolved acetylene gas content field fast detection method in a kind of oil
CN107884403B (en) * 2017-11-21 2023-12-22 国网福建省电力有限公司 On-site rapid detection method for content of dissolved acetylene gas in oil

Also Published As

Publication number Publication date
JP3203608B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
US7850901B2 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
US6806450B2 (en) Hazardous material detection system
JP6807587B2 (en) Smell evaluation method and odor evaluation device
US20020002857A1 (en) Odor identifying apparatus
US4587834A (en) Method and apparatus for analyzing gases dissolved in a liquid sample
CN103364484A (en) Cigarette mainstream smoke on-line analysis device and method
WO1999053314A1 (en) Method and apparatus for monitoring gas(es) in a dielectric fluid
US6497136B2 (en) Trace-level gas analysis apparatus and method
JP5123152B2 (en) Gas-in-oil analyzer and gas-in-oil analysis method
JP4804297B2 (en) Gas sampling apparatus and gas sampling method
JPH06331515A (en) Gas-in-oil analyzer
JP2000275150A (en) Device for analyzing gas dissolved in oil
JPH0634616A (en) Analysis of a trace of impurities
JP3215243B2 (en) Gas in oil analyzer
CN112285259B (en) Ion mobility spectrometry device
EP1099949B1 (en) Device for measuring gases with odors
JP2003014713A (en) Gas-component autoanalyzer
JP3273474B2 (en) Gas analyzer
JP2799116B2 (en) Method and apparatus for highly sensitive analysis of impurities in gaseous hydride
JP2777304B2 (en) Abnormality diagnosis apparatus and diagnosis method for perfluorocarbon input device
JPS63191059A (en) Continuous analysis of mercury in gas
CN204882476U (en) Volatile organic substance measuring system
SU968764A1 (en) Device for monitoring gas content
JPH04131737A (en) Constant flow rate sampling device
JP2001165919A (en) Apparatus for automatically analyzing atmospheric gas component

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees