JP3215243B2 - Gas in oil analyzer - Google Patents
Gas in oil analyzerInfo
- Publication number
- JP3215243B2 JP3215243B2 JP32395993A JP32395993A JP3215243B2 JP 3215243 B2 JP3215243 B2 JP 3215243B2 JP 32395993 A JP32395993 A JP 32395993A JP 32395993 A JP32395993 A JP 32395993A JP 3215243 B2 JP3215243 B2 JP 3215243B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- oil
- degassing
- analysis
- analyzer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000926 separation method Methods 0.000 claims description 39
- 238000007872 degassing Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 10
- 238000003745 diagnosis Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 description 128
- 238000004458 analytical method Methods 0.000 description 28
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 238000009849 vacuum degassing Methods 0.000 description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 238000004092 self-diagnosis Methods 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Housings And Mounting Of Transformers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、油入電気機器
の絶縁油中に溶解しているガスの分析装置に係り、特に
油入変圧器から絶縁油を採油した後、直ちに劣化診断を
行なうのに好適な油中ガス分析装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, an analyzer for gas dissolved in insulating oil of oil-filled electric equipment, and particularly to a method of diagnosing deterioration immediately after extracting insulating oil from an oil-filled transformer. The present invention relates to a gas-in-oil analyzer suitable for performing the analysis.
【0002】[0002]
【従来の技術】従来、油中ガス分析法は、電気学会技術
報告、電気学会(II部)、第344号に記載されている
ように、油入電気機器から採油した絶縁油を各種ガス抽
出法(例えば、トリチェリ法、テプラポンプ法等)によ
って油中溶存ガスを抽出し、この混合ガスをガスクロマ
トグラフのガス分離カラムに吸着させ、単一ガス成分に
分離して分析を行なっている。しかし、ガスクロマトグ
ラフィでは、混合ガスの抽出から分析まで短時間で処理
することができず、しかも、複雑な操作を必要とし、こ
れをを簡易化することは容易ではない。特開昭54−1
26591号公報記載されている技術は、気体を吹き込
むことによって絶縁油中に溶存する混合ガスを抽出し、
この混合ガス中に含まれる可燃性ガスを混合状態のまま
検出するものである。油入変圧器の劣化診断を行なうに
は、単一ガス毎に成分濃度を測定することが必要である
にも拘らず、混合ガス成分を検知するのみでは、油中ガ
ス分析装置としては不十分である。2. Description of the Related Art Conventionally, as described in the Technical Report of the Institute of Electrical Engineers of Japan, Part II of the Institute of Electrical Engineers of Japan (Part II), No. 344, gas-in-oil analysis has been carried out by extracting various gases from insulating oil extracted from oil-filled electrical equipment. Dissolved gas in oil is extracted by a method (for example, the Tricelli method, a Tepra pump method, etc.), and the mixed gas is adsorbed on a gas separation column of a gas chromatograph to separate into a single gas component for analysis. However, in gas chromatography, processing from extraction of a mixed gas to analysis cannot be performed in a short time, and furthermore, a complicated operation is required, and it is not easy to simplify the operation. JP-A-54-1
The technique described in Japanese Patent No. 26591 extracts a mixed gas dissolved in insulating oil by blowing gas,
The combustible gas contained in the mixed gas is detected in a mixed state. Despite the necessity of measuring the component concentration for each single gas to diagnose the deterioration of the oil-immersed transformer, detecting only the mixed gas components is not enough for an in-oil gas analyzer. It is.
【0003】また、本発明の創案過程で検討された技術
としては、図6に示すように、採油ビン2、真空ポンプ
12からなるガス抽出部、検量管4、ガス分離装置5、
可燃ガス検知器7、一酸化炭素検知器8、二酸化炭素検
知器9、送気ポンプ13などを備えた油中ガス分析装置
があって、本装置は、前記電気学会技術報告、電気学会
(II部)、344号に記載の分析法に比べると、複雑な
操作を必要とせずに分析を行なうことができる。[0003] Further, as a technique studied in the process of inventing the present invention, as shown in FIG. 6, a gas extraction unit including an oil sampling bin 2, a vacuum pump 12, a calibration tube 4, a gas separation device 5,
There is a gas-in-oil analyzer equipped with a combustible gas detector 7, a carbon monoxide detector 8, a carbon dioxide detector 9, an air supply pump 13, and the like. Section), the analysis can be performed without requiring complicated operations as compared with the analysis method described in No. 344.
【0004】[0004]
【発明が解決しようとする課題】上記従来技術では、ガ
ス分析装置と油中ガス抽出装置とが別体になっており、
油中ガスの抽出およびガス分析装置の操作が複雑で、さ
らに、分析に時間がかかることから分析対象となる油入
電気機器の台数が多いときは、一定時間内で処理すべき
分析調査台数が限定されるから実作業向きではない。単
一ガス毎に成分濃度が測定できない油中ガス分析装置で
は、可燃性ガスの中で最も重要なアセチレンガスや、絶
縁紙が劣化するときに発生する炭酸ガスの検知ができ
ず、油入変圧器の劣化診断を目的とする油中ガス分析装
置の性能としては不十分である。一方、図6に示したガ
ス抽出部とガス分析部を一体に構成した油中ガス分析装
置では、採油ビン2をガス抽出部にセットするだけで、
ガスの抽出から分析までの作業を一貫して実施できるた
めに作業性は向上するが、ガス分離装置5へ送り込まれ
たガス量が不明なため分析精度が不十分で再現性が低
く、分析に長時間を要し、作業能率の点で問題が残され
ており、また、演算装置1は、自己診断機能を有してい
ないため、一定時間内に多数の調査対象となる変圧器の
診断をするには適していない。本発明の目的は、所定時
間内に処理する調査台数を減らすことなく、単一の装置
構成で、油入変圧器の劣化診断に必要なガス成分、すな
わち、CO2、CO、H2、CH4、C2H6、C2H4、C2
H2および全可燃ガス(TCGと略記)の分析が可能
で、所定時間内における分析処理能力と分析精度の優れ
た油中ガス分析装置を提供することにある。In the above-mentioned prior art, the gas analyzer and the gas-in-oil extraction device are separated from each other.
If the extraction of gas in oil and the operation of the gas analyzer are complicated and the analysis takes a long time, and the number of oil-filled electrical devices to be analyzed is large, the number of It is not suitable for actual work because it is limited. Oil-in-oil gas analyzers that cannot measure the component concentration of each single gas cannot detect the most important flammable gas, acetylene gas, or carbon dioxide gas generated when insulating paper is deteriorated, and the The performance of the gas-in-oil analyzer for the purpose of diagnosing the deterioration of the vessel is insufficient. On the other hand, in the gas-in-oil analyzer in which the gas extracting unit and the gas analyzing unit shown in FIG. 6 are integrally configured, only the oil sampling bin 2 is set in the gas extracting unit.
The workability is improved because the work from gas extraction to analysis can be performed consistently, but the analysis accuracy is insufficient and the reproducibility is low because the amount of gas sent to the gas separation device 5 is unknown. It takes a long time, and there remains a problem in terms of work efficiency. Further, since the arithmetic unit 1 does not have a self-diagnosis function, it can diagnose a large number of transformers to be investigated within a certain period of time. Not suitable for. An object of the present invention is to reduce the number of surveys to be processed within a predetermined time and reduce gas components necessary for deterioration diagnosis of an oil-filled transformer, that is, CO 2 , CO, H 2 , CH 2 with a single device configuration. 4, C 2 H 6, C 2 H 4, C 2
An object of the present invention is to provide a gas-in-oil analyzer capable of analyzing H 2 and all combustible gases (abbreviated as TCG), and having excellent analytical processing capability and analytical accuracy within a predetermined time.
【0005】[0005]
【課題を解決するための手段】上記の課題を解決するた
めの手段は特許請求の範囲に記載されている。すなわ
ち、本発明の目的は、絶縁油中に溶解している混合ガス
を脱気する脱気機構、脱気した混合ガスを単一成分ガス
毎に分離するガス分離機構、単一ガス成分毎に濃度を検
知するガス検知部を有する油中ガス分析装置において、
少なくとも前記脱気機構から抽出したガスを蓄積する検
量管、ガス分離機構、ガス検知部を含む流路を内装する
恒温槽と、二水準のガス分離能力を有する前記ガス分離
機構と、前記脱気機構、若しくは前記検量管の少なくと
も何れか一方に配設した圧力センサと、前記二水準のガ
ス分離機構へ通ずるガス流路を切換える切換え手段と、
検出すべき成分ガスの基準濃度値を記憶し、前記ガス検
知部による検出ガスの測定値と前記基準濃度値を比較判
定する演算処理部を有し、採取された絶縁油の分析と劣
化に関する自己診断を行なうことを特徴とする油中ガス
分析装置によって達成される。Means for solving the above problems are described in the claims. That is, an object of the present invention is to provide a degassing mechanism for degassing a mixed gas dissolved in insulating oil, a gas separating mechanism for separating a degassed mixed gas for each single component gas, and a gas separation mechanism for each single gas component. In an oil-in-oil gas analyzer having a gas detection unit for detecting the concentration,
A calibration tube that accumulates at least the gas extracted from the degassing mechanism, a gas separation mechanism, a constant temperature bath having a flow path including a gas detection unit therein, the gas separation mechanism having two levels of gas separation capabilities, and the degassing. A mechanism, or a pressure sensor disposed on at least one of the calibration tubes, and switching means for switching a gas flow path leading to the two-level gas separation mechanism,
A calculation processing unit that stores a reference concentration value of the component gas to be detected and compares and determines the measured value of the detected gas by the gas detection unit with the reference concentration value; This is achieved by a gas-in-oil analyzer that performs a diagnosis.
【0006】[0006]
【作用】絶縁油中から脱気機構によって抽出された混合
ガスは、圧力センサ付きの検量管に貯留される。この
時、圧力センサの出力による圧力変化に基づいて実際に
分析される混合ガス量が計算される。次段階として、混
合ガスはガス分離部に送られるが、通常はカラム長0.
5mのガス分離カラムが使用される。ここで劣化診断を
行なうために必要最小限のガス成分(CO2、CO、C2
H2、TCG)を分析、自己診断し、異常と判断された
油入変圧器についてのみ再度分析する。このときは、ガ
ス通路を切換えてカラム長3mのガス分離カラムを用い
て混合ガスを単一ガス成分に分離し、劣化診断に必要な
ガス成分(CO2、CO、H2、CH4、C2H6、C
2H4、C2H2、TCG)について精密分析を行なう。分
析に使用される検知器として、可燃性ガスは、接触燃焼
式検知器もしくは熱線形半導体式検知器、一酸化炭素
は、定電位電解式検知器、二酸化炭素は、非分散形赤外
線形検知器によってそれぞれ検知される。The mixed gas extracted from the insulating oil by the degassing mechanism is stored in a calibration tube equipped with a pressure sensor. At this time, the amount of the mixed gas actually analyzed is calculated based on the pressure change due to the output of the pressure sensor. In the next step, the mixed gas is sent to the gas separation unit, and usually the column length is set to 0.1.
A 5 m gas separation column is used. Here, the minimum necessary gas components (CO 2 , CO, C 2
H 2, TCG) analyzed, self-diagnosis, only again analyzed for abnormal the determined oil-filled transformers. In this case, the mixed gas is separated into single gas components using a gas separation column having a column length of 3 m by switching the gas passages, and the gas components (CO 2 , CO, H 2 , CH 4 , C 4 2 H 6 , C
2 H 4 , C 2 H 2 , TCG) are analyzed precisely. As detectors used for analysis, flammable gas is a catalytic combustion type detector or thermal linear semiconductor type detector, carbon monoxide is a constant potential electrolytic type detector, carbon dioxide is a non-dispersive infrared type detector Are respectively detected.
【0007】[0007]
【実施例】以下、本発明の一実施例を図1により説明す
る。恒温槽20は、保温材によって周囲面を被覆され、
概ね400mm×500mm×300mmの直方体で、
温度45℃内外に保持された金属製のキャビネットであ
る。恒温槽20内には、可燃ガス検知器27、一酸化炭
素検知器28、二酸化炭素検知器29および検知流路が
収納されており、前記各検知器から検出された出力電圧
を濃度に換算し、その結果を判定する演算処理部31を
備えて自己診断を行なう。送気ポンプ33を駆動するこ
とにより、外界から空気を恒温槽20内に導入し、この
空気中の水蒸気を水蒸気除去フィルタ42によって除去
したのち、キャリアガスとして検知流路内へ送気する。
恒温槽20内の温度、および前記各検知器の出力電圧の
安定が確認された後、採油ビン22に分析対象となる絶
縁油を所定量(概ね50cc)採取し、真空脱気部21
の下方に電磁弁35を介してセットする。真空ポンプ3
2の作動により電磁弁36、37、38を介して真空脱
気部21内を減圧する。真空ポンプ32はまた、四方弁
39を図1の状態から検知回路への流路を閉じることに
よって、検量管24内を減圧することができる。An embodiment of the present invention will be described below with reference to FIG. The constant temperature bath 20 has its surrounding surface covered with a heat insulating material,
It is a rectangular parallelepiped of approximately 400mm x 500mm x 300mm,
It is a metal cabinet held at a temperature of 45 ° C. inside and outside. A combustible gas detector 27, a carbon monoxide detector 28, a carbon dioxide detector 29, and a detection channel are housed in the thermostat 20, and the output voltage detected from each of the detectors is converted into a concentration. The self-diagnosis is performed by providing an arithmetic processing unit 31 for judging the result. By driving the air supply pump 33, air is introduced into the thermostat 20 from the outside world, and water vapor in the air is removed by the water vapor removal filter 42, and then the air is supplied as carrier gas into the detection channel.
After it is confirmed that the temperature in the thermostatic chamber 20 and the output voltage of each of the detectors are stable, a predetermined amount (approximately 50 cc) of the insulating oil to be analyzed is collected in the oil collecting bin 22 and the vacuum deaeration unit 21
Is set below via a solenoid valve 35. Vacuum pump 3
By the operation of 2, the pressure in the vacuum degassing section 21 is reduced through the electromagnetic valves 36, 37, and 38. The vacuum pump 32 can also reduce the pressure in the calibration tube 24 by closing the four-way valve 39 from the state shown in FIG. 1 to the detection circuit.
【0008】すなわち真空ポンプ32により、先ず電磁
弁35、37を閉じ、電磁弁36、38を開き、四方弁
39を切換え、真空脱気部21内の圧力をマイナス76
0mmHg(ゲージ圧)まで減圧にした後、電磁弁3
6、38を閉じ、採油ビン22と真空脱気部21の間の
電磁弁35を開き、真空脱気部21と採油ビン22間の
圧力差を利用して採油ビン22中の絶縁油を真空脱気部
21内容器に吸引し、同時に絶縁油中の溶存ガスを抽出
する。さらに、真空脱気部21内の撹拌子34を回転さ
せることによって、絶縁油を撹拌することにより多くの
溶存ガスを抽出することができる。That is, the electromagnetic valves 35 and 37 are first closed by the vacuum pump 32, the electromagnetic valves 36 and 38 are opened, the four-way valve 39 is switched, and the pressure in the vacuum degassing section 21 is reduced by minus 76.
After reducing the pressure to 0 mmHg (gauge pressure), the solenoid valve 3
6 and 38 are closed, the electromagnetic valve 35 between the oil sampling bin 22 and the vacuum degassing unit 21 is opened, and the insulating oil in the oil sampling bin 22 is vacuumed using the pressure difference between the vacuum degassing unit 21 and the oil sampling bin 22. The gas is sucked into the inner container of the deaeration unit 21, and at the same time, the dissolved gas in the insulating oil is extracted. Furthermore, by rotating the stirrer 34 in the vacuum degassing unit 21, a large amount of dissolved gas can be extracted by stirring the insulating oil.
【0009】この状態においては、真空脱気部21内の
圧力は当初の設定圧力、すなわち、マイナス760mm
Hgより、多少高くなっているために、電磁弁36を開
くことにより、予めマイナス760mmHgに減圧して
おいた検量管24に抽出ガスが蓄積される。ここで、圧
力変化から検量管24内に蓄積されたガス量を計算す
る。In this state, the pressure in the vacuum degassing section 21 is equal to the initially set pressure, that is, minus 760 mm
Since the pressure is slightly higher than Hg, by opening the solenoid valve 36, the extraction gas is accumulated in the calibration tube 24 which has been previously reduced to minus 760 mmHg. Here, the amount of gas accumulated in the calibration tube 24 is calculated from the pressure change.
【0010】次に、電磁弁36を閉じ、四方弁39を図
1の位置に切換えることにより、検量管24と0.5m
ガス分離カラム25が連通し、送気ポンプ33によって
流路内に流入されるキャリアガスを介して検量管24に
蓄積された抽出ガスを0.5mガス分離カラム25へ送
り込む。送り込まれた抽出ガスは、0.5mガス分離カ
ラム25内に充填した多孔質粒子の吸脱着作用によって
単一ガス成分に分離される。分離された抽出ガスは、可
燃ガス検知器27、一酸化炭素検知器28、二酸化炭素
検知器29に送給され、これら3つの検知器を通過する
ことによって、図3に示す波形の出力電圧がそれぞれ検
知される。この出力電圧値を演算部31に取り込み演算
処理を行なうことによって、それぞれのガス濃度が計算
される。Next, the electromagnetic valve 36 is closed, and the four-way valve 39 is switched to the position shown in FIG.
The gas separation column 25 communicates therewith, and the extraction gas accumulated in the calibration tube 24 is sent to the 0.5 m gas separation column 25 via the carrier gas flowing into the flow path by the air supply pump 33. The sent extraction gas is separated into single gas components by the adsorption and desorption of the porous particles filled in the 0.5 m gas separation column 25. The separated extracted gas is sent to a combustible gas detector 27, a carbon monoxide detector 28, and a carbon dioxide detector 29. By passing through these three detectors, an output voltage having a waveform shown in FIG. Each is detected. This output voltage value is taken into the arithmetic unit 31 and arithmetic processing is performed, whereby each gas concentration is calculated.
【0011】この計算された濃度と、予め入力しておい
た基準濃度値(しきい値)とを比較して判定することに
より自己診断を行ない、前記基準値以上の分析値を示し
た分析対象品については、六方弁40、41を切り換え
ることにより、抽出ガスをカラム長3mのガス分離カラ
ム26を通過吸着させ同様の手続を経て精密分析を行な
うことができる。図2は、図1の流路を精密分析用に切
換えた図であって、抽出されたガスは3mガス分離カラ
ム26を通過するように構成されている。A self-diagnosis is performed by comparing the calculated density with a reference density value (threshold value) input in advance, and an analysis target showing an analysis value equal to or higher than the reference value is determined. By switching the six-way valves 40 and 41 for the product, the extracted gas can be passed through the gas separation column 26 having a column length of 3 m to be adsorbed and subjected to a precise analysis through the same procedure. FIG. 2 is a diagram in which the flow path of FIG. 1 is switched for precision analysis, and the extracted gas is configured to pass through a 3 m gas separation column 26.
【0012】従来技術と本発明の実施例のガス検知器に
よる出力波形の比較を図3、図4、図7によって説明す
る。図7は従来の単一ガス分離カラムを備えたガス検知
器による出力波形を示す図、図3は0.5mガス分離カ
ラム25を使用したガス検知器による出力波形を示す
図、図4は3mガス分離カラム26を使用したガス検知
器による出力波形を示す図である。図7においてはCO
2、CO、可燃性ガスの各検知器とも、1本の波形を検
出するのみであるが、図3、図4においてはCOに3本
の波形が検出されており、特に、3mの長いカラム長を
備えるガス分離カラム26を使用した図4の場合には、
可燃性ガスとして数多くの種類のガスを検出しているこ
とがわかる。A comparison between the output waveforms of the prior art and the gas detector according to the embodiment of the present invention will be described with reference to FIGS. 3, 4, and 7. FIG. FIG. 7 is a diagram showing an output waveform by a conventional gas detector having a single gas separation column, FIG. 3 is a diagram showing an output waveform by a gas detector using a 0.5 m gas separation column 25, and FIG. FIG. 3 is a diagram showing an output waveform by a gas detector using a gas separation column 26. In FIG. 7, CO
2. Each of the detectors for CO and flammable gas only detects one waveform, but in FIGS. 3 and 4, three waveforms are detected for CO. In the case of FIG. 4 using a gas separation column 26 having a length,
It can be seen that many types of gases are detected as combustible gases.
【0013】このように、本実施の油中ガス分析装置を
1台使用することにより、真空脱気部21に絶縁油をセ
ットし、必要事項を入力するだけで、油中溶存ガスの抽
出から単一ガス成分の分離、分析、自己診断まで一貫し
て実施することができる。油中溶存ガスの抽出は、真空
脱気部21、検量管24にそれぞれ圧力センサ23を取
り付けているので、圧力の変動を検知することができ、
これにより、脱気ガス量が計測可能となるから、正確に
分析対象ガス量を把握することができ、分析精度および
分析値の再現性向上に極めて効果的である。また、カラ
ム長0.5mと3mの2種類のガス分離カラム25、2
6を備えているので、分析目的に応じた分析作業を進め
ることができ、通常は、一定時間内の分析件数を多くす
る目的で、0.5mガス分離カラム25により簡易的に
分析と自己診断を行ない、この結果、異常値を示したも
のについては3mガス分離カラム26に切替えて精密分
析を行なうことができる。請求項1記載の二水準のガス
分離能力を有するガス分離機構とは、例えば、上記実施
例の0.5mガス分離カラム25と3mガス分離カラム
26のように、混合ガスを吸着する充填剤の充填量を変
えることにより二水準の成分ガスの分離能力を有するガ
ス分離装置を意味するものであるが、実施例の分離カラ
ム方式のみに限定するものではない。As described above, by using one gas-in-oil gas analyzer of this embodiment, the insulating oil is set in the vacuum degassing unit 21 and only necessary information is input to extract the dissolved gas in oil. The separation, analysis and self-diagnosis of single gas components can be performed consistently. Extraction of the dissolved gas in oil is performed by installing the pressure sensors 23 in the vacuum degassing unit 21 and the calibration tube 24, respectively, so that a change in pressure can be detected.
As a result, the amount of degassed gas can be measured, so that the amount of gas to be analyzed can be accurately grasped, which is extremely effective in improving analysis accuracy and reproducibility of analysis values. Also, two types of gas separation columns 25, 2 having a column length of 0.5 m and 3 m.
6, the analysis work can be carried out according to the purpose of analysis. Usually, the analysis and self-diagnosis are simply performed using the 0.5 m gas separation column 25 for the purpose of increasing the number of analyzes within a certain time. As a result, those which show abnormal values can be switched to the 3 m gas separation column 26 for precision analysis. The gas separation mechanism having the two-level gas separation capability according to claim 1 is, for example, a filler of a type that adsorbs a mixed gas, such as the 0.5 m gas separation column 25 and the 3 m gas separation column 26 of the above embodiment. This means a gas separation device having two levels of component gas separation capacity by changing the filling amount, but is not limited to only the separation column system of the embodiment.
【0014】精密分析の結果は、電協研36巻1号に記
載の、例えば、図5に示すガスパターン診断図表、すな
わち、H2、CH4、C2H6、C2H4、C2H2成分の出力
波形から、異常の原因を判断するものである。例えば、
H2主導型(図5a)、CH4主導型(図5b)というよ
うに分類したガスパターン図表と対象ガスの分析パター
ンを比較し、H2主導型であればアーク放電や部分放
電、CH4およびC2H4主導型であれば過熱によるもの
と、異常原因を判定する。これにより組成比等の比較を
することが可能で、油入変圧器の劣化診断の信頼性の向
上に有効である。The results of the precise analysis are described in, for example, the gas pattern diagnosis chart shown in FIG. 5 described in Denkyoken Vol. 36, No. 1, that is, H 2 , CH 4 , C 2 H 6 , C 2 H 4 , C 2 from 2 H 2 component of the output waveform, it is to determine the cause of the abnormality. For example,
H 2 driven (Fig. 5a), CH 4 driven by comparing the analytical patterns of classification gas pattern charts and target gas and so on (Fig. 5b), arc discharge or partial discharge if are H 2 driven, CH 4 If it is a C 2 H 4 -driven type, it is determined that it is caused by overheating and the cause of the abnormality. This makes it possible to compare the composition ratio and the like, which is effective for improving the reliability of the deterioration diagnosis of the oil-filled transformer.
【0015】請求項1記載の脱気機構とは、例えば、実
施例の真空ポンプ32、水蒸気除去フィルタ42、真空
脱気部21、電磁弁35、36、37、38、撹拌子3
4とその駆動装置、圧力センサ23、四方弁39、六方
弁40、真空脱気部21と検量管24を連結し四方弁3
9、六方弁40を含むガス流路がこれに相当し、二水準
のガス分離機構へのガス流路を切換える切換え手段と
は、例えば実施例の六方弁40、41に相当する。また
ガス検知部とは、実施例の可燃ガス検知器27、一酸化
炭素検知器28、二酸化炭素検知器29をいう。The degassing mechanism according to the first aspect includes, for example, the vacuum pump 32, the water vapor removal filter 42, the vacuum degassing section 21, the solenoid valves 35, 36, 37, 38, and the stirrer 3 of the embodiment.
4 and its driving device, the pressure sensor 23, the four-way valve 39, the six-way valve 40, the vacuum deaeration unit 21 and the calibration pipe 24, and the four-way valve 3
9. The gas flow path including the six-way valve 40 corresponds to this, and the switching means for switching the gas flow path to the two-level gas separation mechanism corresponds to, for example, the six-way valves 40 and 41 of the embodiment. The gas detection unit refers to the combustible gas detector 27, the carbon monoxide detector 28, and the carbon dioxide detector 29 of the embodiment.
【0016】[0016]
【発明の効果】本発明の実施により、従来の油中ガス分
析装置と比較して、一定時間内での分析作業効率、分析
精度を向上させ、分析結果の再現性を高めることができ
る。また、前記自己診断機能により、異常値を示した分
析対象については、極めて容易に精密分析の実施に切替
えることが可能であるから、油入変圧器の劣化診断にお
ける信頼性向上に好適な油中ガス分析装置を低原価で提
供することができる。According to the present invention, the efficiency of analysis and the accuracy of analysis within a certain period of time can be improved, and the reproducibility of analysis results can be improved as compared with the conventional gas-in-oil analyzer. In addition, since the self-diagnosis function can extremely easily switch to the execution of the precise analysis for the analysis target showing an abnormal value, the oil-in-oil suitable for improving the reliability in the deterioration diagnosis of the oil-immersed transformer. The gas analyzer can be provided at low cost.
【図1】本発明に係る油中ガス分析装置の一実施例の流
路を示す図である。FIG. 1 is a view showing a flow path of one embodiment of a gas-in-oil analyzer according to the present invention.
【図2】図1の実施例の流路を精密分析用に切換えた流
路を示す図である。FIG. 2 is a view showing a flow path in which the flow path of the embodiment of FIG. 1 is switched for precision analysis.
【図3】図1の実施例におけるガス検知器の出力波形図
である。FIG. 3 is an output waveform diagram of the gas detector in the embodiment of FIG.
【図4】図2の実施例におけるガス検知器の出力波形図
である。FIG. 4 is an output waveform diagram of the gas detector in the embodiment of FIG.
【図5】ガス検知器の出力波形図によるガスパターン診
断図表である。FIG. 5 is a gas pattern diagnosis chart based on an output waveform diagram of a gas detector.
【図6】従来技術の油中ガス分析装置の流路を示す図で
ある。FIG. 6 is a diagram showing a flow path of a conventional gas-in-oil analyzer.
【図7】従来技術のガス検知器の出力波形図である。FIG. 7 is an output waveform diagram of a conventional gas detector.
20…恒温槽 21…真空脱気部 1…
演算装置 2、22…採油ビン 23…圧力センサ 4、24…
検量管 5…ガス分離装置 10…不
純物除去フィルタ 25…ガス分離カラム(0.5m) 26…
ガス分離カラム(3m) 7、27…可燃ガス検知器 8、28…
一酸化炭素検知器 9、29…二酸化炭素検知器 31…
演算処理部 12、32…真空ポンプ 13、33…
送気ポンプ 34…撹拌子 35、36、37、38…
電磁弁 39…四方弁 3、6、40、41…
六方弁 42…水蒸気除去フィルタ 43…
流量計20 ... constant temperature bath 21 ... vacuum degassing unit 1 ...
Arithmetic unit 2, 22 ... oil sampling bin 23 ... pressure sensor 4, 24 ...
Calibration tube 5 Gas separation device 10 Impurity removal filter 25 Gas separation column (0.5 m) 26
Gas separation column (3m) 7, 27 ... Combustible gas detector 8, 28 ...
Carbon monoxide detector 9, 29… Carbon dioxide detector 31…
Arithmetic processing unit 12, 32 ... vacuum pump 13, 33 ...
Air supply pump 34: Stirrer 35, 36, 37, 38 ...
Solenoid valve 39 ... Four-way valve 3, 6, 40, 41 ...
6-way valve 42 ... water vapor removal filter 43 ...
Flowmeter
フロントページの続き (72)発明者 金子 好彦 新潟県北蒲原郡中条町大字富岡46番1号 株式会社日立製作所 産業機器事業部 内 (72)発明者 谷地 喜文 新潟県北蒲原郡中条町大字富岡46番1号 株式会社日立製作所 産業機器事業部 内 (72)発明者 米山 司 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社 技術研究所内 (72)発明者 村田 孝一 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社 技術研究所内 (56)参考文献 特開 平2−285257(JP,A) 実開 昭56−9057(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 33/28 G01N 30/88 G01N 1/22 Continued on the front page (72) Inventor Yoshihiko Kaneko 46-1 Tomioka, Nakajo-cho, Kitakanbara-gun, Niigata Industrial Machinery Division, Hitachi, Ltd. (72) Inventor Yoshifumi Yachi 46-1 Tomioka, Nakajo-cho, Kitakanbara-gun, Niigata No. 72 Industrial Machinery Division, Hitachi, Ltd. (72) Inventor Tsukasa Yoneyama 2-4-1 Nishi-Atsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Company Technical Research Institute (72) Koichi Murata 2-4-1, Nishi-Atsujigaoka, Chofu-shi, Tokyo No. 1 Tokyo Electric Power Company Technical Research Institute (56) References JP-A-2-285257 (JP, A) JP-A-56-9057 (JP, U) (58) Fields investigated (Int. Cl. 7 , (DB name) G01N 33/28 G01N 30/88 G01N 1/22
Claims (1)
する脱気機構、脱気した混合ガスを単一成分ガス毎に分
離するガス分離機構、単一ガス成分毎に濃度を検知する
ガス検知部を有する油中ガス分析装置において、 少なくとも前記脱気機構から抽出したガスを蓄積する検
量管、ガス分離機構、ガス検知部を含む流路を内装する
恒温槽と、 前記脱気機構、若しくは前記検量管の少なくとも何れか
一方に配設した圧力センサと、 二水準のガス分離能力を有する前記ガス分離機構と、 前記二水準のガス分離機構へ通ずるガス流路を切換える
切換え手段と、 検出すべき成分ガスの基準濃度値を記憶し、前記ガス検
知部による検出ガスの測定値と前記基準濃度値を比較判
定する演算処理部を有し、 採取された絶縁油の分析と劣化に関する自己診断を行な
うことを特徴とする油中ガス分析装置。1. A degassing mechanism for degassing a mixed gas dissolved in insulating oil, a gas separating mechanism for separating a degassed mixed gas for each single component gas, and detecting a concentration for each single gas component A gas-in-oil analyzer having a gas detection unit that performs calibration, a calibration tube that accumulates at least gas extracted from the degassing mechanism, a gas separation mechanism, and a thermostatic bath that includes a flow path including the gas detection unit; and the degassing mechanism. Or a pressure sensor disposed on at least one of the calibration tubes, the gas separation mechanism having two levels of gas separation capability, and switching means for switching a gas flow path leading to the two levels of gas separation mechanism; An arithmetic processing unit that stores a reference concentration value of the component gas to be detected, and compares and determines the measured value of the detected gas by the gas detection unit with the reference concentration value; Diagnosis A gas-in-oil gas analyzer characterized by performing:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32395993A JP3215243B2 (en) | 1993-12-22 | 1993-12-22 | Gas in oil analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32395993A JP3215243B2 (en) | 1993-12-22 | 1993-12-22 | Gas in oil analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07181175A JPH07181175A (en) | 1995-07-21 |
JP3215243B2 true JP3215243B2 (en) | 2001-10-02 |
Family
ID=18160546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32395993A Expired - Fee Related JP3215243B2 (en) | 1993-12-22 | 1993-12-22 | Gas in oil analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3215243B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102853114A (en) * | 2011-06-29 | 2013-01-02 | 浙江盾安机械有限公司 | Two-position six-way valve for electric vehicle air conditionings and heat-pump heating and cooling air conditioning system for electric vehicles |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5123152B2 (en) * | 2008-12-12 | 2013-01-16 | 富士電機株式会社 | Gas-in-oil analyzer and gas-in-oil analysis method |
CN108254338B (en) * | 2018-03-20 | 2023-10-13 | 湖南五凌电力科技有限公司 | Online monitoring device for gas content in transformer oil based on spectrum absorption method |
-
1993
- 1993-12-22 JP JP32395993A patent/JP3215243B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102853114A (en) * | 2011-06-29 | 2013-01-02 | 浙江盾安机械有限公司 | Two-position six-way valve for electric vehicle air conditionings and heat-pump heating and cooling air conditioning system for electric vehicles |
CN102853114B (en) * | 2011-06-29 | 2014-12-17 | 浙江盾安机械有限公司 | Two-position six-way valve for electric vehicle air conditionings and heat-pump heating and cooling air conditioning system for electric vehicles |
Also Published As
Publication number | Publication date |
---|---|
JPH07181175A (en) | 1995-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2008076B1 (en) | Apparatus for performing dissolved gas analysis | |
EP0509171A1 (en) | Method and apparatus for improving the specificity of an ion mobility spectrometer utilizing sulfur dioxide dopant chemistry | |
CN204389458U (en) | A kind of gas chromatographicanalyzer for analyzing sulfur hexafluoride decomposition product | |
JP6807587B2 (en) | Smell evaluation method and odor evaluation device | |
CN112415119A (en) | Cold trap pre-concentration system and method | |
WO1999053314A1 (en) | Method and apparatus for monitoring gas(es) in a dielectric fluid | |
Tsukioka et al. | Niew Apparatus for Detecting Transformer Faults | |
JP2008139130A (en) | Real time analyzer and real time analyzing method | |
JP3215243B2 (en) | Gas in oil analyzer | |
RU2273847C2 (en) | Mode of measuring of a common concentration of carbon and hydrocarbon oxides in oxygen with the aid of spectrometry of mobility of ions | |
Braun et al. | Novel low-cost SF6 arcing byproduct detectors for field use in gas-insulated switchgear | |
US3322504A (en) | Organic carbon determination and measurement | |
JP6584366B2 (en) | Gas analyzer and gas analysis method | |
KR100809149B1 (en) | A method for measuring the concentration of impurities in nitrogen, hydrogen and oxygen by means of ion mobility spectrometry | |
JPH0634616A (en) | Analysis of a trace of impurities | |
Newman | Product Review: The Precise World of Isotope Ratio Mass Spectrometry | |
CN215066399U (en) | Cold trap pre-concentration system | |
JPH0519005A (en) | Method for detecting deterioration in insulation paper of electric machine | |
JPH06331515A (en) | Gas-in-oil analyzer | |
CN112285259B (en) | Ion mobility spectrometry device | |
JP2004514137A (en) | Method for measuring nitrogen concentration in argon by ion mobility spectrum analysis | |
Widmer et al. | Automated monitor systems for the continuous surveillance of environmental samples | |
JPH05256747A (en) | Apparatus and method for diagnosing abnormality of electric apparatus containing perfluorocarbon | |
Mitra et al. | Microtrap interface for on‐line mass spectrometric monitoring of air emissions | |
CA1170721A (en) | Gas-liquid analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080727 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |