[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06312117A - Solvent recovery - Google Patents

Solvent recovery

Info

Publication number
JPH06312117A
JPH06312117A JP5122114A JP12211493A JPH06312117A JP H06312117 A JPH06312117 A JP H06312117A JP 5122114 A JP5122114 A JP 5122114A JP 12211493 A JP12211493 A JP 12211493A JP H06312117 A JPH06312117 A JP H06312117A
Authority
JP
Japan
Prior art keywords
gas
desorption
valve
adsorption
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5122114A
Other languages
Japanese (ja)
Inventor
Shinsaku Maruyama
眞策 丸山
Mitsuo Kawaguchi
光夫 川口
Takeshi Ishikawa
武 石川
Hirobumi Inagawa
博文 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP5122114A priority Critical patent/JPH06312117A/en
Publication of JPH06312117A publication Critical patent/JPH06312117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To economize the supply of gas for desorption by installing at least, three adsorption towers side by side, and operating three steps in parallel such as a) adsorption of solvent gas, b) dry desorption by desorption gas, and c) purification of residual solvent gas after desorption recovery as well as using clean gas after the step c) again as gas for desorption in the step b). CONSTITUTION:At least, three desorption towers 1 to 3 are installed side by side, and each tower takes care of three sequential steps such as adsorption of solvent gas, b) dry desorption by desorption gas and c) adsorption of residual solvent gas after desorption recovery to repeat the continuous adsorption process of the solvent gas. In this solvent recovery method, clean gas after the step c) is repeatedly used as gas for desorption in the step b). In this case, inert gas such as nitrogen or carbon dioxide is preferred as gas for desorption. Consequently, it is possible to economize the external feed of inert gas and thereby minimize energy loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶剤の回収方法に係
り、特に、吸着材を充填した吸着塔を用いて溶剤含有ガ
スから溶剤成分を連続的に回収する溶剤回収方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solvent recovery method, and more particularly to a solvent recovery method for continuously recovering a solvent component from a solvent-containing gas by using an adsorption tower filled with an adsorbent.

【0002】[0002]

【従来の技術】従来の技術は、例えば「公害と対策 vo
l.2, No.12(1990)P25〜P38」に詳細に
記載されており、抜すいしながら説明する。排ガスから
の有機溶剤の除去・回収技術には冷却法、圧縮法、吸着
・脱着法の3つがある。冷却法は、冷却温度を0℃以上
とするか、0℃以下とするかで2分される。一般に多く
用いられている5℃以上で冷却する装置は、比較的安い
が、低沸点のものの回収率が低くなる。0℃以下に冷却
する装置は、回収率は高いが、水が凍結するので、これ
を防ぐために、間欠的に氷を溶かすデフロスト方式、あ
るいは塩化カルシウムや塩化リチウムで水を吸収するエ
アシャワー方式による対策をとる必要がある。
2. Description of the Related Art The conventional technology is, for example, "pollution and measures vo
L.2, No. 12 (1990) P25 to P38 ", and will be explained while pulling out. There are three technologies for removing and recovering organic solvents from exhaust gas: cooling, compression, and adsorption / desorption. The cooling method is divided into 2 minutes depending on whether the cooling temperature is 0 ° C. or higher or 0 ° C. or lower. A device that cools at 5 ° C. or higher, which is commonly used, is relatively cheap, but the recovery rate of low boiling point compounds is low. The equipment that cools below 0 ° C has a high recovery rate, but since water freezes, in order to prevent this, a defrost method that melts ice intermittently or an air shower method that absorbs water with calcium chloride or lithium chloride is used. It is necessary to take measures.

【0003】圧縮法は、有機溶剤の蒸気を加圧し、溶剤
の飽和蒸気圧以上に分圧を上げて液化する方法がある
が、圧縮熱によって温度が上がるので、回収率を高くす
るためには放熱や冷却が必要となる。たとえば、ジクロ
ロメタンを5kg/cm2 に圧縮して5℃に冷却すれば、1
気圧で約−30℃に冷却した場合と同じになる。すなわ
ち、ジクロロメタンなどは、冷却を併用すれば回収率を
高くできる。ただし、低濃度の排ガスには適用できない
ので、今のところ使用例はあまり多くない。
As a compression method, there is a method of pressurizing the vapor of an organic solvent and increasing the partial pressure above the saturated vapor pressure of the solvent to liquefy it. However, since the temperature rises due to the heat of compression, it is necessary to increase the recovery rate. It requires heat dissipation and cooling. For example, if dichloromethane is compressed to 5 kg / cm 2 and cooled to 5 ° C, 1
This is the same as when cooled to about -30 ° C at atmospheric pressure. That is, the recovery rate of dichloromethane or the like can be increased by using cooling together. However, it is not applicable to low-concentration exhaust gas, so there are not many examples of use so far.

【0004】吸着・脱着法は、有機溶剤を活性炭等に吸
着し、水蒸気又は熱風で脱離し、脱離した高濃度の有機
溶剤蒸気を冷却法で液化して回収する方法である。以下
にこの吸着・脱離法の種類と特徴を示す。 1)ハニカム型活性炭ドラムを使用した予備濃縮方式 一般の吸着・脱離装置では、数十 ppm以下の低濃度で多
量の排ガスを処理すると、装置が大きくなって不利とな
る。そこでこのような場合には、あらかじめ簡易な吸着
・脱離装置で予備濃縮を行ってから本格的な除去・回収
装置を使用する。簡易な予備濃縮装置としてはハニカム
型の活性炭ドラムを回転させて吸着と脱離を短時間に繰
り返させる装置が使用されている。
The adsorption / desorption method is a method in which an organic solvent is adsorbed on activated carbon or the like, desorbed by steam or hot air, and the desorbed high-concentration organic solvent vapor is liquefied by a cooling method and recovered. The types and characteristics of this adsorption / desorption method are shown below. 1) Preconcentration method using honeycomb-type activated carbon drum In a general adsorption / desorption device, if a large amount of exhaust gas is treated at a low concentration of tens of ppm or less, the device becomes large, which is disadvantageous. Therefore, in such a case, pre-concentration is performed in advance by a simple adsorption / desorption device, and then a full-scale removal / recovery device is used. As a simple preconcentrating device, a device that rotates a honeycomb-type activated carbon drum to repeat adsorption and desorption in a short time is used.

【0005】2)粒状活性炭を使用した方式 有機溶剤蒸気の吸着・脱離には5〜10mmの円筒形など
に成形した活性炭又は破砕状活性炭を充填した大きな固
定床に排ガスを送って吸着し、数時間から数日ごとにス
チームを送って脱離し、脱離ガス中の有機溶剤を冷却法
で回収する装置が多く使用されてきた。
2) Method using granular activated carbon For adsorption and desorption of organic solvent vapor, exhaust gas is sent to a large fixed bed filled with activated carbon formed into a cylindrical shape of 5 to 10 mm or crushed activated carbon for adsorption. A device has been widely used in which steam is desorbed every several hours to several days and the organic solvent in the desorbed gas is recovered by a cooling method.

【0006】3)繊維状活性炭を使用した方式 繊維状活性炭を使用した小型の固定床装置は、中空円筒
状に成形した繊維状活性炭を1筒又は2筒つけたもので
10〜20分ごとに交互に吸着とスチーム脱離を繰り返
す。また、マット状に成形した繊維状活性炭を2段つ
け、10〜20分ごとに吸着とスチーム又は熱風による
脱離を繰り返すものである。
3) Method using fibrous activated carbon A small fixed bed apparatus using fibrous activated carbon is one in which one or two cylinders of fibrous activated carbon molded into a hollow cylinder are attached and every 10 to 20 minutes. Adsorption and steam desorption are repeated alternately. Further, two stages of fibrous activated carbon formed into a mat shape are provided, and adsorption and desorption with steam or hot air are repeated every 10 to 20 minutes.

【0007】4)球形活性炭を使用した方式 球形活性炭を使用した流動床で、連続的に吸着・脱離を
行う装置には、吸着塔と脱離塔を縦につないだ方式もあ
る。この装置では、数段に分けた吸着塔の下部から排ガ
スを通し、活性炭を流動させ、順次下段に落としながら
吸着していき、吸着した活性炭は脱離塔で加熱脱離す
る。この場合、スチームを直接吹き込まず、熱交換器を
通して活性炭を加熱し、少量の空気で追い出して凝縮部
で冷却回収する。
4) System using spherical activated carbon In a fluidized bed using spherical activated carbon, there is also a system in which an adsorption tower and a desorption tower are vertically connected to each other for continuous adsorption / desorption. In this apparatus, exhaust gas is passed from the lower part of the adsorption tower divided into several stages, activated carbon is made to flow, and it is adsorbed while being successively dropped to the lower stage, and the adsorbed activated carbon is desorbed by heating in the desorption tower. In this case, the steam is not directly blown in, but the activated carbon is heated through a heat exchanger, expelled with a small amount of air, and cooled and recovered in the condenser.

【0008】5)ハニカム状活性炭を使用した方式 ハニカム状活性炭を使用した固定床で吸着し、減圧しな
がら電気加熱して脱離する装置は通気抵抗が小さく、吸
着速度も速いので高流速で吸着でき、脱離にスチームを
使わないので、回収液中に水が入らないこと、排水処理
が容易になることなどの特徴がある。しかし、体積あた
りの吸着容量が小さく、また脱離にもやや時間がかか
る。なおこの装置には、水蒸気を直接導入して脱離を行
うタイプもある。
5) Method using honeycomb-like activated carbon An apparatus for adsorbing in a fixed bed using honeycomb-like activated carbon and desorbing by electrically heating while decompressing has a small ventilation resistance and a high adsorption rate, so that adsorption is performed at a high flow rate. It is possible to do so, and because steam is not used for desorption, there are features that water does not enter the collected liquid and wastewater treatment is easy. However, the adsorption capacity per volume is small, and desorption takes some time. There is also a type of this apparatus in which water vapor is directly introduced for desorption.

【0009】上記のように、従来から種々の吸着・脱離
法が知られているが、活性炭に通常使用される水蒸気脱
離を行う場合、冷却凝縮させて溶剤と水とを分離するこ
とになるが、実際は分離水中にもわずかに溶剤が溶け込
み、ばっ気法のような簡単な付帯設備だけでは溶剤を十
分除去しにくく、厳しくなる環境規制に対応するため
に、排水処理にかかる費用はますます増大していくと思
われる。そのための対応策として、吸着材の温度及び圧
力を変化させて吸着した溶剤を脱着する乾式法がある。
しかし、乾式法は湿式法に比べ、イニシャルコストが高
く、また電力費がかさむという欠点がある。そのうえ、
処理対象の溶剤ガスがケトン類やエステル類の様な酸化
性溶剤や分解性溶剤を含む場合、着火や劣化を防ぐため
に、不活性ガスを脱着した溶剤のキャリアガスとしての
使用や吸着材の昇温用に使用することが好ましいため、
新たに不活性ガス発生装置が必要となる。
As described above, various adsorption / desorption methods have been conventionally known, but in the case of performing steam desorption commonly used for activated carbon, cooling condensation is performed to separate the solvent and water. However, in reality, the solvent slightly dissolves in the separated water, and it is difficult to remove the solvent sufficiently with simple auxiliary equipment such as the aeration method, and the cost of wastewater treatment is high to comply with strict environmental regulations. It is expected to increase more and more. As a countermeasure for that, there is a dry method in which the temperature and pressure of the adsorbent are changed to desorb the adsorbed solvent.
However, the dry method has disadvantages that the initial cost is higher and the electric power cost is higher than that of the wet method. Besides,
If the solvent gas to be treated contains oxidizing or decomposable solvents such as ketones and esters, use inert solvent desorbed solvent as carrier gas or increase adsorbent to prevent ignition and deterioration. Since it is preferable to use it for warming,
A new inert gas generator is required.

【0010】不活性ガス発生装置は、例えばN2 ガスの
場合、小規模ではN2 ボンベ、液体窒素、大規模には空
気中のN2 を原料とする吸脱着法による発生装置が用い
られる。しかし、連続運転を前提とする溶剤回収には、
脱着時に要する不活性ガス供給量も多く、必然的に空気
から窒素を精製する発生装置を採用することになり、そ
の設置スペースや消費電力がかなり増大することにな
る。さて、脱着ガスを空気とする場合、ガス発生装置は
不要であるが、凝縮液中に空気中の水分が含有し、処理
ガスの一部を脱着用として利用するケースに比べ水分量
が多くなる。脱着ガスの循環方式では、冷却器で凝縮回
収する水分はすべて脱着にともなって発生した水分のた
め、回収液中の水発生量の低減につながる。
As the inert gas generator, for example, in the case of N 2 gas, a small-scale generator using N 2 cylinder or liquid nitrogen, and a large-scale generator using N 2 in the air as a raw material are used. However, for solvent recovery assuming continuous operation,
Since a large amount of inert gas is required for desorption, a generator for purifying nitrogen from air is inevitably adopted, which considerably increases the installation space and power consumption. By the way, when the desorption gas is air, a gas generator is not necessary, but the water content in the condensate is higher than in the case where a part of the processing gas is used for desorption. . In the desorption gas circulation method, all the water condensed and collected in the cooler is generated due to the desorption, which leads to a reduction in the amount of water generated in the collected liquid.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記のよう
な大規模な窒素ガス精製装置を設置する替りに、エネル
ギーロスを極力押さえ、不活性ガスの外部からの供給を
脱着工程における不活性ガスへの置換時のみに留めて、
消費電力を低減し、窒素ガス発生装置自体も小規模にで
きる溶剤回収方法を提供することを課題とする。
The present invention, instead of installing the large-scale nitrogen gas refining apparatus as described above, suppresses energy loss as much as possible, and supplies inert gas from the outside in the desorption step. Only when replacing with gas,
An object of the present invention is to provide a solvent recovery method that can reduce power consumption and make the nitrogen gas generator itself small-scale.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、吸着塔を3以上塔並列に設置し、各塔
が順次、(a)溶剤ガスの吸着工程、(b)脱着用ガス
による乾式脱着工程、(c)脱着回収後の残存溶剤ガス
の吸着工程の三工程を受持って反復して溶剤ガスを連続
的に吸着処理する溶剤の回収方法において、(c)工程
後の清澄ガスを再び(b)工程の脱着用ガスとして繰り
返し使用することとしたものである。吸着塔を4塔以上
とした場合は、休止工程を追加した運用も可能であり、
また、各工程を複数塔が受持つこともできる。上記の方
法において、脱着用のガスとしては、不活性ガス、例え
ば窒素、二酸化炭素等を用いるのがよい。
In order to solve the above-mentioned problems, in the present invention, three or more adsorption towers are installed in parallel, and each tower is sequentially installed (a) a solvent gas adsorption step and (b) desorption. In the solvent recovery method of continuously adsorbing a solvent gas by repeating three steps, a dry desorption step using a working gas and a (c) adsorption step of a residual solvent gas after desorption and recovery, after the (c) step The refining gas of No. 1 is repeatedly used as the desorption gas in the step (b) again. When the number of adsorption towers is 4 or more, it is possible to operate with an additional pause step.
Further, each step can be performed by a plurality of towers. In the above method, an inert gas such as nitrogen or carbon dioxide may be used as the desorption gas.

【0013】上記のように、本発明では、吸着塔を3塔
設置した場合、(a)溶剤ガスの吸着工程、(b)脱着
用ガスによる乾式脱着工程、(c)脱着回収後の残存溶
剤ガスの浄化の三工程を3塔のいずれかが受持って並列
処理し、各塔は(a)吸着工程、→(b)脱着工程、→
(c)脱着回収後の残存溶剤ガスの浄化工程の順に各工
程を反復して溶剤ガスを連続的に吸着・脱着して処理
し、さらに(c)工程で得られる清澄ガスを再び(b)
工程用の脱着ガスとして使用することを繰り返して行う
ものである。
As described above, in the present invention, when three adsorption towers are installed, (a) a solvent gas adsorption step, (b) a dry desorption step using a desorption gas, and (c) a residual solvent after desorption recovery. One of the three towers takes charge of the three steps of gas purification in parallel, and each tower processes (a) adsorption step, → (b) desorption step, →
(C) Each step is repeated in the order of the step of purifying the residual solvent gas after desorption / recovery to continuously adsorb / desorb the solvent gas for treatment, and the refining gas obtained in the step (c) is again treated (b).
It is repeatedly used as a desorption gas for the process.

【0014】[0014]

【作用】上記のように、本発明の吸着塔を3塔並列に用
いた場合は、1塔を吸着に、他の2塔を脱着用として、
そのうちの1塔を脱着回収後の残存溶剤ガスの吸着工程
として用い、脱着用ガスを清澄にして、この清澄化され
た脱着用ガスを他の1塔での脱着工程の脱着用ガスとし
て循環して用いることができるため、脱着用ガスとして
用いる不活性ガスは、最初の脱着工程における置換時の
みでよく、不活性ガスの使用量を大巾に節減できる。
As described above, when three adsorption towers of the present invention are used in parallel, one tower is used for adsorption and the other two towers are used for desorption.
One of them was used as an adsorption step for the residual solvent gas after desorption and recovery, the desorption gas was clarified, and the clarified desorption gas was circulated as the desorption gas in the desorption step in the other one column. Since the inert gas used as the desorption gas can be used only during the replacement in the first desorption step, the amount of the inert gas used can be greatly reduced.

【0015】[0015]

【実施例】以下、本発明を実施例で図面を用いて具体的
に説明するが、本発明はこの実施例に限定されるもので
はない。 実施例1 図1に、本発明の吸着塔を3塔設置した場合の溶剤回収
方法を説明するためのフロー図を示す。図2に、図1に
おける各吸着塔の運転工程図を示す。図1を用いて、本
発明の具体的な運転方法の一例を説明するが、こゝでは
便宜上図2の工程で進行するものとし、関連した開にす
べき弁だけを記載する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings, but the present invention is not limited to these embodiments. Example 1 FIG. 1 shows a flow chart for explaining a solvent recovery method when three adsorption towers of the present invention are installed. FIG. 2 shows an operation process chart of each adsorption tower in FIG. An example of a specific operation method of the present invention will be described with reference to FIG. 1, but here, for convenience, it is assumed that the process proceeds in the process of FIG. 2, and only the related valves to be opened are described.

【0016】(1)吸 着 溶剤ガスは原ガスブロア7により、原ガスミストセパレ
ータ15で除湿後吸着塔1に導かれ、溶剤は吸着材(活
性炭等)により、除去される。処理ガスは大気に放出さ
れる。(弁18、弁19開) (2)脱着、脱着後の残存溶剤ガスの回収 吸着塔3では脱着が行われる。 吸着塔2、吸着塔3を不活性ガス置換する。 イ、真空ポンプ9を起動し、吸着塔2、吸着塔3を減圧
する。(弁26、弁28、弁32、弁33、弁34、弁
35、弁40、弁41、弁43、弁44、弁45、弁5
1、弁52開) ロ、真空ポンプ9を停止し、不活性ガス発生装置17よ
り不活性ガスを吸着塔2、吸着塔3にほぼ常圧になるま
で供給する。(弁26、弁28、弁32、弁33、弁3
4、弁35、弁40、弁41、弁43、弁44、弁4
5、弁48開) イ、ロを複数回繰り返す。
(1) Adsorption The solvent gas is introduced into the adsorption tower 1 after being dehumidified by the raw gas mist separator 15 by the raw gas blower 7, and the solvent is removed by the adsorbent (activated carbon etc.). The processing gas is released to the atmosphere. (Valves 18 and 19 are opened) (2) Desorption and recovery of residual solvent gas after desorption Desorption is performed in the adsorption tower 3. The adsorption towers 2 and 3 are replaced with an inert gas. (A) The vacuum pump 9 is started to depressurize the adsorption towers 2 and 3. (Valve 26, valve 28, valve 32, valve 33, valve 34, valve 35, valve 40, valve 41, valve 43, valve 44, valve 45, valve 5
1. Open the valve 52) b. Stop the vacuum pump 9 and supply the inert gas from the inert gas generator 17 to the adsorption tower 2 and the adsorption tower 3 until the atmospheric pressure becomes almost normal pressure. (Valve 26, Valve 28, Valve 32, Valve 33, Valve 3
4, valve 35, valve 40, valve 41, valve 43, valve 44, valve 4
5. Open valve 48) Repeat steps a and b multiple times.

【0017】 ヒータ6、ガスヒータ12を生かし、
循環ブロア8を起動し、吸着塔3の昇温(60℃〜80
℃)を循環によって行う。(弁28、弁35、弁45
開) 所定温度(90〜100℃)に吸着塔3の温度が達
したら循環ブロア8の運転を停止し、真空ポンプ9を起
動し、吸着塔3の減圧(0.1ata 位)を行う。ヒータ
6、ガスヒータ12は生かしたままである。脱着ガス
は、脱着ガス冷却器13を介し、溶剤ガス中に混ぜる。
(弁34、弁35、弁41、弁44、弁49、弁50、
弁52、弁53開)
Utilizing the heater 6 and the gas heater 12,
The circulation blower 8 is started to raise the temperature of the adsorption tower 3 (60 ° C to 80 ° C).
℃) by circulation. (Valve 28, valve 35, valve 45
Open) When the temperature of the adsorption tower 3 reaches a predetermined temperature (90 to 100 ° C.), the operation of the circulation blower 8 is stopped, the vacuum pump 9 is activated, and the pressure of the adsorption tower 3 is reduced (at a level of 0.1 ata). The heater 6 and the gas heater 12 are still alive. The desorption gas is mixed with the solvent gas through the desorption gas cooler 13.
(Valve 34, valve 35, valve 41, valve 44, valve 49, valve 50,
(Valve 52, valve 53 open)

【0018】 吸着塔3と吸着塔2の間を真空ポンプ
9により、脱着ガス冷却器13を介して循環運転を行
う。ヒータ6、ガスヒータ12は生かしたままで、吸着
塔3では0.1ata 程度で脱着が行われる。脱着ガスは
脱着ガス冷却器13で回収され、残存有機溶剤ガスは吸
着塔2で吸着され、吸着後の浄化ガスは再び吸着塔3の
脱着用として利用される。この時、吸着塔3は減圧運
転、吸着塔2は常圧運転となるため、減圧弁である脱着
ガス回収弁27を介する必要がある。(弁34、弁3
5、弁37、弁43、弁49、弁50、弁53開)
A circulation operation is performed between the adsorption tower 3 and the adsorption tower 2 by a vacuum pump 9 via a desorption gas cooler 13. The heater 6 and the gas heater 12 are kept alive, and desorption is performed at about 0.1 ata in the adsorption tower 3. The desorbed gas is recovered by the desorbed gas cooler 13, the residual organic solvent gas is adsorbed by the adsorption tower 2, and the purified gas after adsorption is reused for desorption of the adsorption tower 3. At this time, the adsorption tower 3 is operated under reduced pressure, and the adsorption tower 2 is operated under normal pressure, so that it is necessary to interpose the desorption gas recovery valve 27, which is a pressure reduction valve. (Valve 34, valve 3
5, valve 37, valve 43, valve 49, valve 50, valve 53 open)

【0019】 所定時間後、ヒータ6、ガスヒータ1
2を切った後、の操作を行い、冷却する。吸着塔3の
温度が60°〜80℃程度に下がるまで行う。(弁3
4、弁37、弁41、弁43、弁44、弁49、弁5
0、弁53開) 真空ポンプ3、回収ガス冷却器13を停止後、吸着
塔3の圧力を開放(真空ブレーク)する。(弁23、弁
34、弁41、弁44開) 被処理ガスの一部を循環ブロア8を用いて吸引し、
30〜50℃程度に吸着塔3の温度が達するまで冷却す
る。冷却ガス後のガスは溶剤ガス中に混ぜる。(弁2
3、弁28、弁46開) 以上の操作を図2の工程に従って、各塔が順次行う。
After a predetermined time, the heater 6 and the gas heater 1
After turning off 2, carry out the operation of and cool. The process is repeated until the temperature of the adsorption tower 3 drops to about 60 ° to 80 ° C. (Valve 3
4, valve 37, valve 41, valve 43, valve 44, valve 49, valve 5
0, open valve 53) After stopping the vacuum pump 3 and the recovered gas cooler 13, the pressure in the adsorption tower 3 is released (vacuum break). (Valve 23, valve 34, valve 41, valve 44 open) Part of the gas to be treated is sucked using the circulation blower 8,
It is cooled until the temperature of the adsorption tower 3 reaches about 30 to 50 ° C. The gas after the cooling gas is mixed with the solvent gas. (Valve 2
3, valve 28, valve 46 open) The above operation is sequentially performed in each tower according to the process of FIG.

【0020】[0020]

【発明の効果】本発明では、前記した構成により次のよ
うな効果を奏する。 不活性ガス発生装置は、吸着塔の不活性ガスへの置
換だけに使用され、脱着時には循環使用するため、ラン
ニングコストの低減になる。特に吸着サイクルを長くと
った場合、効果は大きい。 不活性ガス発生装置自体の小型化が可能となる。
The present invention has the following effects due to the above-mentioned configuration. The inert gas generator is used only for replacing the adsorption tower with the inert gas, and is circulated for desorption, which reduces the running cost. Especially when the adsorption cycle is long, the effect is great. The inert gas generator itself can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶剤回収方法の一例を説明するための
フロー図。
FIG. 1 is a flow chart for explaining an example of a solvent recovery method of the present invention.

【図2】図1における吸着塔の運転工程図。FIG. 2 is an operation process diagram of the adsorption tower in FIG.

【符号の説明】[Explanation of symbols]

1、2、3…吸着塔、4、5、6…ヒータ、7…原ガス
ブロア(ファン)、8…循環ブロア(ファン)、9…真
空ポンプ、10、11、12…ガスヒータ、13…脱着
ガス冷却器、14…回収タンク、15…原ガスミストセ
パレータ、16…回収ガスミストセパレータ、17…不
活性ガス発生装置、18、20、22…原ガス入口弁、
19、21、23…処理ガス出口弁、24、26、28
…吸着塔出口加熱冷却弁、25、27、29…脱着ガス
回収弁(減圧弁)、30、32、34…吸着塔出口脱着
弁、31、33、35…吸着塔入口加熱冷却弁、36、
37、38…脱着ガス戻り弁、39、40、41…真空
開放弁、42、43、44…浄化ガス元弁、45…循環
ブロア出口循環弁、46…循環ブロア出口戻り弁、47
…不活性ガス流量調整弁、48…不活性ガス元弁、49
…真空ポンプ元弁、50…脱着ガス冷却器出口弁、51
…脱着ガス冷却器バイパス弁、52…戻り弁、53…回
収タンク元弁、54…脱着ガス冷却器循環弁
1, 2, 3 ... Adsorption tower, 4, 5, 6 ... Heater, 7 ... Raw gas blower (fan), 8 ... Circulation blower (fan), 9 ... Vacuum pump, 10, 11, 12 ... Gas heater, 13 ... Desorption gas Cooler, 14 ... Recovery tank, 15 ... Raw gas mist separator, 16 ... Recovery gas mist separator, 17 ... Inert gas generator, 18, 20, 22 ... Raw gas inlet valve,
19, 21, 23 ... Process gas outlet valve, 24, 26, 28
Adsorption tower outlet heating / cooling valve, 25, 27, 29 ... Desorption gas recovery valve (pressure reducing valve) 30, 32, 34 ... Adsorption tower outlet desorption valve, 31, 33, 35 ... Adsorption tower inlet heating / cooling valve, 36,
37, 38 ... Desorption gas return valve, 39, 40, 41 ... Vacuum release valve, 42, 43, 44 ... Purified gas source valve, 45 ... Circulation blower outlet circulation valve, 46 ... Circulation blower outlet return valve, 47
… Inert gas flow control valve, 48… Inert gas source valve, 49
... Vacuum pump source valve, 50 ... Desorption gas cooler outlet valve, 51
Desorption gas cooler bypass valve, 52 ... Return valve, 53 ... Recovery tank source valve, 54 ... Desorption gas cooler circulation valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲川 博文 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirofumi Inagawa 11-1 Haneda-Asahicho, Ota-ku, Tokyo Inside EBARA CORPORATION

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸着塔を3塔以上並列に設置し、各塔が
順次、(a)溶剤ガスの吸着工程、(b)脱着用ガスに
よる乾式脱着工程、(c)脱着回収後の残存溶剤ガスの
吸着工程の三工程を受持って反復して溶剤ガスを連続的
に吸着処理する溶剤の回収方法において、(c)工程後
の清澄ガスを再び(b)工程の脱着用ガスとして繰り返
し使用することを特徴とする溶剤回収方法。
1. Three or more adsorption towers are installed in parallel, and each tower has a (a) solvent gas adsorption step, (b) a desorption gas dry desorption step, and (c) residual solvent after desorption recovery. In a solvent recovery method in which three steps of gas adsorption step are repeated and solvent gas is continuously adsorbed and treated, the refining gas after step (c) is repeatedly used as the desorption gas in step (b). A method for recovering a solvent, comprising:
【請求項2】 吸着塔が4塔以上の場合、前記(a)、
(b)、(c)の3工程に休止工程を加えたことを特徴
とする請求項1記載の溶剤回収方法。
2. When the number of adsorption towers is 4 or more, (a),
The solvent recovery method according to claim 1, wherein a rest step is added to the three steps (b) and (c).
【請求項3】 前記(b)工程の脱着用ガスが、不活性
ガスであることを特徴とする請求項1又は2記載の溶剤
回収方法。
3. The solvent recovery method according to claim 1, wherein the desorption gas in the step (b) is an inert gas.
JP5122114A 1993-04-27 1993-04-27 Solvent recovery Pending JPH06312117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5122114A JPH06312117A (en) 1993-04-27 1993-04-27 Solvent recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5122114A JPH06312117A (en) 1993-04-27 1993-04-27 Solvent recovery

Publications (1)

Publication Number Publication Date
JPH06312117A true JPH06312117A (en) 1994-11-08

Family

ID=14827982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5122114A Pending JPH06312117A (en) 1993-04-27 1993-04-27 Solvent recovery

Country Status (1)

Country Link
JP (1) JPH06312117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050378A (en) * 2005-08-19 2007-03-01 Air Liquide Japan Ltd Recovery process for volatile organic compound
JP2007050379A (en) * 2005-08-19 2007-03-01 Air Liquide Japan Ltd Recovery process for volatile organic compound
JP2013128906A (en) * 2011-12-22 2013-07-04 Toyobo Co Ltd System for treating gas containing organic solvent
WO2018104986A1 (en) * 2016-12-08 2018-06-14 カンケンテクノ株式会社 Deodorizing device
CN111167257A (en) * 2018-11-13 2020-05-19 吉能科技股份有限公司 High-efficiency and high-safety solvent recovery equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050378A (en) * 2005-08-19 2007-03-01 Air Liquide Japan Ltd Recovery process for volatile organic compound
JP2007050379A (en) * 2005-08-19 2007-03-01 Air Liquide Japan Ltd Recovery process for volatile organic compound
JP4530945B2 (en) * 2005-08-19 2010-08-25 日本エア・リキード株式会社 Recovery process for volatile organic compounds
JP2013128906A (en) * 2011-12-22 2013-07-04 Toyobo Co Ltd System for treating gas containing organic solvent
WO2018104986A1 (en) * 2016-12-08 2018-06-14 カンケンテクノ株式会社 Deodorizing device
CN111167257A (en) * 2018-11-13 2020-05-19 吉能科技股份有限公司 High-efficiency and high-safety solvent recovery equipment

Similar Documents

Publication Publication Date Title
US5908490A (en) Organic solvent recovering system and organic solvent recovering method
JP2015000381A (en) Organic solvent recovery system
WO1990013351A1 (en) Desiccant gas drying system
JPH06226029A (en) Method for recovering solvent
JPH06312117A (en) Solvent recovery
JP4548891B2 (en) Organic solvent recovery method
JP2004243279A (en) Method and device for cleaning gas containing organic contaminant
JP2840563B2 (en) Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas
JPH09164319A (en) Method for recovering solvent
JP3922449B2 (en) Organic solvent recovery system
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
JPH0938445A (en) Method for regenerating adsorption tower
CN115006963A (en) System and process for recycling cryogenic solvent from waste gas in pharmaceutical industry
JPH0760050A (en) Device for treating methanol containing gas
JP3363986B2 (en) Solvent recovery method
JP2001137647A (en) Multistage adsorption treating device for waste gas and method
CN116571048B (en) Circulating type waste gas treatment system and method
JPH08281044A (en) Method for recovering solvent
JPH04118024A (en) Solvent recovering device
JPH0663350A (en) Method for recovering solvent
JPH03270710A (en) Solvent recovery apparatus
JPH07265642A (en) Solvent recovery method
JP2002035541A (en) Method for recovering alcohols, etc., from waste gas
JP3788814B2 (en) Solvent recovery method
CN212282895U (en) Organic solvent dehydration device and organic solvent dehydration system