JPH06269186A - Two degree of freedom oscillation type microactuator - Google Patents
Two degree of freedom oscillation type microactuatorInfo
- Publication number
- JPH06269186A JPH06269186A JP5078915A JP7891593A JPH06269186A JP H06269186 A JPH06269186 A JP H06269186A JP 5078915 A JP5078915 A JP 5078915A JP 7891593 A JP7891593 A JP 7891593A JP H06269186 A JPH06269186 A JP H06269186A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- movable
- degree
- electrode
- freedom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exposure Or Original Feeding In Electrophotography (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、静電力または電磁力に
よる2自由度振動型マイクロアクチュエータに関するも
のであり、さらに詳しくは、光スキャナーのミラー駆動
機構、振動型の雰囲気センサ、ディスプレイの光シャッ
ター等に有効に利用できる2自由度振動型マイクロアク
チュエータに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-degree-of-freedom vibration type microactuator using electrostatic force or electromagnetic force. More specifically, the present invention relates to a mirror drive mechanism of an optical scanner, a vibrating atmosphere sensor, and an optical shutter of a display. The present invention relates to a two-degree-of-freedom vibration type microactuator that can be effectively used for other purposes.
【0002】[0002]
【従来の技術】図6に示すような、平行平板状に電極を
配置した1自由度のねじり振動子は、その構造が簡単な
ことから、マイクロアクチュエータの研究初期から提案
されている(一例として K.E.Petersen:"Silicon Torsi
onal Scanning Mirror",IBM J.Res.Develop.,vol.24(19
80)P.631参照)。また、上記ねじり振動子をカンチレバ
ー方式とした1自由度静電駆動型振動子も提案されてい
る(河村他:”Siを用いたマイクロメカニクスの研
究”、昭和61年度精密工学会秋季大会学術講演会論文
集、P.753 )。2. Description of the Related Art A one-degree-of-freedom torsion oscillator having electrodes arranged in a parallel plate shape as shown in FIG. 6 has been proposed from the early stage of research on microactuators because of its simple structure (as an example). KEPetersen: "Silicon Torsi
onal Scanning Mirror ", IBM J. Res.Develop., vol.24 (19
80) See page 631). In addition, a one-degree-of-freedom electrostatic drive type oscillator using the above-mentioned torsion oscillator as a cantilever system has also been proposed (Kawamura et al .: “Study of micromechanics using Si”, Academic Conference of Precision Engineering Society Autumn Meeting, 1986). Proceedings of the Meeting, P.753).
【0003】上記図6の1自由度静電駆動型ねじり振動
子は、ガラス基板1上の両端部にスぺーサ2を介してシ
リコンの単結晶板からなる可動電極板3の両端固定部3
aを固定し、この可動電極板3の両端固定部3a間に、
細巾のトーションバー3bを介して可動電極部3cを支
持させ、また、その可動電極部3cに電極間隔を置いて
対向させる固定電極4を、ガラス基板1上において上記
可動電極部3cに対し平行配置している。可動電極板3
と固定電極4との間にはスイッチ6を介して電源5が接
続される。In the one-degree-of-freedom electrostatic drive type torsion oscillator shown in FIG. 6, the movable electrode plate 3 made of a silicon single crystal plate is fixed to both ends of a glass substrate 1 with spacers 2 interposed therebetween.
a is fixed, and between the both end fixing portions 3a of the movable electrode plate 3,
A fixed electrode 4 that supports the movable electrode portion 3c via a narrow torsion bar 3b and that opposes the movable electrode portion 3c at an electrode interval is parallel to the movable electrode portion 3c on the glass substrate 1. It is arranged. Movable electrode plate 3
A power supply 5 is connected between the fixed electrode 4 and the fixed electrode 4 via a switch 6.
【0004】上記構成を有するねじり振動子は、可動電
極部3cと固定電極4との間に電圧を印加すると、静電
引力によりトーションバー3bを軸として可動電極部3
cが回転するものである。しかるに、静電引力は電極間
隔の二乗に反比例するため、この種の静電アクチュエー
タにおいては電極間隔を小さくすることが望まれる。し
かし、上述した1自由度の構造では、可動電極部3cが
電極と可動部を兼ねるため、電極間隔を狭くすると変位
(回転角)に制約が生じ、また可動範囲を大きくとるた
めには電極間隔を大きくする必要がある。このため、低
電圧駆動と大振幅の両立が困難であるという問題があ
る。When a voltage is applied between the movable electrode portion 3c and the fixed electrode 4 in the torsional oscillator having the above-mentioned structure, the movable electrode portion 3 is rotated about the torsion bar 3b by electrostatic attraction.
c is the one that rotates. However, since electrostatic attraction is inversely proportional to the square of the electrode spacing, it is desirable to reduce the electrode spacing in this type of electrostatic actuator. However, in the structure with one degree of freedom described above, since the movable electrode portion 3c serves both as an electrode and a movable portion, the displacement (rotation angle) is restricted when the electrode interval is narrowed, and the electrode interval is increased in order to increase the movable range. Needs to be increased. Therefore, there is a problem that it is difficult to achieve both low voltage driving and large amplitude.
【0005】[0005]
【発明が解決しようとする課題】本発明の技術的課題
は、電圧印加等により駆動する駆動部分と可動部分を分
離して、2自由度の振動系を構成させることにより、電
極間隔(電磁力伝達間隔)を狭くして低電圧駆動を可能
にすると同時に、可動部分の可動範囲を確保して大振幅
を得られるようにした2自由度振動型マイクロアクチュ
エータを提供することにある。SUMMARY OF THE INVENTION The technical problem of the present invention is to separate the drive part driven by voltage application and the movable part from each other to form a vibration system having two degrees of freedom. (EN) A two-degree-of-freedom vibration-type microactuator in which a transmission interval) is narrowed to enable low voltage driving, and at the same time, a movable range of a movable portion is secured to obtain a large amplitude.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
の本発明の2自由度振動型マイクロアクチュエータは、
周期的外力が与えられる駆動板を、第1の弾性連結部材
を介して固定部で弾性支持させ、上記駆動板に第2の弾
性連結部材を介して可動板を弾性的に結合し、上記駆動
板と可動板にそれぞれの弾性連結部材において弾性的に
変位する2自由度の振動系を形成させることによって構
成される。A two-degree-of-freedom vibration type microactuator of the present invention for solving the above-mentioned problems is provided.
The drive plate to which a periodic external force is applied is elastically supported by the fixed portion via the first elastic connecting member, and the movable plate is elastically coupled to the drive plate via the second elastic connecting member to drive the drive plate. The plate and the movable plate are formed by forming a two-degree-of-freedom vibration system that elastically displaces in each elastic connecting member.
【0007】[0007]
【作用】上記構成を有する2自由度振動型マイクロアク
チュエータにおいては、駆動板と可動板がそれぞれ振動
系を構成し、駆動板に外部から作用させる周期的な静電
力または電磁力の周波数を適切に設定すると、駆動板の
振幅をほぼ0とし、可動板の振幅を有限の値に設定する
ことができる。ここで、駆動板を駆動する静電力や電磁
力は、それを伝達する距離の二乗に反比例するので、駆
動板の振幅が小さい程、上記距離を短縮し、より低電圧
(低電力)で可動板の可動範囲を確保し、大振幅を得る
ことができる。In the two-degree-of-freedom vibration type microactuator having the above structure, the drive plate and the movable plate respectively constitute a vibration system, and the frequency of the periodic electrostatic force or electromagnetic force applied to the drive plate from the outside is appropriately adjusted. When set, the amplitude of the drive plate can be set to almost 0 and the amplitude of the movable plate can be set to a finite value. Here, the electrostatic force or electromagnetic force that drives the drive plate is inversely proportional to the square of the distance for transmitting the drive plate. Therefore, the smaller the amplitude of the drive plate, the shorter the distance and the lower the voltage (low power) to move. It is possible to secure a movable range of the plate and obtain a large amplitude.
【0008】[0008]
【実施例】図1及び図2は、本発明に係るマイクロアク
チュエータの実施の一例を示している。図1に示す2自
由度静電駆動型マイクロアクチュエータは、表面にエッ
チングによる所要の加工を施したガラス基板10上に固
定電極18を設けると共に、単結晶シリコンウエハから
異方性エッチングにより所要形状に形成した可動電極板
20を取付けることにより構成したものである。1 and 2 show an example of the implementation of a microactuator according to the present invention. In the two-degree-of-freedom electrostatic drive microactuator shown in FIG. 1, a fixed electrode 18 is provided on a glass substrate 10 whose surface has been subjected to required processing by etching, and a single crystal silicon wafer is anisotropically etched into a required shape. It is configured by attaching the formed movable electrode plate 20.
【0009】上記ガラス基板10は、実質的に長方形状
をなし、上記エッチングにより、その表面における長手
方向両端部に可動電極板20の両端固定部21を支持す
るためのスぺーサ11を形成すると共に、上記長手方向
の中心線Lに沿って、図2に明瞭に示す刃型エッジ12
を形成し、さらに、その他の部分を掘削薄肉化し、その
際、特に可動電極板20における後記可動板25に対向
する部分14を一層深くし、これによって、可動電極板
20を全体的にガラス基盤10の表面から離間させた状
態で、その両端固定部21をスぺーサ11上に支持させ
ている。The glass substrate 10 has a substantially rectangular shape, and the spacers 11 for supporting both end fixing portions 21 of the movable electrode plate 20 are formed at both ends in the longitudinal direction on the surface by the above etching. Along with the longitudinal centerline L, the blade edge 12 clearly shown in FIG.
In addition, the other portion is further thinned by excavation, and in this case, in particular, the portion 14 of the movable electrode plate 20 facing the later-described movable plate 25 is further deepened, whereby the movable electrode plate 20 is entirely formed on the glass substrate. Both end fixing portions 21 are supported on the spacer 11 in a state of being separated from the surface of 10.
【0010】一方、上記可動電極板20は、その両端に
設けた固定部21間において、両側に上記中心線Lに沿
う細巾の第1のトーションバー22を介して電極板23
を連設し、その電極板23内を部分的に切除することに
より、上記中心線Lに沿う第2のトーションバー24を
形成すると共に、それらの第2のトーションバー24を
介して可動板25を連設している。この可動電極板20
における電極板23及び可動板25は、中心線Lの両側
において対称形をなすものである。On the other hand, in the movable electrode plate 20, between the fixed portions 21 provided at both ends thereof, the electrode plate 23 is provided on both sides with the narrow first torsion bar 22 along the center line L interposed therebetween.
Are continuously provided, and the inside of the electrode plate 23 is partially cut to form the second torsion bar 24 along the center line L, and the movable plate 25 is provided through the second torsion bar 24. Are installed in series. This movable electrode plate 20
The electrode plate 23 and the movable plate 25 in the above are symmetrical on both sides of the center line L.
【0011】上記可動電極板20は、その両端の固定部
21をガラス基板10上のスぺーサ11上にホットワッ
クス等で接着して支持させ、その中心線Lに沿うトーシ
ョンバー22,24をガラス基板10上の刃型エッジ1
2に接触状態で載置(図2)することにより、ガラス基
板10に固定されるものである。また、上記ガラス基板
10上には、中心線Lの一側において、電極板23に対
して電極間隔を置いて固定電極18を対向配置してい
る。この固定電極18は、ガラス基板10上にTiを蒸
着するなどの手段により形成することができるものであ
る。なお、図示を省略しているが、この固定電極18と
上記電極板23とは、電源に接続される。In the movable electrode plate 20, the fixed portions 21 at both ends are adhered and supported on the spacer 11 on the glass substrate 10 by hot wax or the like, and the torsion bars 22 and 24 along the center line L thereof are supported. Edge 1 on the glass substrate
It is fixed to the glass substrate 10 by being placed in contact with the substrate 2 (FIG. 2). Further, on the glass substrate 10, on one side of the center line L, the fixed electrode 18 is arranged to face the electrode plate 23 with an electrode interval. The fixed electrode 18 can be formed by means such as vapor deposition of Ti on the glass substrate 10. Although not shown, the fixed electrode 18 and the electrode plate 23 are connected to a power source.
【0012】上記構成を有する2自由度振動型マイクロ
アクチュエータにおいては、電極板23と可動板25が
それぞれ振動系を構成し、固定電極18と電極板23と
の間に周期的な電圧を印加すると、静電力により電極板
23が駆動されてトーションバー22,24がねじり振
動し、その周期的な静電力の周波数を適切に設定する
と、電極板23の振幅をほぼ0とし、可動板25の振幅
を有限の値に設定することができる。ここで、電極板2
3を駆動する静電力は電極間隔の二乗に反比例するの
で、駆動板の振幅が小さい程、上記電極間隔を短縮し、
より低電圧で可動板25の可動範囲を確保し、大振幅を
得ることができる。In the two-degree-of-freedom vibration type microactuator having the above-mentioned structure, the electrode plate 23 and the movable plate 25 respectively form a vibration system, and when a periodic voltage is applied between the fixed electrode 18 and the electrode plate 23. , The electrode plate 23 is driven by the electrostatic force and the torsion bars 22 and 24 torsionally vibrate. When the frequency of the periodic electrostatic force is appropriately set, the amplitude of the electrode plate 23 is set to almost 0 and the amplitude of the movable plate 25 is set. Can be set to a finite value. Here, the electrode plate 2
Since the electrostatic force driving 3 is inversely proportional to the square of the electrode interval, the smaller the amplitude of the driving plate, the shorter the electrode interval,
It is possible to secure a movable range of the movable plate 25 with a lower voltage and obtain a large amplitude.
【0013】図3は、上記2自由度振動型マイクロアク
チュエータの構成を力学モデルによって示すもので、上
記実施例との対応部分に同一の符号を付している。この
力学モデルにおいては、電極板23が第1のトーション
バー22により固定部21に対して弾性支持され、可動
板25が第2のトーションバー24により電極板23と
弾性的に結合されている。従って、電極板23と可動板
25とはそれぞれトーションバー22,24を中心に回
転し、2自由度のねじり振動系を形成している。FIG. 3 shows the structure of the two-degree-of-freedom vibration type microactuator by a dynamic model, and the same reference numerals are given to the portions corresponding to the above-mentioned embodiment. In this mechanical model, the electrode plate 23 is elastically supported by the first torsion bar 22 with respect to the fixed portion 21, and the movable plate 25 is elastically coupled to the electrode plate 23 by the second torsion bar 24. Therefore, the electrode plate 23 and the movable plate 25 rotate about the torsion bars 22 and 24, respectively, and form a torsional vibration system having two degrees of freedom.
【0014】この力学モデルにおいて、I1 、θ1 をそ
れぞれ電極板23の慣性モーメント及び変位とし、I
2 、θ2 を可動板25の慣性モーメント及び変位とし、
さらにk1 、k2 を第1のトーションバー22及び第2
のトーションバー24のねじりばね定数とすると、電極
板23に周期的外力T・sinωtが働くときの運動方
程式は、次式で与えられる。In this dynamic model, I 1 and θ 1 are the moment of inertia and displacement of the electrode plate 23, respectively,
2 and θ 2 are the moment of inertia and displacement of the movable plate 25,
Further, k 1 and k 2 are connected to the first torsion bar 22 and the second torsion bar 22.
Assuming that the torsion spring constant of the torsion bar 24 is, the equation of motion when the periodic external force T · sinωt acts on the electrode plate 23 is given by the following equation.
【0015】[0015]
【数1】 [Equation 1]
【0016】また、電極板系の固有振動数ω1 及び可動
板系の固有振動数ω2 は、それぞれ、Further, the natural frequency omega 2 of the natural frequency omega 1 and the movable plate type electrode plate system, respectively,
【数2】 によって与えられる。[Equation 2] Given by.
【0017】ここで、θstを電極板の静的変位とすれ
ば、周期的外力による振幅は、電極板及び可動板のそれ
ぞれについて次式で与えられる。Here, if θ st is the static displacement of the electrode plate, the amplitude due to the periodic external force is given by the following equation for each of the electrode plate and the movable plate.
【数3】 [Equation 3]
【0018】上式より、ω=ω1 において周期的外力に
よる電極板23の振幅は0となる。このとき、可動板2
5の振幅は(4)式で示される有限な値となる。可動板
25の振幅は、電極板23と可動板25及び2つのトー
ションバーを適当に設計することにより所定値に設定で
きる。From the above equation, the amplitude of the electrode plate 23 due to the periodic external force becomes 0 at ω = ω 1 . At this time, the movable plate 2
The amplitude of 5 has a finite value represented by the equation (4). The amplitude of the movable plate 25 can be set to a predetermined value by appropriately designing the electrode plate 23, the movable plate 25, and the two torsion bars.
【0019】本発明者の試作においては、上記可動電極
板20を、厚さ0.3mmで、外形寸法が約20mm×
20mmの単結晶シリコンウエハから、異方性エッチン
グにより一体形成した。また、固定電極18と電極板2
3との間隔は8μm、可動板25とガラス基板10との
間隔は38μmとした。In the trial manufacture by the present inventor, the movable electrode plate 20 has a thickness of 0.3 mm and an external dimension of about 20 mm ×
A 20 mm single crystal silicon wafer was integrally formed by anisotropic etching. In addition, the fixed electrode 18 and the electrode plate 2
The distance between the movable plate 25 and the glass substrate 10 was 38 μm.
【0020】この試作した2自由度ねじり振動型アクチ
ュエータにおいて、電極板23と可動板25の変位(ね
じれ角)を光てこ法により測定した。はじめに、静的に
100Vの電圧を加えたところ、電極板23と可動板2
5の変位は一致し、θst=0.02°であった。つぎ
に、周期的に変動する電圧を加えて励振した。図4は、
正弦波状の電圧(100Vp-p )を加えたときの電極板
23と可動板25の共振曲線を示す。縦軸は変位を示
し、予め測定した静的変位θstで除している。In this trial-made two-degree-of-freedom torsional vibration type actuator, the displacement (twist angle) of the electrode plate 23 and the movable plate 25 was measured by an optical lever method. First, when a voltage of 100 V was statically applied, the electrode plate 23 and the movable plate 2 were
The displacement of 5 was in agreement, and θ st = 0.02 °. Next, excitation was performed by applying a voltage that fluctuates periodically. Figure 4
A resonance curve of the electrode plate 23 and the movable plate 25 when a sinusoidal voltage (100 Vp-p) is applied is shown. The vertical axis represents the displacement, which is divided by the static displacement θ st measured in advance.
【0021】この共振曲線から、試作したねじり振動型
アクチュエータでは、241Hzと580Hzに共振点
を有しているが、二つの共振点の中間付近で電極板23
の変位が0となり、電極板23を殆んど変位させること
なく可動板25の大きい変位を得るという目的を達成で
きることがわかる。従って、電極板23、可動板25及
びトーションバー22,24を最適化することにより、
可動板25の変位のみを拡大することができる。その結
果、電極板23の変位が小さくなるため、電極板23と
固定電極18の間隔を狭くとり、電源電圧を従来のもの
より低くとっても、可動板25の変位を大きくした効率
のよいマイクロアクチュエータを得ることができる。From this resonance curve, the torsional vibration actuator produced as a prototype has resonance points at 241 Hz and 580 Hz, but the electrode plate 23 is located near the middle of the two resonance points.
It can be understood that the object of obtaining a large displacement of the movable plate 25 without substantially displacing the electrode plate 23 can be achieved. Therefore, by optimizing the electrode plate 23, the movable plate 25, and the torsion bars 22 and 24,
Only the displacement of the movable plate 25 can be enlarged. As a result, the displacement of the electrode plate 23 becomes small. Therefore, even if the gap between the electrode plate 23 and the fixed electrode 18 is narrowed and the power supply voltage is lower than that of the conventional one, an efficient microactuator in which the displacement of the movable plate 25 is large is provided. Obtainable.
【0022】図5は、2自由度振動型マイクロアクチュ
エータの他の実施例の構成を力学モデルによって示すも
ので、前記実施例ではトーションバーのねじり振動を利
用しているのに対し、この力学モデルにおいては、上記
トーションバーと実質的に同構造を有する弾性連結部材
の曲げ振動を利用している。即ち、電極板33を第1の
弾性連結部材32により固定部31に対して弾性支持さ
せ、可動板35を第2の弾性連結部材34により電極板
33と弾性的に結合している。従って、電極板33と可
動板35とはそれぞれ弾性連結部材32,34の曲がり
により傾動し、2自由度の曲げ振動系を形成している。
なお、この振動系における動作は、前記図3の力学モデ
ルの場合と実質的に変わるところがないため、その説明
を省略する。FIG. 5 shows the structure of another embodiment of the two-degree-of-freedom vibration type microactuator by a mechanical model. In the above-mentioned embodiment, the torsional vibration of the torsion bar is utilized, whereas this mechanical model is used. In the above, the bending vibration of the elastic connecting member having substantially the same structure as the torsion bar is utilized. That is, the electrode plate 33 is elastically supported by the first elastic connecting member 32 with respect to the fixed portion 31, and the movable plate 35 is elastically connected to the electrode plate 33 by the second elastic connecting member 34. Therefore, the electrode plate 33 and the movable plate 35 are tilted by the bending of the elastic connecting members 32 and 34, respectively, to form a bending vibration system having two degrees of freedom.
The operation in this vibration system is substantially the same as that in the case of the dynamic model of FIG. 3, and therefore its explanation is omitted.
【0023】上記両実施例では、電極板23,33と固
定電極との間に電圧を印加して電極板に静電力を作用さ
せる場合について説明したが、上記電極板側を磁性材料
からなる駆動板とし、ガラス基板10上の固定電極側を
コイルによって構成することにより、前記電極板に対応
する駆動板を電磁力で駆動するなどの手段を採用し、周
期的外力を与えるようにしてもよい。In both of the above embodiments, the case where a voltage is applied between the electrode plates 23 and 33 and the fixed electrode to apply an electrostatic force to the electrode plate has been described. However, the electrode plate side is driven by a magnetic material. A periodic external force may be applied by adopting a means such as driving a driving plate corresponding to the electrode plate by an electromagnetic force by forming the plate as a plate on the fixed electrode side on the glass substrate 10 by a coil. .
【0024】周期的外力が与えられる駆動板を、第1の
弾性連結部材を介して固定部に対し弾性支持させ、上記
駆動板に第2の弾性連結部材を介して可動板を弾性的に
結合し、上記駆動板と可動板にそれぞれの弾性連結部材
において弾性的に変位する2自由度の振動系を形成させ
たことを特徴とする2自由度振動型マイクロアクチュエ
ータ。A drive plate to which a periodic external force is applied is elastically supported by a fixed portion via a first elastic connecting member, and the movable plate is elastically coupled to the drive plate via a second elastic connecting member. A two-degree-of-freedom vibration type microactuator is characterized in that the driving plate and the movable plate are formed with a two-degree-of-freedom vibration system that is elastically displaced in each elastic connecting member.
【発明の効果】以上に詳述したように、本発明の2自由
度振動型マイクロアクチュエータによれば、電圧印加等
により駆動する駆動部分と可動部分を分離して、2自由
度の振動系を構成しているため、駆動板の変位を十分小
さくして低電圧駆動を可能にすると同時に、可動板の変
位を大きくすることができる。As described above in detail, according to the two-degree-of-freedom vibration type microactuator of the present invention, the two-degree-of-freedom vibration system is separated by separating the driving part and the movable part which are driven by voltage application or the like. Since it is configured, the displacement of the drive plate can be made sufficiently small to enable low voltage driving, and at the same time the displacement of the movable plate can be increased.
【図1】本発明の2自由度振動型マイクロアクチュエー
タの実施例を示す分解斜視図である。FIG. 1 is an exploded perspective view showing an embodiment of a two-degree-of-freedom vibration type microactuator of the present invention.
【図2】同実施例の要部横断面図である。FIG. 2 is a lateral cross-sectional view of a main part of the embodiment.
【図3】同実施例の力学モデルを示す斜視図である。FIG. 3 is a perspective view showing a dynamic model of the embodiment.
【図4】同実施例のものにおける電極板と可動板の共振
曲線を示すグラフである。FIG. 4 is a graph showing resonance curves of an electrode plate and a movable plate in the example.
【図5】本発明の他の実施例の力学モデルを示す斜視図
である。FIG. 5 is a perspective view showing a dynamic model of another embodiment of the present invention.
【図6】従来の1自由度のねじり振動子の構成を示す斜
視図である。FIG. 6 is a perspective view showing a configuration of a conventional one-degree-of-freedom torsion oscillator.
18 固定電極、 21,31 固定部、 22,24 トーションバー、 23,33 電極板、 25,35 可動板、 32,34 弾性連結部材。 18 fixed electrode, 21,31 fixed part, 22,24 torsion bar, 23,33 electrode plate, 25,35 movable plate, 32,34 elastic connection member.
Claims (1)
弾性連結部材を介して固定部で弾性支持させ、上記駆動
板に第2の弾性連結部材を介して可動板を弾性的に結合
し、上記駆動板と可動板にそれぞれの弾性連結部材にお
いて弾性的に変位する2自由度の振動系を形成させたこ
とを特徴とする2自由度振動型マイクロアクチュエー
タ。1. A drive plate to which a periodic external force is applied is elastically supported by a fixed portion via a first elastic connecting member, and the movable plate is elastically supported by the drive plate via a second elastic connecting member. A two-degree-of-freedom vibrating microactuator, which is coupled to form a two-degree-of-freedom vibration system in which the drive plate and the movable plate are elastically displaced in respective elastic connecting members.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5078915A JP2849697B2 (en) | 1993-03-12 | 1993-03-12 | 2-DOF vibration microactuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5078915A JP2849697B2 (en) | 1993-03-12 | 1993-03-12 | 2-DOF vibration microactuator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06269186A true JPH06269186A (en) | 1994-09-22 |
JP2849697B2 JP2849697B2 (en) | 1999-01-20 |
Family
ID=13675150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5078915A Expired - Lifetime JP2849697B2 (en) | 1993-03-12 | 1993-03-12 | 2-DOF vibration microactuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2849697B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005099760A (en) * | 2003-09-05 | 2005-04-14 | Seiko Epson Corp | Actuator |
JP2005134665A (en) * | 2003-10-30 | 2005-05-26 | Olympus Corp | Light deflector |
US7095156B2 (en) | 2003-10-29 | 2006-08-22 | Seiko Epson Corporation | Actuator |
JP2006243251A (en) * | 2005-03-02 | 2006-09-14 | Canon Inc | Optical deflector |
JP2006239842A (en) * | 2005-03-04 | 2006-09-14 | Seiko Epson Corp | Adjusting method of resonance frequency of actuator and actuator |
JP2006250926A (en) * | 2005-02-14 | 2006-09-21 | Ngk Insulators Ltd | Mass measurement device |
KR100719102B1 (en) * | 2000-11-03 | 2007-05-17 | 삼성전자주식회사 | Micro-driving device |
WO2008054424A2 (en) * | 2005-10-31 | 2008-05-08 | Advanced Numicro Systems, Inc. | Mems mirror with parallel springs and arched support for beams |
US7423795B2 (en) | 2006-05-30 | 2008-09-09 | Canon Kabushiki Kaisha | Optical deflector and optical instrument using the same |
CN100458588C (en) * | 2004-12-15 | 2009-02-04 | 精工爱普生株式会社 | Actuator |
WO2009140017A2 (en) | 2008-05-16 | 2009-11-19 | Microvision, Inc. | Induced resonance comb drive scanner |
US7656570B2 (en) | 2006-05-30 | 2010-02-02 | Canon Kabushiki Kaisha | Optical deflector and optical instrument using the same |
CN102674232A (en) * | 2012-05-28 | 2012-09-19 | 凝辉(天津)科技有限责任公司 | Double-micromirror rotary scanning device |
US8336367B2 (en) | 2007-03-16 | 2012-12-25 | National Institute Of Advanced Industrial Science And Technology | Detection sensor, vibrator |
JP2013543127A (en) * | 2010-11-01 | 2013-11-28 | コチ・ウニヴェルシテシ | Small and integrated micro-electromechanical system (MEMS) optical sensor array |
CN114690400A (en) * | 2020-12-29 | 2022-07-01 | 成都极米科技股份有限公司 | Vibrating mirror driven by electrostatic force |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008114603A1 (en) * | 2007-03-16 | 2008-09-25 | National Institute Of Advanced Industrial Science And Technology | Detection sensor, vibrator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04368907A (en) * | 1991-06-17 | 1992-12-21 | Omron Corp | Optical scanner |
JP3060311U (en) * | 1998-09-28 | 1999-08-31 | 東京鋼器株式会社 | Mailing box |
-
1993
- 1993-03-12 JP JP5078915A patent/JP2849697B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04368907A (en) * | 1991-06-17 | 1992-12-21 | Omron Corp | Optical scanner |
JP3060311U (en) * | 1998-09-28 | 1999-08-31 | 東京鋼器株式会社 | Mailing box |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100719102B1 (en) * | 2000-11-03 | 2007-05-17 | 삼성전자주식회사 | Micro-driving device |
JP2005099760A (en) * | 2003-09-05 | 2005-04-14 | Seiko Epson Corp | Actuator |
US7382510B2 (en) | 2003-09-05 | 2008-06-03 | Seiko Epson Corporation | Actuator |
US7095156B2 (en) | 2003-10-29 | 2006-08-22 | Seiko Epson Corporation | Actuator |
US7161275B2 (en) | 2003-10-29 | 2007-01-09 | Seiko Epson Corporation | Actuator |
CN100401131C (en) * | 2003-10-29 | 2008-07-09 | 精工爱普生株式会社 | Driving device |
JP2005134665A (en) * | 2003-10-30 | 2005-05-26 | Olympus Corp | Light deflector |
CN100458588C (en) * | 2004-12-15 | 2009-02-04 | 精工爱普生株式会社 | Actuator |
US7880365B2 (en) | 2004-12-15 | 2011-02-01 | Seiko Epson Corporation | Actuator capable of driving with large rotational angle or large deflection angle |
US7649301B2 (en) | 2004-12-15 | 2010-01-19 | Seiko Epson Corporation | Actuator capable of driving with large rotational angle or large deflection angle |
JP2006250926A (en) * | 2005-02-14 | 2006-09-21 | Ngk Insulators Ltd | Mass measurement device |
JP4574396B2 (en) * | 2005-03-02 | 2010-11-04 | キヤノン株式会社 | Optical deflector |
JP2006243251A (en) * | 2005-03-02 | 2006-09-14 | Canon Inc | Optical deflector |
JP2006239842A (en) * | 2005-03-04 | 2006-09-14 | Seiko Epson Corp | Adjusting method of resonance frequency of actuator and actuator |
WO2008054424A3 (en) * | 2005-10-31 | 2008-07-31 | Advanced Numicro Systems Inc | Mems mirror with parallel springs and arched support for beams |
WO2008054424A2 (en) * | 2005-10-31 | 2008-05-08 | Advanced Numicro Systems, Inc. | Mems mirror with parallel springs and arched support for beams |
US7518774B2 (en) | 2006-05-30 | 2009-04-14 | Canon Kabushiki Kaisha | Optical deflector and optical instrument using the same |
US7423795B2 (en) | 2006-05-30 | 2008-09-09 | Canon Kabushiki Kaisha | Optical deflector and optical instrument using the same |
US7656570B2 (en) | 2006-05-30 | 2010-02-02 | Canon Kabushiki Kaisha | Optical deflector and optical instrument using the same |
US8336367B2 (en) | 2007-03-16 | 2012-12-25 | National Institute Of Advanced Industrial Science And Technology | Detection sensor, vibrator |
WO2009140017A2 (en) | 2008-05-16 | 2009-11-19 | Microvision, Inc. | Induced resonance comb drive scanner |
EP2277076A2 (en) * | 2008-05-16 | 2011-01-26 | Microvision, Inc. | Induced resonance comb drive scanner |
EP2277076A4 (en) * | 2008-05-16 | 2014-04-09 | Microvision Inc | Induced resonance comb drive scanner |
JP2013543127A (en) * | 2010-11-01 | 2013-11-28 | コチ・ウニヴェルシテシ | Small and integrated micro-electromechanical system (MEMS) optical sensor array |
CN102674232A (en) * | 2012-05-28 | 2012-09-19 | 凝辉(天津)科技有限责任公司 | Double-micromirror rotary scanning device |
CN114690400A (en) * | 2020-12-29 | 2022-07-01 | 成都极米科技股份有限公司 | Vibrating mirror driven by electrostatic force |
CN114690400B (en) * | 2020-12-29 | 2023-05-02 | 极米科技股份有限公司 | Vibrating mirror driven by electrostatic force |
Also Published As
Publication number | Publication date |
---|---|
JP2849697B2 (en) | 1999-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2849697B2 (en) | 2-DOF vibration microactuator | |
JP4385938B2 (en) | Actuator | |
JP3065611B1 (en) | Micromirror device and manufacturing method thereof | |
JP4492252B2 (en) | Actuator | |
JP4092283B2 (en) | Two-dimensional optical scanner and optical device | |
US7161275B2 (en) | Actuator | |
US7926369B2 (en) | Actuator | |
JP5319939B2 (en) | Optical deflector and optical device | |
JP4385937B2 (en) | Actuator | |
JP4390194B2 (en) | Deflection mirror, deflection mirror manufacturing method, optical writing apparatus, and image forming apparatus | |
JP4151959B2 (en) | Vibrating mirror and manufacturing method thereof, optical writing device, and image forming apparatus | |
JPH08280185A (en) | Ultrasonic actuator | |
CN101279712A (en) | Method for generating a micromechanical structure | |
JPH0646207A (en) | Piezoelectric drive micro scanner | |
WO2009044324A2 (en) | Mems scanning micromirror manufacturing method | |
JP2009186721A (en) | Optical reflection element | |
JP4123133B2 (en) | Actuator | |
JP2005279863A (en) | Manufacturing method of actuator and actuator | |
JP2001264676A (en) | Optical scanner | |
JP4358788B2 (en) | Optical scanner | |
JP2005266567A (en) | Polarizing mirror, method of controlling resonance frequency, optical writing device, and image forming apparatus | |
JP2001272626A (en) | Optical scanner | |
JP4403785B2 (en) | Actuator manufacturing method and actuator | |
JP2538033B2 (en) | Planar ultrasonic actuator | |
JP2006067706A (en) | Actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |