[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006115683A - Electrostatic actuator and optical scanning device - Google Patents

Electrostatic actuator and optical scanning device Download PDF

Info

Publication number
JP2006115683A
JP2006115683A JP2005259998A JP2005259998A JP2006115683A JP 2006115683 A JP2006115683 A JP 2006115683A JP 2005259998 A JP2005259998 A JP 2005259998A JP 2005259998 A JP2005259998 A JP 2005259998A JP 2006115683 A JP2006115683 A JP 2006115683A
Authority
JP
Japan
Prior art keywords
movable member
electrostatic actuator
holding member
holding
optical scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005259998A
Other languages
Japanese (ja)
Inventor
Koichi Otaka
剛一 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005259998A priority Critical patent/JP2006115683A/en
Publication of JP2006115683A publication Critical patent/JP2006115683A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)
  • Facsimile Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a uniaxial and biaxial deflection electrostatic actuator and optical scanning device having a simple electrode wiring structure. <P>SOLUTION: The electrostatic actuator comprises a moving member that is supported to a holding member by a beam member and that can be oscillated in the plane and perpendicular directions of the holding member, and electrode portions provided on the holding member, that faces the moving member on which the beam member is not provided and insulated from the moving member and the beam member. In this electrostatic actuator, driving voltages are impressed between the electrodes, and the moving member is made to rock by electrostatic attractive force, caused by floating potential that corresponds to a potential difference of half the drive voltage generated in the plane of the moving member. Thus, the formation of wiring on the moving member becomes unnecessary, and thereby the electrode wiring structure becomes simple. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は静電アクチュエータ及び光走査装置に関し、詳細にはマイクロマシニング技術を応用した微小光学系、ミラー走査装置に関する。   The present invention relates to an electrostatic actuator and an optical scanning device, and more particularly to a micro optical system and a mirror scanning device to which micromachining technology is applied.

従来、デジタル複写機、レーザプリンタ等の光書込み系に用いられる光走査装置、バーコードリーダー等の光学読取装置、あるいは投射型画像表示装置には、マイクロマシニング技術を応用した微小光学系を揺動させる構成のものがいくつか提案されている。その一つとして、非特許文献1に掲載されている振動ミラーでは、同一直線上に設けられた2本の梁で支持されたミラー基板を、ミラー基板に対向する位置に設けた電極との間の静電引力で、2本の梁をねじり回転軸として往復振動させている。   Conventionally, optical scanning devices used in optical writing systems such as digital copying machines and laser printers, optical reading devices such as barcode readers, or projection-type image display devices swing micro optical systems that apply micromachining technology. Several configurations have been proposed. As one of them, in the oscillating mirror described in Non-Patent Document 1, a mirror substrate supported by two beams provided on the same straight line is provided between an electrode provided at a position facing the mirror substrate. The two beams are reciprocally oscillated around the torsional rotation axis with the electrostatic attraction force.

このようなマイクロマシニング技術で形成される振動ミラーは、従来のモータを使ったポリゴンミラーの回転による光走査装置と比較して、構造が簡単で、半導体プロセスでの一括形成が可能なため、小型化が容易で製造コストも低く、また単一の反斜面であるため複数面による精度のばらつきがなく、さらに往復走査であるため高速化にも対応できる等の効果が期待できる。このような静電駆動の振動ミラーとして他の従来例として特許文献1には梁をS字型として剛性を下げ、小さな駆動力で大きな振れ角が得られるようにしたもの提案され、また特許文献2には梁の厚さをミラー基板、フレーム基板よりも薄くしたものが提案されている。また、特許文献3あるいは非特許文献2には、固定電極をミラー部の振動方向に重ならない位置に配置したものが提案されている。更に、非特許文献3には、対向電極をミラーの振れの中心位置から傾斜させて設置することで、ミラーの振れ角を変えずに駆動電圧を下げたものが提案されている。これらの従来例において、2本の梁で可動部材を両側から保持し、この梁をねじり回転軸として可動部材を静電引力により往復振動させる静電アクチュエータでは、静電力を発生させる電極は対向して配置されていて、その電極の一方を可動部材中に設ける必要があった。そのため可動部材中の電極に配線を形成しなければならないが、多くの場合、梁を配線経路として使用している。
特許第2,924,200号明細書 特開平7−92409号公報 特許第3,011,144号明細書 IBM J.Res.Develop vol.24 (1980) The 13th annual International Workshop on MEMS2000 (2000) 473-478 The 13th annual International Workshop on MEMS2000 (2000) 645-650
The oscillating mirror formed by such micromachining technology is simpler in structure than a conventional optical scanning device using a polygon mirror rotating using a motor, and can be formed in a batch in a semiconductor process. It is easy to manufacture, and the manufacturing cost is low, and since it is a single anti-slope, there are no variations in accuracy due to multiple surfaces. As another example of such an electrostatically driven oscillating mirror, Patent Document 1 proposes an S-shaped beam to reduce rigidity and obtain a large deflection angle with a small driving force. No. 2 proposes a beam whose thickness is thinner than that of a mirror substrate or a frame substrate. Patent Document 3 or Non-Patent Document 2 proposes a technique in which the fixed electrode is arranged at a position that does not overlap the vibration direction of the mirror portion. Further, Non-Patent Document 3 proposes a method in which the counter electrode is installed to be inclined from the center position of the mirror deflection, thereby reducing the drive voltage without changing the mirror deflection angle. In these conventional examples, in an electrostatic actuator in which a movable member is held from both sides by two beams, and the movable member is reciprocally oscillated by electrostatic attraction using this beam as a torsional rotation axis, electrodes for generating electrostatic force are opposed to each other. It was necessary to provide one of the electrodes in the movable member. Therefore, wiring must be formed on the electrode in the movable member, but in many cases, a beam is used as a wiring path.
Patent No. 2,924,200 Japanese Patent Laid-Open No. 7-92409 Patent No. 3,011,144 IBM J. Res.Develop vol.24 (1980) The 13th annual International Workshop on MEMS2000 (2000) 473-478 The 13th annual International Workshop on MEMS2000 (2000) 645-650

しかしながら、上記いずれの従来例の静電アクチュエータ及び光走査装置によれば、電極配線の設計が複雑になり、その形成方法も複雑になるという欠点があった。特に、2軸偏向の光走査装置においては電極配線の設計が非常に困難であった。   However, any of the conventional electrostatic actuators and optical scanning devices described above has the drawback that the design of the electrode wiring is complicated and the formation method thereof is also complicated. In particular, it is very difficult to design an electrode wiring in a biaxial deflection optical scanning device.

本発明はこれらの問題点を解決するためのものであり、電極配線構造の単純な1軸及び2軸偏向の静電アクチュエータ及び光走査装置を提供することを目的とする。   The present invention has been made to solve these problems, and it is an object of the present invention to provide a simple uniaxial and biaxial deflection electrostatic actuator and optical scanning device having an electrode wiring structure.

前記問題点を解決するために、本発明の静電アクチュエータは、保持部材に梁部材で支持され、保持部材の平面方向と垂直な方向に揺動可能とする可動部材と、梁部材が設けられていない可動部材と対向する保持部材に設けられ、可動部材及び梁部材に絶縁されている電極部とを具備している。そして、本発明の静電アクチュエータは、電極部間に駆動電圧を印加し、可動部材の平面に発生する駆動電圧の半分の電位差に相当するフローティング電位による静電引力によって可動部材を揺動させる。よって、可動部材への配線形成が不要となり電極配線構造が単純となる。   In order to solve the above problems, an electrostatic actuator according to the present invention is provided with a movable member that is supported on a holding member by a beam member and that can swing in a direction perpendicular to the planar direction of the holding member, and a beam member. The electrode member is provided on a holding member facing the movable member that is not, and is insulated from the movable member and the beam member. The electrostatic actuator of the present invention applies a driving voltage between the electrode portions, and swings the movable member by an electrostatic attractive force due to a floating potential corresponding to a potential difference that is half of the driving voltage generated on the plane of the movable member. Therefore, it is not necessary to form wiring on the movable member, and the electrode wiring structure is simplified.

また、梁部材が設けられていない可動部材の端部及び可動部材の端部に対向する保持部材の端部をそれぞれ櫛形形状とし、かつ互いの櫛形形状がかみ合うように形成されることにより、静電トルクを大きくできるので低電圧で動作させることができる。   Further, the end of the movable member not provided with the beam member and the end of the holding member facing the end of the movable member are each formed in a comb shape, and the comb shape is formed so as to mesh with each other. Since the electric torque can be increased, it can be operated at a low voltage.

更に、可動部材、梁部材及び保持部材は同一の基板より加工形成してなることにより、寸法を精度良く形成できるので変位精度の高い静電アクチュエータを提供できる。   Furthermore, since the movable member, the beam member, and the holding member are processed and formed from the same substrate, the dimensions can be formed with high accuracy, so that an electrostatic actuator with high displacement accuracy can be provided.

また、静電アクチュエータの駆動信号の周波数は、梁部材のバネ定数と、梁部材が保持する可動部材の慣性とによって定められる可動部材の共振周波数に等しく、又は当該共振周波数の2倍に等しく設定する。よって、小さな印加電圧で大きな振れ角を得ることができる。   The frequency of the drive signal of the electrostatic actuator is set equal to the resonance frequency of the movable member determined by the spring constant of the beam member and the inertia of the movable member held by the beam member, or equal to twice the resonance frequency. To do. Therefore, a large deflection angle can be obtained with a small applied voltage.

更に、別の発明としての静電アクチュエータは、第1の保持部材に第1の梁部材で支持され、第1の保持部材の平面方向と垂直な方向に揺動可能とする可動部材と、第1の保持部材を第2の梁部材で支持する第2の保持部材と、第1の梁部材及び第2の梁部材が設けられた第2の保持部材に設けられ、可動部材及び第1及び第2の梁部材に絶縁されている電極部とを具備している。そして、本発明の静電アクチュエータは、各電極部間にそれぞれ異なる駆動電圧を印加し、第1の梁部材が設けられていない可動部材と対向する第2の保持部材に設けられた電極部に印加された各駆動電圧の電位差に相当するフローティング電位による静電引力によって可動部材を揺動させ、第2の梁部材が設けられていない第1の保持部材と対向する第2の保持部材に設けられた電極部に印加された各駆動電圧の電位差に相当する静電引力によって第1の保持部材を揺動させる。よって、可動部材及び第1の保持部材への配線形成が不要となり電極配線構造が単純となる2軸方向の変位が可能な静電アクチュエータを提供できる。   Furthermore, an electrostatic actuator as another invention is supported by a first beam member on a first holding member, and a movable member capable of swinging in a direction perpendicular to the planar direction of the first holding member, A second holding member that supports the first holding member with the second beam member, and a second holding member provided with the first beam member and the second beam member, the movable member, And an electrode portion insulated by the second beam member. Then, the electrostatic actuator of the present invention applies different driving voltages between the electrode portions, and applies to the electrode portion provided on the second holding member facing the movable member not provided with the first beam member. The movable member is swung by an electrostatic attractive force due to a floating potential corresponding to the potential difference between the applied drive voltages, and is provided on the second holding member facing the first holding member not provided with the second beam member. The first holding member is swung by an electrostatic attractive force corresponding to the potential difference between the drive voltages applied to the electrode portions. Therefore, it is possible to provide an electrostatic actuator capable of biaxial displacement that eliminates the need for wiring formation on the movable member and the first holding member and simplifies the electrode wiring structure.

また、第1の梁部材が設けられていない可動部材の端部及び可動部材の端部に対向する第1の保持部材の端部をそれぞれ櫛形形状とし、かつ互いの櫛形形状がかみ合うように形成され、第2の梁部材が設けられていない第1の保持部材の端部及び第1の部材の端部に対向する第2の保持部材の端部をそれぞれ櫛形形状とし、かつ互いの櫛形形状がかみ合うように形成されることにより、可動部材及び第1の保持部材に発生する静電引力の静電トルクを大きくできるので低電圧で動作させることができる。   In addition, the end of the movable member not provided with the first beam member and the end of the first holding member facing the end of the movable member are each formed in a comb shape, and are formed so that the comb shapes are engaged with each other. The end of the first holding member that is not provided with the second beam member and the end of the second holding member that faces the end of the first member are each comb-shaped, and the comb-shaped By being formed so as to engage with each other, the electrostatic torque of the electrostatic attractive force generated in the movable member and the first holding member can be increased, so that it can be operated at a low voltage.

更に、可動部材、第1、第2の梁部材及び第1、第2の保持部材は同一の基板より加工形成してなることにより、寸法を精度良く形成できるので変位精度の高い、2軸変位の静電アクチュエータを提供できる。   Furthermore, since the movable member, the first and second beam members, and the first and second holding members are processed and formed from the same substrate, the dimensions can be formed with high accuracy, so that the biaxial displacement has high displacement accuracy. The electrostatic actuator can be provided.

また、基板は単結晶シリコンを材料として形成された基板であることにより、欠陥の少なく、かつ寿命の長い静電アクチュエータを提供できる。   In addition, since the substrate is a substrate formed using single crystal silicon as a material, an electrostatic actuator with few defects and a long lifetime can be provided.

更に、静電アクチュエータの駆動信号の周波数は、第1の梁部材のバネ定数と、第1の梁部材が保持する可動部材の慣性とによって定められる可動部材の共振周波数に等しく、又は当該共振周波数の2倍に等しく設定する。よって、小さな印加電圧で大きな振れ角を得ることができる。   Further, the frequency of the drive signal of the electrostatic actuator is equal to or equal to the resonance frequency of the movable member determined by the spring constant of the first beam member and the inertia of the movable member held by the first beam member. Is set to be equal to twice. Therefore, a large deflection angle can be obtained with a small applied voltage.

更に、別の発明としての光走査装置は、上記静電アクチュエータの可動部材の表面にはミラー部材が形成され、ミラー部材に入射した光線を、梁部材を軸とした回転方向に偏向走査することに特徴がある。よって、構造が単純で、偏向精度が高く、寿命が長い光走査装置を提供できる。   Furthermore, an optical scanning device according to another invention has a mirror member formed on the surface of the movable member of the electrostatic actuator, and deflects and scans a light beam incident on the mirror member in a rotation direction about the beam member. There is a feature. Therefore, an optical scanning device having a simple structure, high deflection accuracy, and long life can be provided.

また、別の発明としての光走査装置は、上記2軸変位の静電アクチュエータの可動部材の表面にはミラー部材が形成され、ミラー部材に入射した光線を、第1,第2の梁部材を軸とした回転方向に2軸偏向走査することに特徴がある。よって、構造が単純で、偏向精度が高く、寿命が長い、2軸偏向の光走査装置を提供できる。   According to another aspect of the present invention, there is provided an optical scanning device in which a mirror member is formed on the surface of the movable member of the biaxial displacement electrostatic actuator, and the light beam incident on the mirror member is transmitted to the first and second beam members. A characteristic is that biaxial deflection scanning is performed in the rotational direction of the axis. Therefore, it is possible to provide a biaxial deflecting optical scanning device that has a simple structure, high deflection accuracy, and a long lifetime.

更に、本発明の静電アクチュエータ及び光走査装置を、減圧雰囲気中で動作させることにより、適切なパッケージングなどによる減圧環境に保持される可動部材が動くときに空気による粘性抵抗を受けることがなくなるのでより一層駆動電圧を低減できる。   Further, by operating the electrostatic actuator and the optical scanning device of the present invention in a reduced pressure atmosphere, the movable member held in a reduced pressure environment by appropriate packaging or the like is not subjected to viscous resistance due to air. Therefore, the driving voltage can be further reduced.

本発明の静電アクチュエータは、梁部材は可動部材の回転中心軸上に設けられ、保持部材上で可動部材の回転中心を軸とした回転対称の位置に静電力を発生させる電極が形成され、可動部材がフローティング電位となり電極との間で静電力が作用するので回転トルクが発生し、回転アクチュエータとして動作する。よって、可動部材への配線形成が不要となり、電極配線構造が単純となる静電アクチュエータを提供できる。   In the electrostatic actuator of the present invention, the beam member is provided on the rotation center axis of the movable member, and an electrode for generating an electrostatic force is formed on the holding member at a rotationally symmetric position about the rotation center of the movable member. Since the movable member becomes a floating potential and an electrostatic force acts between the movable member and the electrode, rotational torque is generated and the rotary member operates as a rotary actuator. Therefore, it is not necessary to form a wiring on the movable member, and an electrostatic actuator with a simple electrode wiring structure can be provided.

図1は本発明の第1の実施の形態例に係る光走査装置の構成を示す図であり、同図の(a)は平面図、同図の(b)は同図の(a)のA−A’線断面図である。同図の(a)に示す本実施の形態例の光走査装置100において、可動部材101は同一直線上に設けられた2本の梁部材102、103でその中央部分を支持されている。梁部材102、103は、可動部材101が必要とする振れ角が得られるような剛性となるように断面寸法、形状、長さが設定され、可動部材101の外側に設けられた共通の保持部材104に固定されている。梁部材102、103に支持されていない、可動部材101の両側の端面113、115には櫛歯形状が、保持部材104に近接対向して形成され、かつ保持部材104に形成された櫛歯状電極112、114とかみ合うように形成されている。可動部材101上には使用する光に対して十分な反射率をもつミラー111が形成されている。また、保持部材104は、図1の(b)に示すように、絶縁材料118を介して保持部材119と一体の2層構造となっている。保持部材104上には櫛歯状電極112に電圧を印加するための電流経路106とコンタクト部116、及び櫛歯状電極114に電圧を印加するための電流経路105とコンタクト部117が形成されていて、この2つのコンタクト部116,117は絶縁スリット107、108、109、110により互いに絶縁されている。   FIG. 1 is a diagram showing a configuration of an optical scanning device according to a first embodiment of the present invention. FIG. 1A is a plan view, and FIG. 1B is a diagram of FIG. It is AA 'line sectional drawing. In the optical scanning device 100 of the present embodiment shown in FIG. 4A, the movable member 101 is supported at its center by two beam members 102 and 103 provided on the same straight line. The beam members 102 and 103 have a cross-sectional size, shape, and length that are set so that the deflection angle required by the movable member 101 is obtained, and a common holding member provided outside the movable member 101 104 is fixed. Comb shapes are formed on the end surfaces 113 and 115 on both sides of the movable member 101, which are not supported by the beam members 102 and 103, in close proximity to the holding member 104, and are formed on the holding member 104. It is formed so as to mesh with the electrodes 112 and 114. On the movable member 101, a mirror 111 having a sufficient reflectance with respect to the light to be used is formed. The holding member 104 has a two-layer structure integrated with the holding member 119 via an insulating material 118 as shown in FIG. On the holding member 104, a current path 106 and a contact part 116 for applying a voltage to the comb-like electrode 112, and a current path 105 and a contact part 117 for applying a voltage to the comb-like electrode 114 are formed. The two contact portions 116 and 117 are insulated from each other by insulating slits 107, 108, 109, and 110.

次に、従来の光走査装置と第1の実施の形態例に係る光走査装置のそれぞれの駆動の様子を示す平面図である図2を用いて説明する。なお、図2の(a)は従来構造の光走査装置であり、図2の(b)は第1の実施の形態例の光走査装置である。図2の(a)の従来構造の光走査装置200において、電極部201,202は静電力を発生し、コンタクト部203から梁部材206を介して可動部材207中の電極部201、及び202の片方の電極に配線が形成されていて、コンタクト部203を共通電極(この場合はグランド)として、アクチュエータ駆動電圧がコンタクト部203と204間、及びコンタクト部203と205間に印加される。これに対して、図2の(b)に示す第1の実施の形態例の光走査装置100は、駆動電圧がコンタクト部116とコンタクト部117の間に印加される。可動部材101はフローティングになっているためにこの部分にはコンタクト部116とコンタクト部117の間に印加された電位差の半分に相当するフローティング電位が発生する。   Next, a description will be given with reference to FIG. 2 which is a plan view showing driving states of the conventional optical scanning device and the optical scanning device according to the first embodiment. 2A shows an optical scanning device having a conventional structure, and FIG. 2B shows an optical scanning device according to the first embodiment. In the optical scanning device 200 having the conventional structure shown in FIG. 2A, the electrode portions 201 and 202 generate an electrostatic force, and the electrode portions 201 and 202 in the movable member 207 are connected from the contact portion 203 via the beam member 206. Wiring is formed on one electrode, and the actuator drive voltage is applied between the contact parts 203 and 204 and between the contact parts 203 and 205 with the contact part 203 as a common electrode (in this case, ground). On the other hand, in the optical scanning device 100 of the first embodiment shown in FIG. 2B, the drive voltage is applied between the contact portion 116 and the contact portion 117. Since the movable member 101 is in a floating state, a floating potential corresponding to half of the potential difference applied between the contact portion 116 and the contact portion 117 is generated in this portion.

ここで、このフローティング電位について説明すると、図3に示すようなフローティング電位が発生する等価回路において、電極Aと板状部材の間の静電容量をC1、電極Bと板状部材の間の静電容量をC2、電極Cと板状部材の間の静電容量をC3、電極Dと板状部材の間の静電容量をC4とし、更には電極Aの電位をV1、電極Bの電位をV2、電極Cの電位をV3、電極Dの電位をV4とします。板状部材は、C1,C2,C3,C4の静電容量を介してのみ電源に接続されており、直接どの電位にも固定されておらず、板状部材の電位Vmは浮いている状態である。各電極電位(V1,V2,V3,V4,Vm)と各静電容量(C1,C2,C3,C4)に対して次式のように定まる。ここでの板状部材の電位Vmがフローティング電位である。   Here, the floating potential will be described. In an equivalent circuit in which a floating potential is generated as shown in FIG. 3, the capacitance between the electrode A and the plate member is C1, and the electrostatic capacitance between the electrode B and the plate member is The capacitance is C2, the capacitance between the electrode C and the plate member is C3, the capacitance between the electrode D and the plate member is C4, the potential of the electrode A is V1, and the potential of the electrode B is V2, the potential of electrode C is V3, and the potential of electrode D is V4. The plate-like member is connected to the power source only through the capacitances C1, C2, C3, and C4, and is not directly fixed to any potential, and the potential Vm of the plate-like member is floating. is there. For each electrode potential (V1, V2, V3, V4, Vm) and each capacitance (C1, C2, C3, C4), the following equation is determined. The potential Vm of the plate member here is a floating potential.

Vm=(C1・V1+C2・V2+C3・V3+C4・V4)/(C1+C2+C3+C4)   Vm = (C1 · V1 + C2 · V2 + C3 · V3 + C4 · V4) / (C1 + C2 + C3 + C4)

このように可動部材101に誘起されたフローティング電位と各コンタクト部116、117に印加された電圧の差に相当する静電引力が発生し、この引力により可動部材101が梁部材102,103を回転軸として回転変位する。なお、本実施の形態例の光走査装置におけるアクチュエータを駆動する場合、その駆動電圧は直流信号又は交流信号のいずれでも可能である。交流信号の場合、その周波数をアクチュエータの梁部材のバネ定数と可動部材の慣性で決定される可動部材の共振周波数に等しくし、共振のゲインを利用することが効果的である。また、図2の(b)での駆動信号は正弦波形のように記載しているが、駆動信号の信号波形は正弦波に限らず、矩形波、鋸状波形等、目的に応じて選択できる。   Thus, an electrostatic attractive force corresponding to the difference between the floating potential induced in the movable member 101 and the voltage applied to each of the contact portions 116 and 117 is generated, and the movable member 101 rotates the beam members 102 and 103 by this attractive force. It is rotationally displaced as an axis. When driving the actuator in the optical scanning device of this embodiment, the drive voltage can be either a DC signal or an AC signal. In the case of an AC signal, it is effective to make the frequency equal to the resonance frequency of the movable member determined by the spring constant of the beam member of the actuator and the inertia of the movable member, and to use the gain of resonance. Further, although the drive signal in FIG. 2B is described as a sine waveform, the signal waveform of the drive signal is not limited to a sine wave, and can be selected according to the purpose, such as a rectangular wave or a sawtooth waveform. .

次に、第1の実施の形態例における光走査装置の製造方法を図4〜図7の製造工程図に従って説明する。図4〜図7において、図1と同じ参照符号は同じ構成要素を示す。また、図4の(a)、図5の(a)、図6の(a)、図7の(a)は平面図、図4の(b)、図5の(b)、図6の(b)、図7の(b)は図4の(a)、図5の(a)、図6の(a)、図7の(a)のそれぞれのA−A’線断面図である。   Next, a method of manufacturing the optical scanning device in the first embodiment will be described with reference to manufacturing process diagrams of FIGS. 4-7, the same referential mark as FIG. 1 shows the same component. 4 (a), FIG. 5 (a), FIG. 6 (a), and FIG. 7 (a) are plan views, FIG. 4 (b), FIG. 5 (b), and FIG. FIGS. 7B and 7B are sectional views taken along lines AA ′ in FIGS. 4A, 5A, 6A, and 7A, respectively. .

はじめに、可動部材101、梁部材102,103、保持部材104の形成には高精度の微細加工が容易で導電性材料として使用できる低抵抗の単結晶シリコンからなるSOI基板を用いた。厚さ50μmの両面研磨された2枚のシリコン基板401、402を厚さ5μmのシリコン酸化膜403を介して接合し、SOI基板とした。このSOI基板からシリコンの微細加工技術として知られる、フォトリソグラフィーとドライエッチングの手法を用いて、保持部材104(3mm×3mm)、梁部材102、103(幅20μm、長さ500μm)、可動部材101(1mm×1mm)、櫛歯状形状112、113、114、115(長さ100μm、間隔5μm、ピッチ50μm)、絶縁スリット部107、108、109、110(幅5μm)を形成した。   First, for the formation of the movable member 101, the beam members 102 and 103, and the holding member 104, an SOI substrate made of low-resistance single crystal silicon that can be easily used as a conductive material with high precision fine processing is used. Two silicon substrates 401 and 402 having a double-side polished surface having a thickness of 50 μm were bonded together via a silicon oxide film 403 having a thickness of 5 μm to form an SOI substrate. Using a technique of photolithography and dry etching known as a silicon microfabrication technique from this SOI substrate, a holding member 104 (3 mm × 3 mm), beam members 102 and 103 (width 20 μm, length 500 μm), movable member 101 (1 mm × 1 mm), comb-like shapes 112, 113, 114, 115 (length 100 μm, interval 5 μm, pitch 50 μm), insulating slit portions 107, 108, 109, 110 (width 5 μm) were formed.

次に、図5の(b)に示すように、SOI基板の他の一方のシリコン基板402の中央部分(図中の点線で囲む部分)を取り除き、可動部材101が回転変位する空間を形成する。そして、図6の(b)に示すように、シリコンを除去され、シリコン酸化膜403が表面に現れている部分のうち絶縁スリット部107、108、109、110を除く部分のシリコン酸化膜403(図中の点線で囲む部分)をドライエッチングの手法で除去した。最後に、図7の(a),(b)に示すように、コンタクト部116、117(300μm×300μm)と可動部材101上にミラー部111(800μm×800μm)を形成して、第1の実施の形態例の1軸偏向の光走査装置100を完成した。   Next, as shown in FIG. 5B, the central portion (portion surrounded by a dotted line in the figure) of the other silicon substrate 402 of the SOI substrate is removed to form a space in which the movable member 101 is rotationally displaced. . Then, as shown in FIG. 6B, the silicon oxide film 403 (except for the insulating slits 107, 108, 109, and 110) in the portion where the silicon is removed and the silicon oxide film 403 appears on the surface. The portion surrounded by the dotted line in the figure) was removed by dry etching. Finally, as shown in FIGS. 7A and 7B, a mirror part 111 (800 μm × 800 μm) is formed on the contact parts 116, 117 (300 μm × 300 μm) and the movable member 101, and the first The uniaxial deflection optical scanning device 100 of the embodiment was completed.

図8は本発明の第2の実施の形態例に係る光走査装置の構成を示す図であり、同図の(a)は平面図、同図の(b)は同図の(a)のA−A’線断面図である。同図の(a)に示す本実施の形態例の光走査装置800において、可動部材801は同一直線上に設けられた2本の梁部材802、803でその中央部分を支持されている。2本の梁部材802、803は、可動部材801が必要とする振れ角が得られるような剛性となるように断面寸法、形状、長さが設定され、可動部材801の外側に設けられた保持部材804に固定されている。梁部材802、803に支持されていない、可動部材801の両側の端面813、815には櫛歯形状が、保持部材804に近接対向して形成され、かつ保持部材804に形成された櫛歯状電極812、814とかみ合うように形成されている。可動部材801上には使用する光に対して十分な反射率をもつミラー811が形成されている。また、保持部材804は、梁部材802、803とは直交して同一直線状上の設けられた2本の梁部材819、820でその中央部分を支持されている。2本の梁部材819、820は可動部材801を含んだ保持部材804が必要とする振れ角が得られるような剛性となるように断面寸法、形状、長さが設定され、保持部材804の外側に設けられた保持部材818に固定されている。梁部材819、820に支持されていない、保持部材804の両側の端面822、828には櫛歯形状が、保持部材818に近接対向して形成され、かつ保持部材818に形成された櫛歯状電極821、827とかみ合うように形成されている。保持部材804及び保持部材818は、図8の(b)に示すように、絶縁材料834を介して保持部材833と一体の2層構造となっている。保持部材818には櫛歯状電極812に電圧を印加するための電流経路806とコンタクト部816、及び櫛歯状電極814に電圧を印加するための電流経路805とコンタクト部817、及び櫛歯状電極821に電圧を印加するための電流経路823とコンタクト部824、及び櫛歯状電極827に電圧を印加するため電流経路831とコンタクト部832が形成されていて、この4つのコンタクト部816,817,824,832は絶縁スリット807、808、809、810、825、826、829、830により互いに絶縁されている。   FIG. 8 is a diagram showing a configuration of an optical scanning device according to the second embodiment of the present invention. FIG. 8A is a plan view, and FIG. 8B is a diagram of FIG. It is AA 'line sectional drawing. In the optical scanning device 800 of the present embodiment shown in FIG. 6A, the movable member 801 is supported at its central portion by two beam members 802 and 803 provided on the same straight line. The two beam members 802 and 803 have cross-sectional dimensions, shapes, and lengths set so as to be rigid enough to obtain the deflection angle required by the movable member 801, and are provided on the outside of the movable member 801. It is fixed to the member 804. Comb-like shapes are formed on the end surfaces 813 and 815 on both sides of the movable member 801 that are not supported by the beam members 802 and 803, and are formed in close proximity to the holding member 804, and are formed on the holding member 804. It is formed so as to engage with the electrodes 812 and 814. On the movable member 801, a mirror 811 having a sufficient reflectance with respect to the light to be used is formed. The holding member 804 is supported at its central portion by two beam members 819 and 820 provided on the same straight line perpendicular to the beam members 802 and 803. The two beam members 819 and 820 are set in cross-sectional dimensions, shapes, and lengths so as to have rigidity enough to obtain a deflection angle required by the holding member 804 including the movable member 801, and the outside of the holding member 804. It is fixed to the holding member 818 provided in the. Comb-like shapes are formed on the end surfaces 822 and 828 on both sides of the holding member 804 that are not supported by the beam members 819 and 820, close to and opposed to the holding member 818, and are formed in the holding member 818. It is formed so as to engage with the electrodes 821 and 827. As shown in FIG. 8B, the holding member 804 and the holding member 818 have a two-layer structure integrated with the holding member 833 through an insulating material 834. The holding member 818 has a current path 806 and a contact portion 816 for applying a voltage to the comb-like electrode 812, a current path 805 and a contact portion 817 for applying a voltage to the comb-like electrode 814, and a comb-like shape. A current path 823 and a contact part 824 for applying a voltage to the electrode 821 and a current path 831 and a contact part 832 for applying a voltage to the comb-like electrode 827 are formed, and the four contact parts 816 and 817 are formed. , 824, 832 are insulated from each other by insulating slits 807, 808, 809, 810, 825, 826, 829, 830.

次に、第2の実施の形態例における光走査装置の製造方法を図9〜図12の製造工程図に従って説明する。図9〜図12において、図8と同じ参照符号は同じ構成要素を示す。また、図9の(a)、図10の(a)、図11の(a)、図12の(a)は平面図、図9の(b)、図10の(b)、図11の(b)、図12の(b)は図9の(a)、図10の(a)、図11の(a)、図12の(a)のそれぞれのA−A’線断面図である。なお、第2の実施の形態例の光走査装置の基本的な製造工程は図4〜図7に示した第1の実施の形態例の光走査装置の製造工程と同じである。   Next, a method of manufacturing the optical scanning device in the second embodiment will be described with reference to manufacturing process diagrams of FIGS. 9 to 12, the same reference numerals as those in FIG. 8 denote the same components. 9 (a), FIG. 10 (a), FIG. 11 (a), and FIG. 12 (a) are plan views, FIG. 9 (b), FIG. 10 (b), and FIG. FIGS. 12B and 12B are cross-sectional views taken along lines AA ′ in FIGS. 9A, 10A, 11A, and 12A, respectively. . The basic manufacturing process of the optical scanning device of the second embodiment is the same as the manufacturing process of the optical scanning device of the first embodiment shown in FIGS.

はじめに、可動部材801、梁部材802,803,819,820、保持部材804,818の形成には高精度の微細加工が容易で導電性材料として使用できる低抵抗の単結晶シリコンからなるSOI基板を用いた。厚さ50μmの両面研磨された2枚のシリコン基板901、902を厚さ5μmのシリコン酸化膜903を介して接合し、SOI基板とした。このSOI基板からシリコンの微細加工技術として知られる、フォトリソグラフィーとドライエッチングの手法を用いて、保持部材804(2mm×1.5mm)、梁部材802、803(幅20μm、長さ60μm)、可動部材801(1mm×1mm)、櫛歯状形状812、813、814、815(長さ100μm、間隔5μm、ピッチ50μm)、同じ櫛歯状形状821、822、827、828(長さ100μm、間隔5μm、ピッチ70μm)、絶縁スリット部807、808、809、810、825、826、829、830(幅5μm)を形成した。   First, for the formation of the movable member 801, the beam members 802, 803, 819, and 820 and the holding members 804 and 818, an SOI substrate made of low-resistance single crystal silicon that can be easily used as a conductive material with high precision fine processing is used. Using. Two silicon substrates 901 and 902 having a double-side polished surface having a thickness of 50 μm were bonded together via a silicon oxide film 903 having a thickness of 5 μm to form an SOI substrate. Using this photolithography and dry etching technique, which is known as a silicon microfabrication technology from this SOI substrate, holding member 804 (2 mm × 1.5 mm), beam members 802 and 803 (width 20 μm, length 60 μm), movable Member 801 (1 mm × 1 mm), comb-like shapes 812, 813, 814, 815 (length 100 μm, interval 5 μm, pitch 50 μm), same comb-teeth shapes 821, 822, 827, 828 (length 100 μm, interval 5 μm) Insulating slits 807, 808, 809, 810, 825, 826, 829, and 830 (width 5 μm) were formed.

次に、図10の(b)に示すように、SOI基板で一方のシリコン基板902の中央部分(図中の点線で囲む部分)を取り除き、可動部材801、保持部材804が回転変位する空間を形成する。そして、図11の(b)に示すように、シリコンを除去され、シリコン酸化膜903が表面に現れている部分のうち絶縁スリット部807、808、809、810、825、826、829、830を除く部分のシリコン酸化膜(図中の点線で囲む部分)をドライエッチングの手法で除去した。最後に、図12の(a),(b)に示すように、コンタクト部816、817、824、832(300μm×300μm)と可動部材801上にミラー部811(800μm×800μm)を形成して、第2の実施の形態例の2軸偏向の光走査装置800を完成した。   Next, as shown in FIG. 10B, a central portion (portion surrounded by a dotted line in the drawing) of one silicon substrate 902 is removed from the SOI substrate, and a space in which the movable member 801 and the holding member 804 are rotationally displaced is formed. Form. Then, as shown in FIG. 11B, the insulating slit portions 807, 808, 809, 810, 825, 826, 829, and 830 are removed from the portion where the silicon is removed and the silicon oxide film 903 appears on the surface. The part of the silicon oxide film except the part (the part surrounded by the dotted line in the figure) was removed by dry etching. Finally, as shown in FIGS. 12A and 12B, a mirror part 811 (800 μm × 800 μm) is formed on the contact parts 816, 817, 824, 832 (300 μm × 300 μm) and the movable member 801. The biaxial deflection optical scanning device 800 of the second embodiment is completed.

図13は第2の実施の形態例の2軸偏向の光走査装置の駆動の様子を示す平面図である。同図に示す第2の実施の形態例の光走査装置800は、電極間に設置された可動部材801、及び保持部材804,818に誘起されるフローティング電位と電極電位の差に起因する静電引力により変位する。そこで、フローティング電位が常にゼロになるように2組の電極に印加する電圧を調整する。各電極の電位変化を示すタイムチャートである図14において、VaとVbは可動部材を変位させる静電引力を発生させる電圧である。そこで、図14の(b)からわかるように、絶対値が同じで極性が異なるような電圧を相対する電極に印加すると可動部材801中に誘起されるフローティング電位は常にゼロである。同様に、保持部材804を変位させる静電引力は電圧Vcと電圧Vdの組み合わせを絶対値が同じで極性が異なるように設定すると、保持部材804中に誘起されるフローティング電位はゼロになり、可動部材801と等電位になる。このような弾圧印加の方法を取ると、可動部材801と保持部材804,818を独立に変位量と変位の周期(振動周波数)を変えることが可能になる。このとき、VaとVbの印加周波数は、第1の梁部材と、この第1の梁部材が保持する可動部とで決まる共振周波数と等しく、またVcとVdの印加周波数は第2の梁部材と、この第2の梁部材が保持する可動部で決まる共振周波数と等しく設定すると、小さな印加電圧で大きな振れ角を得ることができる。更に、それぞれの印加周波数を、対応する共振周波数の2倍に等しく設定した場合も同様である。   FIG. 13 is a plan view showing a driving state of the biaxially deflected optical scanning device according to the second embodiment. The optical scanning device 800 according to the second embodiment shown in the figure has a static electricity caused by the difference between the floating potential induced in the movable member 801 and the holding members 804 and 818 installed between the electrodes and the electrode potential. Displacement due to attractive force. Therefore, the voltages applied to the two sets of electrodes are adjusted so that the floating potential is always zero. In FIG. 14, which is a time chart showing the potential change of each electrode, Va and Vb are voltages that generate an electrostatic attractive force that displaces the movable member. Therefore, as can be seen from FIG. 14B, when a voltage having the same absolute value but different polarity is applied to the opposing electrodes, the floating potential induced in the movable member 801 is always zero. Similarly, when the electrostatic attractive force for displacing the holding member 804 is set such that the combination of the voltage Vc and the voltage Vd has the same absolute value and different polarities, the floating potential induced in the holding member 804 becomes zero and is movable. It becomes equipotential with the member 801. By adopting such a method of applying pressure, it is possible to independently change the displacement amount and the period of displacement (vibration frequency) of the movable member 801 and the holding members 804 and 818. At this time, the applied frequency of Va and Vb is equal to the resonance frequency determined by the first beam member and the movable portion held by the first beam member, and the applied frequency of Vc and Vd is the second beam member. And if it is set equal to the resonance frequency determined by the movable part held by the second beam member, a large deflection angle can be obtained with a small applied voltage. Furthermore, the same applies when each applied frequency is set equal to twice the corresponding resonant frequency.

以上説明した各実施の形態例のように、静電アクチュエータ及び光走査装置は適切なパッケージングにより減圧環境に保持される可動部が動くときに空気による粘性抵抗を受けることがなくなるので、駆動電圧をより一層低減できる。   As in each of the embodiments described above, the electrostatic actuator and the optical scanning device are not subjected to viscous resistance due to air when the movable part held in a reduced pressure environment is moved by appropriate packaging. Can be further reduced.

なお、本発明は上記実施の形態例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and substitutions are possible as long as they are described within the scope of the claims.

本発明の第1の実施の形態例に係る光走査装置の構成を示す図である。It is a figure which shows the structure of the optical scanning device based on the 1st Example of this invention. 従来の光走査装置と第1の実施の形態例に係る光走査装置のそれぞれの駆動の様子を示す平面図である。It is a top view which shows the mode of each drive of the conventional optical scanning device and the optical scanning device concerning a 1st embodiment. フローティング電位が発生する等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit which a floating potential generate | occur | produces. 第1の実施の形態例における光走査装置の製造工程図である。It is a manufacturing process figure of the optical scanning device in a 1st example of an embodiment. 第1の実施の形態例における光走査装置の製造工程図である。It is a manufacturing process figure of the optical scanning device in a 1st example of an embodiment. 第1の実施の形態例における光走査装置の製造工程図である。It is a manufacturing process figure of the optical scanning device in a 1st example of an embodiment. 第1の実施の形態例における光走査装置の製造工程図である。It is a manufacturing process figure of the optical scanning device in a 1st example of an embodiment. 本発明の第2の実施の形態例に係る光走査装置の構成を示す図である。It is a figure which shows the structure of the optical scanning device based on the 2nd Example of this invention. 第2の実施の形態例における光走査装置の製造工程図である。It is a manufacturing process figure of the optical scanning device in the 2nd example of an embodiment. 第2の実施の形態例における光走査装置の製造工程図である。It is a manufacturing process figure of the optical scanning device in the 2nd example of an embodiment. 第2の実施の形態例における光走査装置の製造工程図である。It is a manufacturing process figure of the optical scanning device in the 2nd example of an embodiment. 第2の実施の形態例における光走査装置の製造工程図である。It is a manufacturing process figure of the optical scanning device in the 2nd example of an embodiment. 第2の実施の形態例の2軸偏向の光走査装置の駆動の様子を示す平面図である。It is a top view which shows the mode of a drive of the optical scanning apparatus of 2 axis | shaft deflection | deviation of the example of 2nd Embodiment. 第2の実施の形態例の2軸偏向の光走査装置における各電極の電位変化を示すタイムチャートである。It is a time chart which shows the electric potential change of each electrode in the optical scanning apparatus of the biaxial deflection | deviation of the 2nd Example.

符号の説明Explanation of symbols

100,800;光走査装置、
101,801;可動部材、
102,103,802,803,819,820;梁部材、
104,804,818,833;保持部材、
105,106,805,806,823,831;電流経路、
107〜110,807〜810,825,826,829,830;絶縁スリット、
111,811;ミラー、
112,114,812,814,821,827;櫛歯状電極、
113,115,813,815,822,828;端面、
116,117,816,817,824,832;コンタクト部、
118,834;絶縁材料、
401,402,901,902;シリコン基板、
403,903;シリコン酸化膜。
100, 800; optical scanning device,
101, 801; a movable member;
102, 103, 802, 803, 819, 820; beam members;
104, 804, 818, 833; holding member,
105, 106, 805, 806, 823, 831; current path;
107-110, 807-810, 825, 826, 829, 830; insulating slit,
111,811; mirror,
112, 114, 812, 814, 821, 827; comb-like electrodes;
113, 115, 813, 815, 822, 828; end face,
116, 117, 816, 817, 824, 832; contact part,
118,834; insulating material,
401, 402, 901, 902; silicon substrate,
403, 903; silicon oxide film.

Claims (13)

保持部材に梁部材で支持され、前記保持部材の平面方向と垂直な方向に揺動可能とする可動部材と、前記梁部材が設けられていない前記可動部材と対向する保持部材に設けられ、前記可動部材及び前記梁部材に絶縁されている電極部とを具備し、該電極部間に駆動電圧を印加し、前記可動部材の平面に発生する前記駆動電圧の半分の電位差に相当するフローティング電位による静電引力によって前記可動部材を揺動させることを特徴とする静電アクチュエータ。   A movable member supported by a beam member on the holding member and capable of swinging in a direction perpendicular to a plane direction of the holding member; and a holding member facing the movable member not provided with the beam member, And a movable member and an electrode portion insulated from the beam member. A drive voltage is applied between the electrode portions, and a floating potential corresponding to a potential difference half of the drive voltage generated on the plane of the movable member. An electrostatic actuator characterized in that the movable member is swung by electrostatic attraction. 前記梁部材が設けられていない前記可動部材の端部及び前記可動部材の端部に対向する前記保持部材の端部をそれぞれ櫛形形状とし、かつ互いの櫛形形状がかみ合うように形成される請求項1記載の静電アクチュエータ。   The end of the movable member not provided with the beam member and the end of the holding member facing the end of the movable member are each formed in a comb shape, and are formed so that the comb shapes are engaged with each other. 1. The electrostatic actuator according to 1. 前記可動部材、前記梁部材及び前記保持部材は同一の基板より加工形成してなる請求項1又は2に記載の静電アクチュエータ。   The electrostatic actuator according to claim 1, wherein the movable member, the beam member, and the holding member are processed and formed from the same substrate. 請求項1〜3のいずれかに記載の静電アクチュエータの駆動信号の周波数は、前記梁部材のバネ定数と、前記梁部材が保持する前記可動部材の慣性とによって定められる前記可動部材の共振周波数に等しく、又は当該共振周波数の2倍に等しく設定することを特徴とする静電アクチュエータ。   The frequency of the drive signal of the electrostatic actuator according to any one of claims 1 to 3 is determined by a spring constant of the beam member and an inertia of the movable member held by the beam member. Or an electrostatic actuator that is set equal to twice the resonance frequency. 第1の保持部材に第1の梁部材で支持され、前記第1の保持部材の平面方向と垂直な方向に揺動可能とする可動部材と、第1の保持部材を第2の梁部材で支持する第2の保持部材と、前記第1の梁部材及び前記第2の梁部材が設けられた前記第2の保持部材に設けられ、前記可動部材及び前記第1及び第2の梁部材に絶縁されている電極部とを具備し、該各電極部間にそれぞれ異なる駆動電圧を印加し、前記第1の梁部材が設けられていない前記可動部材と対向する前記第2の保持部材に設けられた前記電極部に印加された前記各駆動電圧の電位差に相当する静電引力によって前記可動部材を揺動させ、前記第2の梁部材が設けられていない前記第1の保持部材と対向する第2の保持部材に設けられた前記電極部に印加された前記各駆動電圧の電位差に相当するフローティング電位による静電引力によって前記第1の保持部材を揺動させることを特徴とする静電アクチュエータ。   A movable member that is supported on the first holding member by the first beam member and that can swing in a direction perpendicular to the planar direction of the first holding member, and the first holding member is the second beam member. A second holding member that supports the second holding member provided with the first beam member and the second beam member; and the movable member and the first and second beam members provided on the second holding member. Provided to the second holding member that is opposed to the movable member that is not provided with the first beam member. The movable member is swung by an electrostatic attractive force corresponding to a potential difference between the drive voltages applied to the electrode portions, and is opposed to the first holding member not provided with the second beam member. Each drive voltage applied to the electrode portion provided on the second holding member An electrostatic actuator, characterized in that oscillating the first holding member by electrostatic attraction by the floating potential corresponding to the potential difference. 前記第1の梁部材が設けられていない前記可動部材の端部及び前記可動部材の端部に対向する前記第1の保持部材の端部をそれぞれ櫛形形状とし、かつ互いの櫛形形状がかみ合うように形成され、前記第2の梁部材が設けられていない前記第1の保持部材の端部及び前記第1の部材の端部に対向する前記第2の保持部材の端部をそれぞれ櫛形形状とし、かつ互いの櫛形形状がかみ合うように形成される請求項5記載の静電アクチュエータ。   The end of the movable member not provided with the first beam member and the end of the first holding member facing the end of the movable member are each formed in a comb shape, and the comb shapes are engaged with each other. The end portion of the first holding member and the end portion of the second holding member that are opposed to the end portion of the first member are formed in a comb shape. The electrostatic actuator according to claim 5, wherein the electrostatic actuators are formed so as to mesh with each other. 前記可動部材、前記第1、第2の梁部材及び前記第1、第2の保持部材は同一の基板より加工形成してなる請求項5又は6に記載の静電アクチュエータ。   The electrostatic actuator according to claim 5 or 6, wherein the movable member, the first and second beam members, and the first and second holding members are processed and formed from the same substrate. 前記基板は単結晶シリコンを材料として形成された基板である請求項3又は7に記載の静電アクチュエータ。   The electrostatic actuator according to claim 3, wherein the substrate is a substrate formed using single crystal silicon as a material. 請求項5〜8のいずれかに記載の静電アクチュエータの駆動信号の周波数は、前記第1の梁部材のバネ定数と、前記第1の梁部材が保持する前記可動部材の慣性とによって定められる前記可動部材の共振周波数に等しく、又は当該共振周波数の2倍に等しく設定することを特徴とする静電アクチュエータ。   The frequency of the drive signal of the electrostatic actuator according to any one of claims 5 to 8 is determined by a spring constant of the first beam member and an inertia of the movable member held by the first beam member. An electrostatic actuator that is set equal to a resonance frequency of the movable member or equal to twice the resonance frequency. 請求項1〜9のいずれかに記載の静電アクチュエータは、減圧雰囲気中で動作することを特徴とする静電アクチュエータ。   The electrostatic actuator according to claim 1, wherein the electrostatic actuator operates in a reduced pressure atmosphere. 請求項1〜4のいずれかに記載の静電アクチュエータの前記可動部材の表面にはミラー部材が形成され、該ミラー部材に入射した光線を、前記梁部材を軸とした回転方向に偏向走査することを特徴とする光走査装置。   A mirror member is formed on the surface of the movable member of the electrostatic actuator according to any one of claims 1 to 4, and the light beam incident on the mirror member is deflected and scanned in a rotation direction about the beam member. An optical scanning device. 請求項5〜9のいずれかに記載の静電アクチュエータの前記可動部材の表面にはミラー部材が形成され、該ミラー部材に入射した光線を、前記第1,第2の梁部材を軸とした回転方向に2軸偏向走査することを特徴とする光走査装置。   A mirror member is formed on the surface of the movable member of the electrostatic actuator according to any one of claims 5 to 9, and a light beam incident on the mirror member is used with the first and second beam members as axes. An optical scanning device characterized by performing biaxial deflection scanning in the rotational direction. 請求項11又は12に記載の光走査装置は、減圧雰囲気中で動作することを特徴とする光走査装置。

13. The optical scanning device according to claim 11, wherein the optical scanning device operates in a reduced pressure atmosphere.

JP2005259998A 2004-09-14 2005-09-08 Electrostatic actuator and optical scanning device Pending JP2006115683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259998A JP2006115683A (en) 2004-09-14 2005-09-08 Electrostatic actuator and optical scanning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004266147 2004-09-14
JP2005259998A JP2006115683A (en) 2004-09-14 2005-09-08 Electrostatic actuator and optical scanning device

Publications (1)

Publication Number Publication Date
JP2006115683A true JP2006115683A (en) 2006-04-27

Family

ID=36383692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259998A Pending JP2006115683A (en) 2004-09-14 2005-09-08 Electrostatic actuator and optical scanning device

Country Status (1)

Country Link
JP (1) JP2006115683A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080430A (en) * 2006-09-27 2008-04-10 Fujitsu Ltd Micro structure manufacturing method and micro structure
JP2008129068A (en) * 2006-11-16 2008-06-05 Denso Corp Two-dimensional light scanning device
JP2008129069A (en) * 2006-11-16 2008-06-05 Denso Corp Two-dimensional light scanning device
WO2008069176A1 (en) * 2006-12-05 2008-06-12 Panasonic Corporation Actuator
WO2008090921A1 (en) * 2007-01-26 2008-07-31 Panasonic Electric Works Co., Ltd. Optical scanning mirror, semiconductor structure and method for fabricating the same
JP2008181042A (en) * 2007-01-26 2008-08-07 Matsushita Electric Works Ltd Semiconductor structure and method of manufacturing the same
JP2008181040A (en) * 2007-01-26 2008-08-07 Matsushita Electric Works Ltd Optical scanning mirror
JP2009119173A (en) * 2007-11-19 2009-06-04 Panasonic Electric Works Co Ltd Optical scanning measuring apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080430A (en) * 2006-09-27 2008-04-10 Fujitsu Ltd Micro structure manufacturing method and micro structure
JP2008129068A (en) * 2006-11-16 2008-06-05 Denso Corp Two-dimensional light scanning device
JP2008129069A (en) * 2006-11-16 2008-06-05 Denso Corp Two-dimensional light scanning device
JPWO2008069176A1 (en) * 2006-12-05 2010-03-18 パナソニック株式会社 Actuator
WO2008069176A1 (en) * 2006-12-05 2008-06-12 Panasonic Corporation Actuator
US7923894B2 (en) 2006-12-05 2011-04-12 Panasonic Corporation Actuator, image projection apparatus and production method for actuator
WO2008090921A1 (en) * 2007-01-26 2008-07-31 Panasonic Electric Works Co., Ltd. Optical scanning mirror, semiconductor structure and method for fabricating the same
JP2008181042A (en) * 2007-01-26 2008-08-07 Matsushita Electric Works Ltd Semiconductor structure and method of manufacturing the same
JP2008181040A (en) * 2007-01-26 2008-08-07 Matsushita Electric Works Ltd Optical scanning mirror
EP2128681A1 (en) * 2007-01-26 2009-12-02 Panasonic Electric Works Co., Ltd. Optical scanning mirror, semiconductor structure and method for fabricating the same
EP2128681A4 (en) * 2007-01-26 2010-05-19 Panasonic Elec Works Co Ltd Optical scanning mirror, semiconductor structure and method for fabricating the same
KR101104598B1 (en) * 2007-01-26 2012-01-12 파나소닉 전공 주식회사 Optical scanning mirror, semiconductor structure and manufaturing method thereof
US8164812B2 (en) 2007-01-26 2012-04-24 Panasonic Corporation Optical scanning mirror, semiconductor structure and manufacturing method thereof
JP2009119173A (en) * 2007-11-19 2009-06-04 Panasonic Electric Works Co Ltd Optical scanning measuring apparatus

Similar Documents

Publication Publication Date Title
JP4092283B2 (en) Two-dimensional optical scanner and optical device
EP1806613B1 (en) Two-axis micro optical scanner
JP2005173411A (en) Light deflector
JP2006171349A (en) Actuator
JP2005128147A (en) Optical deflector and optical apparatus using the same
US7095156B2 (en) Actuator
JP2018041085A (en) Micromechanical device and method for two-dimensional deflection of light
JP7436686B2 (en) Micromirror device and optical scanning device
JP2008083122A (en) Movable structure and optical element provided with the same
JP2017520020A (en) Micro-optical electromechanical device and manufacturing method thereof
CN100380172C (en) Electromagnetic scanning micro-mirror and optical scanning device using the same
JP2007206480A (en) Optical scan element
JP4098792B2 (en) Mirror device
JP4663550B2 (en) Optical scanning apparatus and image forming apparatus
JP2006115683A (en) Electrostatic actuator and optical scanning device
JP2008111882A (en) Actuator, optical scanner and image forming apparatus
JP2008070863A (en) Vibrating mirror, light writing device, and image forming apparatus
JP2010026162A (en) Movable structure and optical scanning mirror using the same
JP5092406B2 (en) Actuator, optical scanner and image forming apparatus
JP4123133B2 (en) Actuator
WO2022014471A1 (en) Optical scanning device and method for driving micromirror device
JP2006154315A (en) Electrostatic comb-shaped swinging body device and manufacturing method thereof
JP2023039221A (en) Micro-mirror device and optical scanning device
JP4358788B2 (en) Optical scanner
JP2023039222A (en) Micro-mirror device and optical scanning device