JPH06264144A - Production of steel tube with low yield ratio for construction use by cold forming - Google Patents
Production of steel tube with low yield ratio for construction use by cold formingInfo
- Publication number
- JPH06264144A JPH06264144A JP5605893A JP5605893A JPH06264144A JP H06264144 A JPH06264144 A JP H06264144A JP 5605893 A JP5605893 A JP 5605893A JP 5605893 A JP5605893 A JP 5605893A JP H06264144 A JPH06264144 A JP H06264144A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- yield ratio
- steel pipe
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は建築、土木分野におい
て、各種構造物に用いる冷間成形による低降伏比鋼管の
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low yield ratio steel pipe by cold forming for various structures in the fields of construction and civil engineering.
【0002】[0002]
【従来の技術】一般的に、鋼材に対し冷間加工を加える
と加工硬化によりYP、TSが上昇し、TSに比べYP
の上昇が大きいため降伏比(以下YRと呼ぶ)も上昇し
てしまい、冷間成形による鋼管は降伏後の塑性変形能力
が小さいため建築構造物には適用しにくいという欠点が
あった。2. Description of the Related Art Generally, when cold working is applied to steel, YP and TS rise due to work hardening, and YP and TS are higher than TS.
The yield ratio (hereinafter referred to as YR) also increases due to the large increase in the steel, and the cold-formed steel pipe has a drawback that it is difficult to apply to a building structure because the plastic deformation capacity after yielding is small.
【0003】一方、低YR鋼管の製造法としては遠心鋳
造法、鋼管での熱処理(焼入、焼戻)等があるが、遠心
鋳造法はその生産性の低さ、経済性の面で、鋼管の熱処
理ではその経済性、鋼管の寸法精度の面で、鋼板の冷間
成形により製造した鋼管に比べ劣っていた。On the other hand, there are centrifugal casting method, heat treatment (quenching and tempering) in steel tube, etc. as the manufacturing method of the low YR steel pipe, but the centrifugal casting method has low productivity and economical efficiency. The heat treatment of the steel pipe was inferior to the steel pipe manufactured by cold forming the steel plate in terms of its economical efficiency and dimensional accuracy of the steel pipe.
【0004】[0004]
【発明が解決しようとする課題】本発明は、鋼板の冷間
成形によるYRが低い鋼管の製造技術を提供するもので
ある。本発明法に基づいて製造した鋼管は、低YRで且
つ高い生産性、経済性及び寸法精度を有している。SUMMARY OF THE INVENTION The present invention provides a technique for manufacturing a steel pipe having a low YR by cold forming a steel plate. The steel pipe manufactured based on the method of the present invention has low YR and high productivity, economy and dimensional accuracy.
【0005】[0005]
【課題を解決するための手段】前述の課題を克服し目的
を達成するもので、その具体的手段を下記(1)、
(2)に示す。 (1)重量比でC 0.01〜0.20%、Si 0.
5%以下、Mn 0.5〜1.6%、P 0.03%以
下、S 0.01%以下、Ti 0.005〜0.02
5%、Al 0.06%以下、N 0.006%以下を
含有し、残部が鉄および不可避的不純物からなる鋼を9
00〜1200℃の温度範囲に再加熱して、900℃以
下の累積圧下量が30%以上となるように圧延を行った
後、750℃以上の温度から直ちに常温まで焼入し、7
00〜850℃の温度範囲に再加熱、焼入れし、Ac1
変態点以下の温度範囲で焼戻処理を施し、且つYR≦8
0−0.8×t/Dに制御した鋼板を用いてt/D≦1
0%の範囲で冷間成形により鋼管を製作することを特徴
とする板厚100mm以下、管軸方向のYRが80%以下
である建築用低降伏比600N/mm2 級鋼管の製造法。[Means for Solving the Problems] In order to overcome the above-mentioned problems and achieve the object, the concrete means are as follows (1),
It shows in (2). (1) C 0.01 to 0.20% by weight and Si 0.
5% or less, Mn 0.5 to 1.6%, P 0.03% or less, S 0.01% or less, Ti 0.005 to 0.02
Steel containing 5%, Al 0.06% or less, N 0.006% or less, and the balance iron and unavoidable impurities
After reheating to a temperature range of 00 to 1200 ° C. and rolling so that the cumulative rolling reduction of 900 ° C. or less is 30% or more, immediately quenching from a temperature of 750 ° C. or more to room temperature,
Reheat and quench in the temperature range of 0 to 850 ° C, and Ac 1
Tempered in the temperature range below the transformation point, and YR ≦ 8
T / D ≦ 1 using a steel plate controlled to 0-0.8 × t / D
A method for producing a low yield ratio 600N / mm 2 class steel pipe for construction having a plate thickness of 100 mm or less and a YR of 80% or less in the tube axis direction, which is characterized in that a steel pipe is manufactured by cold forming in a range of 0%.
【0006】(2)重量比でC 0.01〜0.20
%、Si 0.5%以下、Mn 0.5〜1.6%、P
0.03%以下、S 0.01%以下、Ti 0.0
05〜0.025%、Al 0.06%以下、N 0.
006%以下さらにCu 0.05〜0.5%、Ni
0.05〜1.0%、Cr 0.05〜1.0%、Mo
0.05〜1.0%、Nb 0.005〜0.03%、
V 0.005〜0.05%、Ca 0.001〜0.
006%の1種または2種以上を含有し、残部が鉄およ
び不可避的不純物からなる鋼を900〜1200℃の温
度範囲に再加熱して、900℃以下の累積圧下量が30
%以上となるように圧延を行った後、750℃以上の温
度から直ちに常温まで焼入し、700〜850℃の温度
範囲に再加熱、焼入れし、Ac1 変態点以下の温度範囲
で焼戻処理を施し、且つYR≦80−0.8×t/Dに
制御した鋼板を用いてt/D≦10%の範囲で冷間成形
により鋼管を製作することを特徴とする板厚100mm以
下、管軸方向のYRが80%以下である建築用低降伏比
600N/mm2 級鋼管の製造法。(2) C 0.01 to 0.20 in weight ratio
%, Si 0.5% or less, Mn 0.5 to 1.6%, P
0.03% or less, S 0.01% or less, Ti 0.0
05-0.025%, Al 0.06% or less, N 0.
006% or less Cu 0.05 to 0.5%, Ni
0.05-1.0%, Cr 0.05-1.0%, Mo
0.05-1.0%, Nb 0.005-0.03%,
V 0.005-0.05%, Ca 0.001-0.
Steel containing 006% of 1 type or 2 types or more and the balance consisting of iron and unavoidable impurities is reheated to a temperature range of 900 to 1200 ° C., and a cumulative reduction amount of 900 ° C. or less is 30
%, And then immediately quenched from a temperature of 750 ° C. or higher to normal temperature, reheated to a temperature range of 700 to 850 ° C., quenched, and tempered in a temperature range of the Ac 1 transformation point or lower. A steel pipe having a thickness of 100 mm or less, characterized by producing a steel pipe by cold forming within a range of t / D ≦ 10% using a steel plate that has been subjected to a treatment and controlled to YR ≦ 80-0.8 × t / D, Manufacturing method for low yield ratio 600N / mm 2 class steel pipe for construction with YR of 80% or less in the pipe axis direction.
【0007】[0007]
【作用】以下、本発明について説明する。発明者らの研
究によれば、冷間加工後のYRを低くするには冷間加工
前の鋼板の材質制御、特にYRを低く制御することが必
要であることを見いだした。そこで本発明のポイントは
(1)冷間加工に供する鋼板に必要なYR値、(2)そ
のYR値以下に制御する製造法にある。The present invention will be described below. According to the research conducted by the inventors, it has been found that in order to reduce YR after cold working, it is necessary to control the material quality of the steel sheet before cold working, and particularly to control YR low. Therefore, the point of the present invention resides in (1) a YR value required for a steel sheet to be subjected to cold working, and (2) a manufacturing method in which the YR value is controlled to be the YR value or less.
【0008】再加熱温度を900〜1200℃の範囲に
限定した理由は、加熱時のオーステナイト粒を小さく保
ち圧延組織の細粒化を図るためである。1200℃は加
熱時のオーステナイト粒が極端に粗大化しない上限温度
であって、加熱温度がこれを超えるとオーステナイト粒
が粗大混粒化し、変態後の組織が粗大なベイナイト組織
となるため鋼の靭性が著しく劣化する。一方加熱温度が
低すぎると、圧延終了温度が下がりすぎるため、十分な
材質向上効果が期待できない。またNb,Vなどの析出
硬化元素添加時には、これらが十分に固溶せず強度、靭
性バランスが劣化する。このために下限を900℃とす
る必要がある。The reason for limiting the reheating temperature to the range of 900 to 1200 ° C. is to keep the austenite grains at the time of heating small and to make the rolling structure finer. 1200 ° C is the upper limit temperature at which the austenite grains do not become extremely coarse during heating, and if the heating temperature exceeds this temperature, the austenite grains become coarsely mixed grains, and the structure after transformation becomes a coarse bainite structure. Is significantly deteriorated. On the other hand, if the heating temperature is too low, the rolling finish temperature will be too low, and a sufficient material improvement effect cannot be expected. Also, when precipitation hardening elements such as Nb and V are added, they do not form a solid solution sufficiently and the balance of strength and toughness deteriorates. Therefore, it is necessary to set the lower limit to 900 ° C.
【0009】上述のような条件で加熱したスラブを、9
00℃以下の未再結晶域での累積圧下量を30%以上と
なるように圧延する。これは未再結晶域での圧延を行う
ことによってオーステナイト粒の細粒化を図るためであ
る。The slab heated under the above conditions was
Rolling is performed so that the cumulative reduction amount in the unrecrystallized region of 00 ° C or less is 30% or more. This is because the austenite grains are made finer by rolling in the unrecrystallized region.
【0010】次に圧延後の冷却条件であるが、これは圧
延終了後鋼板温度が750℃以上の温度から常温まで焼
入し、700〜850℃の温度範囲に再加熱、焼入れ
し、その後Ac1 変態点以下の温度範囲で焼戻処理を行
う必要がある。この理由はフェライト−オーステナイト
の2相共存域に再加熱し、フェライトからオーステナイ
トへCの濃化が生じCの濃化したオーステナイトとCが
減少したフェライト相にせしめ、その状態から焼入を行
うことにより極めて微細な炭化物を有する相と粗大な炭
化物を有する相の2相混合組織を得るためである。降伏
比の低減はこの2相混合組織により達成される。Next, the cooling conditions after rolling are as follows. After the rolling, the steel sheet is quenched from a temperature of 750 ° C or higher to room temperature, reheated and quenched to a temperature range of 700 to 850 ° C, and then Ac It is necessary to perform tempering treatment within a temperature range of 1 transformation point or lower. The reason for this is that the ferrite-austenite two-phase coexisting region is reheated so that C is enriched from ferrite to austenite, and the austenite enriched in C and the ferrite phase depleted in C are made to undergo quenching from that state. Is to obtain a two-phase mixed structure of a phase having extremely fine carbide and a phase having coarse carbide. The reduction of the yield ratio is achieved by this two-phase mixed structure.
【0011】しかしながら、圧延終了後の焼入温度が7
50℃未満では変態が進み所定の強度が得られず、85
0℃超の再加熱温度からの焼入ではフェライト相が少な
く降伏比の低減効果が期待できず、また700℃未満か
らの焼入では強度が下がり目的を達成できない。However, the quenching temperature after rolling is 7
If the temperature is less than 50 ° C, the transformation proceeds and the desired strength cannot be obtained.
Quenching from a reheating temperature of more than 0 ° C. has few ferrite phases, and the yield ratio reduction effect cannot be expected. Quenching from less than 700 ° C. reduces the strength and fails to achieve the object.
【0012】焼戻処理は鋼の靭性改善と、溶接、応力除
去処理などによる軟化を防止するために必須である。し
かし、その温度がAc1 点を超えると強度が著しく低下
するので、Ac1 点以下としなければならない。[0012] The tempering treatment is essential for improving the toughness of steel and preventing softening due to welding, stress relief treatment and the like. However, if the temperature exceeds the Ac 1 point, the strength is remarkably reduced, so the temperature must be set to the Ac 1 point or less.
【0013】さらに冷間成形(t/D≦10%)前の鋼
板のYR値を(80−0.8×t/D)以下に制御す
る。これは冷間成形後のYR値を80%以下に制御する
ためで、これ以上のYR値の鋼板では冷間成形によるY
Rの上昇により、鋼管でのYRが80%を超えてしま
う。Further, the YR value of the steel sheet before cold forming (t / D ≦ 10%) is controlled to be (80-0.8 × t / D) or less. This is to control the YR value after cold forming to 80% or less, and for steel plates with YR values higher than this, the Y by cold forming is used.
The increase in R causes YR in the steel pipe to exceed 80%.
【0014】次に成分範囲の限定理由について説明す
る。Cは母材の強度を確保するために必要であるが、多
量に含有させると靭性あるいは溶接性を損なうために適
量の添加が必要となる。このような観点からCは0.0
1〜0.20%とした。Next, the reason for limiting the component range will be described. C is necessary in order to secure the strength of the base material, but if it is contained in a large amount, toughness or weldability is impaired, so an appropriate amount of C must be added. From such a viewpoint, C is 0.0
It was set to 1 to 0.20%.
【0015】Siは脱酸上、鋼に必然的に含まれる元素
であるが、SiはHAZ靭性及び溶接性上好ましくこな
い元素であるため、その上限を0.5%とした。Mnは
強度、靭性を同時に向上せしめる極めて重要な元素であ
り、0.5%以上は必要であるが、多量に添加すると溶
接性、母材及びHAZの靭性劣化を招くためその上限を
1.6%とした。Si is an element that is inevitably contained in steel for deoxidation, but Si is an element that is not preferable in terms of HAZ toughness and weldability, so its upper limit was made 0.5%. Mn is an extremely important element that improves strength and toughness at the same time, and 0.5% or more is necessary. However, if added in a large amount, weldability, deterioration of toughness of the base metal and HAZ are deteriorated, so the upper limit is 1.6. %.
【0016】本発明鋼において不純物であるP、Sをそ
れぞれ0.03%、0.01%以下とした理由は、母
材、溶接部の低温靭性をより一層向上させるためであ
る。Pの低減は粒界破壊を防止し、S量の低減はMnS
による靭性の劣化を防止する。好ましいP、S量はそれ
ぞれ0.01%、0.005%以下である。The reason why the impurities P and S in the steel of the present invention are 0.03% and 0.01% or less, respectively, is to further improve the low temperature toughness of the base material and the welded portion. Reduction of P prevents grain boundary destruction, and reduction of S amount reduces MnS
To prevent deterioration of toughness. The preferred P and S contents are 0.01% and 0.005% or less, respectively.
【0017】Tiは炭窒化物を形成してHAZ靭性を向
上させる。Al量が少ない場合、Tiの酸化物を形成し
HAZ靭性を向上させるが、0.005%未満では効果
がなく、0.025%を超えるとHAZ靭性に好ましく
ない影響があるため、0.005〜0.025%に限定
する。Ti forms carbonitrides and improves HAZ toughness. When the amount of Al is small, Ti oxide is formed to improve the HAZ toughness, but if it is less than 0.005%, it has no effect, and if it exceeds 0.025%, it has an unfavorable effect on the HAZ toughness. Limited to ~ 0.025%.
【0018】Alは一般に脱酸上鋼に含まれる元素であ
るが、Si及びTiによっても脱酸は行われるので本発
明鋼については下限は限定しない。しかしAl量が多く
なると鋼の清浄度が悪くなり、溶接部の靭性が劣化する
ので上限を0.06%とした。Al is generally an element contained in deoxidized upper steel, but since deoxidation is also performed by Si and Ti, the lower limit of the steel of the present invention is not limited. However, if the amount of Al increases, the cleanliness of the steel deteriorates and the toughness of the welded portion deteriorates, so the upper limit was made 0.06%.
【0019】Nは一般的に不可避的不純物として鋼中に
含まれるものであるが、Nb、Vと結合して炭窒化物を
形成して強度を増加させ、またTiNを形成して前述の
ようにHAZの性質を高める。このためN量として最低
0.001%が必要である。しかしながらN量が多くな
るとHAZ靭性の劣化や連続鋳造スラブの表面キズの発
生等を助長するので、その上限を0.006%とした。Although N is generally contained in steel as an unavoidable impurity, it is combined with Nb and V to form a carbonitride to increase the strength, and TiN is formed to form an alloy as described above. Enhances the properties of HAZ. Therefore, the N content must be at least 0.001%. However, if the amount of N increases, it deteriorates the HAZ toughness and the occurrence of surface flaws in the continuously cast slab, so the upper limit was made 0.006%.
【0020】本発明鋼の基本成分は以上のとおりであ
り、十分に目的を達成できるが、さらに目的に対し特性
を高めるため、以下に述べる元素即ちCu、Ni、C
r、Mo、Nb、V、Caを選択的に添加すると強度、
靭性の向上について、さらに好ましい結果が得られる。The basic components of the steel of the present invention are as described above, and the object can be sufficiently achieved. However, in order to further improve the characteristics for the purpose, the elements described below, namely Cu, Ni, and C.
Strength is obtained by selectively adding r, Mo, Nb, V, and Ca.
Further favorable results are obtained with respect to improvement in toughness.
【0021】つぎに、前記添加元素とその添加量につい
て説明する。Niは溶接性、HAZ靭性に悪影響を及ぼ
すことなく、母材の強度、靭性を向上させるが、0.0
5%以下では効果が薄く、1.0%以上では極めて高価
になるため経済性を失うので、上限は1.0%とした。
CuはNiとほぼ同様な効果を持つほか、Cu析出物に
よる強度の増加や耐食性や耐候性の向上にも効果を有す
る。この場合Cu量が0.5%を超えるとその析出効果
が著しく、冷間成形後の熱処理において過度の析出効果
によりYRの低下が困難になり、また0.05%以下で
は効果がないのでCu量は0.05〜0.5%に限定す
る。Next, the above-mentioned additional element and its addition amount will be explained. Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness, but 0.0
If it is 5% or less, the effect is weak, and if it is 1.0% or more, the cost is extremely high and the economy is lost, so the upper limit was made 1.0%.
Cu has an effect similar to that of Ni, and also has an effect of increasing strength due to Cu precipitates and improving corrosion resistance and weather resistance. In this case, when the amount of Cu exceeds 0.5%, its precipitation effect is remarkable, and it becomes difficult to lower YR due to an excessive precipitation effect in the heat treatment after cold forming. The amount is limited to 0.05-0.5%.
【0022】Moは母材の強度、靭性を共に向上させる
元素であるが、0.05%以下では効果が薄く、1.0
%を超えると溶接部靭性及び溶接性の劣化を招き好まし
くないため0.05〜1.0%に限定する。Crは母材
及び溶接部の強度を高める元素であり、Cr量が0.5
%以上で耐候性も向上するが、1.0%を超えると溶接
性やHAZ靭性を劣化させ、また0.05%以下では効
果が薄い。従ってCr量は0.05〜1.0%とする。Mo is an element that improves both the strength and toughness of the base material, but if the content is 0.05% or less, the effect is weak and 1.0
%, The weld zone toughness and weldability are deteriorated, which is not preferable, so the content is limited to 0.05 to 1.0%. Cr is an element that enhances the strength of the base material and the welded portion, and the Cr content is 0.5.
%, The weather resistance is improved, but if it exceeds 1.0%, the weldability and HAZ toughness are deteriorated, and if it is 0.05% or less, the effect is weak. Therefore, the Cr content is 0.05 to 1.0%.
【0023】Nbは微細な炭窒化物を形成し、強度を増
加させ、またHAZ靭性を向上させる。しかし、0.0
5%以下では効果がなく、0.03%を超えると熱処理
で過度の析出効果により鋼板のYR低下の妨げになる。
VはNbとほぼ同じ効果をもつ元素であるが、Nbに比
較して析出硬化能はやや劣る。0.005%以下では硬
化が少なく、0.05%を超えると熱処理で過度の析出
硬化により鋼板のYR低下の妨げになる。Nb forms fine carbonitrides, increases strength and improves HAZ toughness. But 0.0
If it is less than 5%, there is no effect, and if it exceeds 0.03%, the YR of the steel sheet is hindered by the excessive precipitation effect in the heat treatment.
V is an element having almost the same effect as Nb, but its precipitation hardening ability is slightly inferior to that of Nb. If it is less than 0.005%, the hardening is small, and if it exceeds 0.05%, excessive precipitation hardening in the heat treatment hinders reduction of YR of the steel sheet.
【0024】Caは硫化物(MnS)の形態を制御し、
シャルピー吸収エネルギーを増加させ低温靭性を向上さ
せる効果がある。しかしCa量は0.001%未満では
実用上効果がなく、0.006%を超えるとCaO、C
aSが多量に生成して大型介在物となり、鋼の靭性のみ
ならず清浄度も害し溶接性、耐ラメラテア性にも悪影響
を与えるので、Ca添加量の範囲を0.001〜0.0
06%とする。Ca controls the morphology of sulfide (MnS),
It has the effect of increasing Charpy absorbed energy and improving low temperature toughness. However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it exceeds 0.006%, CaO, C
A large amount of aS is generated and becomes large inclusions, which not only impairs the toughness of steel but also the cleanliness and adversely affects the weldability and lamella tear resistance. Therefore, the range of Ca addition amount is 0.001 to 0.0
It is set to 06%.
【0025】[0025]
【実施例】周知の転炉、連続鋳造、厚板工程により鋼板
を製造し、その後冷間成形で鋼管を製作し、その強度、
靭性について調査した。表1の1〜9に本発明鋼、10
〜18に比較鋼の科学成分を示す。表2に本発明鋼と比
較鋼の鋼板製造条件とその機械的性質を示す。[Example] A steel plate is manufactured by a well-known converter, continuous casting, and thick plate process, and then a steel pipe is manufactured by cold forming.
The toughness was investigated. Inventive steels 10 to 1 to 9 in Table 1
~ 18 shows the chemical composition of comparative steel. Table 2 shows the steel plate manufacturing conditions and the mechanical properties of the present invention steel and the comparative steel.
【0026】表2の本発明鋼1〜9は、鋼管での強度、
靭性がバランスよく達成できており、YRも80%以下
となっている。これに対し比較鋼10では焼入時の再加
熱温度が低すぎるため強度が不足している。比較鋼11
は950℃以下の圧下率が低いために結晶粒の細粒化が
十分になされておらず、靭性が劣化している。比較鋼1
2では加熱温度が高いために結晶粒の細粒化が十分にな
されておらず、靭性が劣化している。比較鋼13では冷
却開始温度が低いために強度が低下している。比較鋼1
4では鋼板の降伏比(YR)が高い(>80−0.8×
t/D)ために、鋼管のYRが高くなっている。比較鋼
15では焼入時の再加熱温度が高すぎ鋼板のYRが高く
なり、鋼管のYRも高くなっている。比較鋼16ではN
bが高いために、鋼板のYRが高く鋼管でのYRも高く
なっている。比較鋼17ではVが高いために、鋼板のY
Rが高く鋼管でのYRも高くなっている。Steels 1 to 9 of the present invention shown in Table 2 are strengths in steel pipes,
The toughness is achieved in a well-balanced manner, and the YR is 80% or less. In contrast, Comparative Steel 10 lacks strength because the reheating temperature during quenching is too low. Comparative steel 11
Since the rolling reduction of 950 ° C. or lower is low, the crystal grains are not sufficiently refined, and the toughness is deteriorated. Comparative steel 1
In No. 2, since the heating temperature is high, the grain size of the crystal grains is not sufficiently reduced, and the toughness is deteriorated. In Comparative Steel 13, the strength is lowered because the cooling start temperature is low. Comparative steel 1
No. 4, the yield ratio (YR) of the steel sheet is high (> 80-0.8x).
Because of t / D), the YR of the steel pipe is high. In Comparative Steel 15, the reheating temperature at the time of quenching was too high, and the YR of the steel plate was high, and the YR of the steel pipe was also high. N for comparative steel 16
Since b is high, the YR of the steel plate is high and the YR of the steel pipe is also high. Comparative steel 17 has a high V, so that Y of the steel plate
The R is high and the YR for steel pipe is also high.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【発明の効果】本発明の化学成分及び製造法で製造した
鋼管は、YRが低く降伏後の塑性変形能力に優れた鋼管
である。その結果、建築、橋梁等の構造物の安全性を高
めることができる。INDUSTRIAL APPLICABILITY The steel pipe manufactured by the chemical composition and manufacturing method of the present invention has a low YR and an excellent plastic deformation ability after yielding. As a result, the safety of structures such as buildings and bridges can be improved.
Claims (2)
以下 Mn :0.5〜1.6% P :0.03
%以下 S :0.01%以下 Ti :0.00
5〜0.025% Al :0.06%以下 N :0.00
6%以下 を含有し、残部が鉄および不可避的不純物からなる鋼を
900〜1200℃の温度範囲に再加熱して、900℃
以下の累積圧下量が30%以上となるように圧延を行っ
た後、750℃以上の温度から直ちに常温まで焼入し、
700〜850℃の温度範囲に再加熱、焼入れし、Ac
1 変態点以下の温度範囲で焼戻処理を施し、且つ降伏比
(YR)≦80−0.8×t/D(t:板厚、D:鋼管
外径)に制御した鋼板を用いて冷間成形により鋼管を製
作することを特徴とする建築用低降伏比600N/mm2 級
鋼管の製造法。1. A weight ratio of C: 0.01 to 0.20% and Si: 0.5%.
Hereinafter, Mn: 0.5 to 1.6% P: 0.03
% Or less S: 0.01% or less Ti: 0.00
5 to 0.025% Al: 0.06% or less N: 0.00
Steel containing 6% or less and the balance consisting of iron and unavoidable impurities is reheated to a temperature range of 900 to 1200 ° C. to 900 ° C.
After rolling such that the cumulative rolling reduction below is 30% or more, quenching is immediately performed from a temperature of 750 ° C. or higher to room temperature,
Reheat to a temperature range of 700-850 ° C, quench,
A tempering process is performed in a temperature range of 1 transformation point or lower, and a yield ratio (YR) ≤ 80-0.8 x t / D (t: plate thickness, D: steel pipe outer diameter) is used to cool the steel plate. Manufacturing method of low yield ratio 600N / mm 2 class steel pipe for construction, characterized by manufacturing steel pipe by hot forming.
以下 Mn :0.5〜1.6% P :0.03
%以下 S :0.01%以下 Ti :0.00
5〜0.025% Al :0.06%以下 N :0.001%〜0.006%以下 さらに Ni :0.05〜1.0% Cu :0.05
〜0.5% Cr :0.05〜1.0% Mo :0.05
〜1.0% Nb :0.005〜0.03% V :0.00
5〜0.05% Ca :0.001〜0.006% の1種または2種以上を含有し、残部が鉄および不可避
的不純物からなる鋼を900〜1200℃の温度範囲に
再加熱して、900℃以下の累積圧下量が30%以上と
なるように圧延を行った後、750℃以上の温度から直
ちに常温まで焼入し、700〜850℃の温度範囲に再
加熱、焼入れし、Ac1 変態点以下の温度範囲で焼戻処
理を施し、且つ降伏比(YR)≦80−0.8×t/D
(t:板厚、D:鋼管外径)に制御した鋼板を用いて冷
間成形により鋼管を製作することを特徴とする建築用低
降伏比600N/mm2 級鋼管の製造法。2. C: 0.01 to 0.20% and Si: 0.5% by weight.
Hereinafter, Mn: 0.5 to 1.6% P: 0.03
% Or less S: 0.01% or less Ti: 0.00
5 to 0.025% Al: 0.06% or less N: 0.001% to 0.006% or less Ni: 0.05 to 1.0% Cu: 0.05
~ 0.5% Cr: 0.05-1.0% Mo: 0.05
-1.0% Nb: 0.005-0.03% V: 0.00
5 to 0.05% Ca: 0.001 to 0.006% of 1 type or 2 types or more, and the remainder is steel and iron and inevitable impurities are reheated to a temperature range of 900 to 1200 ° C. After rolling at a cumulative rolling reduction of 900 ° C or lower to be 30% or higher, it is immediately quenched from a temperature of 750 ° C or higher to room temperature, reheated to a temperature range of 700 to 850 ° C, and quenched. Tempering is performed in the temperature range of 1 transformation point or less, and yield ratio (YR) ≤ 80-0.8 x t / D
A method for manufacturing a low yield ratio 600 N / mm 2 class steel pipe for construction, characterized by producing a steel pipe by cold forming using a steel plate controlled to (t: plate thickness, D: steel pipe outer diameter).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5605893A JPH06264144A (en) | 1993-03-16 | 1993-03-16 | Production of steel tube with low yield ratio for construction use by cold forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5605893A JPH06264144A (en) | 1993-03-16 | 1993-03-16 | Production of steel tube with low yield ratio for construction use by cold forming |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06264144A true JPH06264144A (en) | 1994-09-20 |
Family
ID=13016488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5605893A Withdrawn JPH06264144A (en) | 1993-03-16 | 1993-03-16 | Production of steel tube with low yield ratio for construction use by cold forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06264144A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1375683A1 (en) * | 2001-03-29 | 2004-01-02 | Sumitomo Metal Industries, Ltd. | High strength steel tube for air bag and method for production thereof |
JP2007119899A (en) * | 2005-09-28 | 2007-05-17 | Kobe Steel Ltd | 490 MPa-CLASS LOW-YIELD RATIO COLD-FORMED STEEL PIPE HAVING EXCELLENT WELDABILITY AND ITS PRODUCTION METHOD |
-
1993
- 1993-03-16 JP JP5605893A patent/JPH06264144A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1375683A1 (en) * | 2001-03-29 | 2004-01-02 | Sumitomo Metal Industries, Ltd. | High strength steel tube for air bag and method for production thereof |
US6878219B2 (en) * | 2001-03-29 | 2005-04-12 | Sumitomo Metal Industries, Ltd. | High strength steel pipe for an air bag and a process for its manufacture |
EP1375683A4 (en) * | 2001-03-29 | 2006-01-11 | Sumitomo Metal Ind | High strength steel tube for air bag and method for production thereof |
US7846274B2 (en) | 2001-03-29 | 2010-12-07 | Sumitomo Metal Industries, Ltd. | High strength steel pipe for an air bag |
JP2007119899A (en) * | 2005-09-28 | 2007-05-17 | Kobe Steel Ltd | 490 MPa-CLASS LOW-YIELD RATIO COLD-FORMED STEEL PIPE HAVING EXCELLENT WELDABILITY AND ITS PRODUCTION METHOD |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07109521A (en) | Production of 600n/mm2 class steel tube with low yield ratio for construction use by cold forming | |
JPH04285118A (en) | Production of hot forged non-heattreated steel having high strength and high toughness | |
JP2529044B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JPH06264144A (en) | Production of steel tube with low yield ratio for construction use by cold forming | |
JP3245224B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JPH10147835A (en) | 590mpa class rolled shape steel and its production | |
JP2529042B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JPH0717947B2 (en) | Low yield ratio high strength steel sheet manufacturing method | |
JP3497250B2 (en) | Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability | |
JPS6256518A (en) | Production of high strength steel sheet for high heat input welding | |
JP2529045B2 (en) | Manufacturing method of low yield ratio 60kgf / mm2 grade steel pipe for construction by cold forming | |
JPH06128641A (en) | Production of steel tube with low yield ratio for construction use by cold forming | |
JPH06264143A (en) | Production of steel tube with low yield ratio for construction use by cold forming | |
JPH07233414A (en) | Production of low yield ratio high tensile strength steel plate excellent in uniform elongation | |
JP3208495B2 (en) | Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability | |
JP3007247B2 (en) | Method for producing TS590N / mm2 class high strength steel with excellent weldability and yield ratio of 80% or less | |
JP3245223B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JPH06248336A (en) | Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio | |
JP2708540B2 (en) | Method for producing high-strength steel sheet mainly composed of ferrite structure | |
JPH06340924A (en) | Production of low yield ratio high tensile strength steel | |
JPS63128117A (en) | Production of unnormalized high tensile steel | |
JPH07207335A (en) | Production of high tensile steel which is excellent in weldability and high in uniform elongation | |
JPH06248337A (en) | Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio | |
JPH07207334A (en) | Production of high tension steel having excellent weldability and plastic deformability | |
JPH04314824A (en) | Production of 70kgf/mm2 class high tensile strength steel excelent in weldability and having low yield ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000530 |