[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06229788A - Sense of equilibrium sensor - Google Patents

Sense of equilibrium sensor

Info

Publication number
JPH06229788A
JPH06229788A JP5020234A JP2023493A JPH06229788A JP H06229788 A JPH06229788 A JP H06229788A JP 5020234 A JP5020234 A JP 5020234A JP 2023493 A JP2023493 A JP 2023493A JP H06229788 A JPH06229788 A JP H06229788A
Authority
JP
Japan
Prior art keywords
acceleration
magnetic
magnetic fluid
sensor
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5020234A
Other languages
Japanese (ja)
Inventor
Yasushi Igawa
保志 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP5020234A priority Critical patent/JPH06229788A/en
Publication of JPH06229788A publication Critical patent/JPH06229788A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/006Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PURPOSE:To provide a sense of equilibrium sensor for measuring the magnitude and direction of acceleration and inclination accurately. CONSTITUTION:A recess 8' is made in a silicon wafer 2 constituting an IC chip and magnetic fluid 8 is contained therein along with bubbles 9. When acceleration is imparted, the bubbles 9 migrate through the magnetic fluid 8 to cause variation of permeability. The variation is detected by a magnetoresistive element 5 (5a-5d) disposed through an oxide film 3 thus detecting the direction and magnitude of acceleration. Since the oxide film 3 can be formed very thin, the distance between the bubble 9 and the magnetoresistive elements 5a-5d can be shortened thus allowing the accurate detection even of gentle variation of acceleration or inclination without sacrifice of flux.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加速度の方向や大き
さ、傾斜やその大きさを測定する平衡感覚センサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a balance sensation sensor for measuring the direction and magnitude of acceleration, the inclination and the magnitude thereof.

【0002】[0002]

【従来の技術】加速度の方向や大きさ、傾斜やその大き
さ等を測定する平衡感覚センサは、自動車や列車、運搬
用ロボット等、広い産業分野で使用されている。従来、
上述のような平衡感覚センサとしては、例えば特開平2
−138875号公報が知られている。この発明は特に
加速度を検出するもので、磁性流体の中に円筒状の永久
磁石を配置し、当該永久磁石の配置位置の延長線上の両
側にホール素子を配設し、例えば加速度発生時、上記永
久磁石が加速度の方向と逆方向に力を受け移動し、この
時の永久磁石の位置(移動位置)をホール素子で検出す
るものである。すなわち、永久磁石が加速度を受け所定
距離移動すると、両側に設けられたホール素子が検出す
る磁力に差が生じ、このホール素子の出力電圧の差によ
り受けた加速度の方向と大きさを測定するものである。
2. Description of the Related Art Balance sensation sensors for measuring the direction and magnitude of acceleration, inclination and magnitude thereof are used in a wide range of industrial fields such as automobiles, trains and transportation robots. Conventionally,
An example of the above-described balance sensation sensor is, for example, Japanese Patent Laid-Open No. Hei 2
No. 138875 publication is known. This invention particularly detects acceleration, and a cylindrical permanent magnet is arranged in the magnetic fluid, and Hall elements are arranged on both sides of an extension line of the arrangement position of the permanent magnet. The permanent magnet moves by receiving a force in the direction opposite to the direction of acceleration, and the position (moving position) of the permanent magnet at this time is detected by the Hall element. That is, when the permanent magnet receives an acceleration and moves for a predetermined distance, a difference occurs in the magnetic force detected by the Hall elements provided on both sides, and the direction and magnitude of the acceleration received is measured by the difference in the output voltage of the Hall element. Is.

【0003】尚、加速度に限らず物の傾きについても同
様に、磁性流体中の永久磁石の移動位置を測定すること
で知ることができる。
Not only the acceleration but also the inclination of an object can be similarly known by measuring the moving position of the permanent magnet in the magnetic fluid.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
平衡感覚センサ(加速度センサ)では、加速度や傾きに
より永久磁石が移動し、これにより磁力が変化し、この
変化をホール素子で検出するので極めて小さな磁力の変
化を検出するものである。すなわち、永久磁石やホール
素子は機構的な配設構成であるので、永久磁石とホール
素子の配設距離は離れており(例えば数mm、又は数十
mmオーダ)、ホール素子の検出する磁力は極めて小さ
なものである。また、ホール素子の磁力感度はそれほど
優れたものではない。したがって、従来の加速度センサ
では、加速度が緩やかに変化する場合等、微小な加速度
変化や微小な傾きの変化を検出できない。すなわち、ホ
ール素子で検出する磁力が小さい場合、ホール素子の出
力電圧(検出信号)は小さく、微分回路が充分意味をも
たず、ホール素子の検出電圧の微分により正確な加速度
や傾きのデータが得られない。
However, in the conventional balanced sensation sensor (acceleration sensor), the permanent magnet moves due to acceleration or inclination, which changes the magnetic force, and this change is detected by the Hall element, which is extremely small. It detects changes in magnetic force. That is, since the permanent magnet and the Hall element are mechanically arranged, the arrangement distance between the permanent magnet and the Hall element is large (for example, on the order of several mm or tens of mm), and the magnetic force detected by the Hall element is It is extremely small. Further, the magnetic sensitivity of the Hall element is not so excellent. Therefore, the conventional acceleration sensor cannot detect a minute acceleration change or a minute inclination change, such as a case where the acceleration changes gently. That is, when the magnetic force detected by the Hall element is small, the output voltage (detection signal) of the Hall element is small and the differentiating circuit does not have sufficient meaning. Accurate acceleration or inclination data can be obtained by differentiating the detected voltage of the Hall element. I can't get it.

【0005】また、従来の加速度センサでは、上述のよ
うに円筒状の永久磁石を使用する為、一方向(一軸方
向)しか検出できず、あらゆる方向の加速度を検出する
為には上述の永久磁石を多数組み合わせて配設する必要
がある。
Further, in the conventional acceleration sensor, since the cylindrical permanent magnet is used as described above, it is possible to detect only one direction (uniaxial direction), and in order to detect the acceleration in all directions, the above-mentioned permanent magnet is used. It is necessary to arrange a large number of combinations.

【0006】このことは、例えば感知レバーの表面に歪
みゲージを形成した加速度センサの場合でも同様であ
り、この場合歪みゲージに対して垂直方向(感知レバー
に対して垂直方向)の加速度しか検出できないので、こ
の場合もあらゆる方向の加速度を検出する為には上述の
感知レバーを多数組み合わせて構成する必要がある。
This also applies to, for example, an acceleration sensor in which a strain gauge is formed on the surface of a sensing lever, and in this case, only acceleration in the direction perpendicular to the strain gauge (direction perpendicular to the sensing lever) can be detected. Therefore, also in this case, in order to detect the acceleration in any direction, it is necessary to combine a large number of the above-mentioned sensing levers.

【0007】本発明は、上述のような問題に鑑みなされ
たものであり、平衡感覚センサをICチップ化すること
により、加速度及び傾斜の大きさと方向を正確に測定す
ることを可能とした平衡感覚センサを提供することを目
的とする。
The present invention has been made in view of the above problems, and by forming an equilibrium sensor as an IC chip, it is possible to accurately measure the magnitude and direction of acceleration and inclination. It is intended to provide a sensor.

【0008】[0008]

【課題を解決するための手段】磁性流体はシリコンウェ
ハに形成された凹部に収納され、この磁性流体と透磁率
が異なり且つこの磁性流体内を移動可能な気泡や強磁性
体の粒子等を移動体として上記凹部に収納し、加速度等
の変化に対して移動体が磁性流体内を移動可能に構成す
る。そして、上記シリコンウェハに対して酸化膜等の絶
縁膜を介して複数の磁性抵抗素子を形成し、この複数の
磁性抵抗素子を例えば接続部により抵抗ブリッジ回路を
構成するように接続し、加速度等により変化する移動体
の位置を移動体の移動により変化する磁界の変化として
磁性抵抗素子で検出するものである。
A magnetic fluid is accommodated in a recess formed in a silicon wafer, and bubbles or ferromagnetic particles having a magnetic permeability different from that of the magnetic fluid and movable in the magnetic fluid are moved. The movable body is housed in the recess as a body so that the movable body can move in the magnetic fluid in response to changes in acceleration and the like. Then, a plurality of magnetoresistive elements are formed on the silicon wafer through an insulating film such as an oxide film, and the plurality of magnetoresistive elements are connected to form a resistance bridge circuit by, for example, a connecting portion, and acceleration etc. The position of the moving body that changes due to is detected by the magnetoresistive element as a change in the magnetic field that changes due to the movement of the moving body.

【0009】[0009]

【作用】本発明においては、ICチップを構成するシリ
コンウェハに凹部を形成し、この凹部に磁性流体と、該
磁性流体と透磁率が異なる気泡や強磁性体等の移動体と
を収納し、加速度等が加わることにより移動体が磁性流
体の中を移動し、この移動により変化する磁性流体の磁
界を絶縁膜を介して配設された磁性抵抗素子で検知し、
加速度等の方向と大きさを検出するものである。そし
て、本発明の平衡感覚センサはICチップとして形成す
ることにより、上記移動体と磁性抵抗素子との距離を極
めて小さく構成でき、磁束の低下が極めて小さいので緩
やかな加速度や傾斜でも正確に検出することができる。
In the present invention, a concave portion is formed in a silicon wafer forming an IC chip, and a magnetic fluid and a moving body such as a bubble or a ferromagnetic material having a magnetic permeability different from that of the magnetic fluid are accommodated in the concave portion. The moving body moves in the magnetic fluid due to the application of acceleration or the like, and the magnetic field of the magnetic fluid that changes due to this movement is detected by the magnetic resistance element arranged via the insulating film,
The direction and magnitude of acceleration and the like are detected. By forming the balanced sensor of the present invention as an IC chip, the distance between the moving body and the magnetoresistive element can be made extremely small, and the decrease in magnetic flux is extremely small, so that even a gentle acceleration or inclination can be accurately detected. be able to.

【0010】[0010]

【実施例】本発明の一実施例について図面を参照しなが
ら詳述する。図1は、本実施例の平衡感覚センサの全体
構成を示す図である。同図において、平衡感覚センサ1
は、シリコンウェハ2上に酸化雰囲気中で加熱形成した
酸化膜(SiO2)3を有し、この酸化膜(SiO2)3上にニ
ッケル(Ni)、コバルト(Co)、鉄(Fe)等の強磁性体
薄膜4が形成されている。この強磁性体薄膜4は、スパ
ッタリング法又は真空蒸着法により形成され、約300
〜1000Åに形成されている。尚、同図に示すよう
に、強磁性体薄膜4の一部は後述する磁性抵抗素子5を
構成する。そして、上記強磁性体薄膜4(磁性抵抗素子
5の部分を除く)上にはアルミニューム−シリコン(Al
-Si)又はアルミニューム(Al) 6が形成され、さらに磁
性抵抗素子5及びアルミニューム−シリコン(Al-Si)又
はアルミニューム(Al) 6上に保護膜7が形成されてい
る。尚、アルミニューム−シリコン(Al-Si)又はアルミ
ニューム(Al) 6上の保護膜7の部分にはコンタクトホ
ール7a、7bが形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of the balance sensation sensor of this embodiment. In the figure, the balance sensor 1
Has an oxide film (SiO 2 ) 3 formed on a silicon wafer 2 by heating in an oxidizing atmosphere, and nickel (Ni), cobalt (Co), iron (Fe), etc. on the oxide film (SiO 2 ) 3 The ferromagnetic thin film 4 is formed. The ferromagnetic thin film 4 is formed by a sputtering method or a vacuum deposition method, and has a thickness of about 300.
It is formed to ~ 1000Å. As shown in the figure, a part of the ferromagnetic thin film 4 constitutes a magnetoresistive element 5 described later. On the ferromagnetic thin film 4 (excluding the portion of the magnetoresistive element 5), aluminum-silicon (Al
-Si) or aluminum (Al) 6 is formed, and a protective film 7 is further formed on the magnetoresistive element 5 and the aluminum-silicon (Al-Si) or aluminum (Al) 6. Contact holes 7a and 7b are formed in a portion of the protective film 7 on the aluminum-silicon (Al-Si) or the aluminum (Al) 6.

【0011】一方、上記シリコンウェハ2の裏面には、
磁性流体8を封入する為の凹部8’が形成されている。
この凹部8’の形成は、シリコンウェハ2の裏面にウェ
ットエッチングを施すことで形成されている。尚、この
時本実施例のシリコンウェハ2として、単結晶半導体の
ミラー指数が(1、0、0)の面方位を使用すること
で、側面方向に対するエッチング速度に対し下面方向
(図1では上面方向)に対するエッチング速度が速く、
良好な碗状の凹部8’が形成できる。そして、この凹部
8’には磁性流体8、及び気泡9が収納され、下面は所
謂陽極接合によりガラス基板10で封止されている。こ
の磁性流体8は、マグネタイトのような強磁性体を10
0Å程度に微細粉末に加工したコロイド溶液状のもの
で、磁気回路の一部を構成する。また、凹部8’内に封
入する気泡9の大きさは、あまり小さすぎると表面張力
等との関係で磁性流体8内で移動しにくいので、所定の
大きさとする。
On the other hand, on the back surface of the silicon wafer 2,
A recess 8'for enclosing the magnetic fluid 8 is formed.
The recess 8 ′ is formed by performing wet etching on the back surface of the silicon wafer 2. At this time, by using the plane orientation of the single crystal semiconductor having the mirror index of (1, 0, 0) as the silicon wafer 2 of the present embodiment, the lower surface direction (the upper surface in FIG. Direction) is fast,
A good bowl-shaped recess 8'can be formed. The magnetic fluid 8 and the bubbles 9 are stored in the recess 8 ', and the lower surface is sealed with the glass substrate 10 by so-called anodic bonding. The magnetic fluid 8 is made of a ferromagnetic material such as magnetite.
It is a colloidal solution processed into a fine powder of about 0Å and constitutes a part of the magnetic circuit. If the size of the bubble 9 enclosed in the recess 8'is too small, the bubble 9 is difficult to move in the magnetic fluid 8 due to the surface tension and the like.

【0012】尚、ガラス基板10の下面には不図示の磁
石が配設され、磁性流体8等に磁力を付与している。ま
た、磁性流体8と共に封入される移動体は、後述する
が、必ずしも気泡9でなくても良い。
A magnet (not shown) is provided on the lower surface of the glass substrate 10 to apply a magnetic force to the magnetic fluid 8 and the like. Further, the moving body enclosed together with the magnetic fluid 8 is not necessarily the bubble 9 as described later.

【0013】また、上述の構成では図示しないが、強磁
性体薄膜4と磁性抵抗素子5は接続されている。そし
て、不図示の金線等によりコンタクトホール7a、7b
を介してワイヤボンディングされ、磁性抵抗素子5は後
述する抵抗ブリッジ回路を構成している。
Although not shown in the above structure, the ferromagnetic thin film 4 and the magnetoresistive element 5 are connected. Then, contact holes 7a, 7b are formed by gold wires (not shown).
Wire-bonded via the magnetic resistance element 5 to form a resistance bridge circuit described later.

【0014】また、本実施例の平衡感覚センサ1は、同
図に示すように磁性抵抗素子5と気泡9との間には酸化
膜3が形成され、磁性抵抗素子5と気泡9との距離Lは
50μm以下で形成されている。したがって、磁性抵抗
素子5と気泡9との間隔は極めて狭く、磁力の損失がほ
とんど生じない構成である。
In the balance sensation sensor 1 of this embodiment, an oxide film 3 is formed between the magnetic resistance element 5 and the bubble 9 as shown in FIG. L is formed to be 50 μm or less. Therefore, the gap between the magnetoresistive element 5 and the bubble 9 is extremely narrow, and there is almost no loss of magnetic force.

【0015】また、図2は上述の構成の平衡感覚センサ
1の平面図である(尚、上述の図1は図2のA−A断面
図であり、図2では保護膜7は省略して示している)。
上述の磁性抵抗素子5は、図2に示すように具体的には
4個形成され、4個の磁性抵抗素子5a〜5dは気泡9
を中心に、等間隔で形成されている。すなわち、気泡9
を中心に互いに直交するX−Y方向の延長線上に形成さ
れていると共に、定常状態(加速度や傾きの無い状態)
の気泡9の位置に対して等距離に形成されている。但
し、磁性抵抗素子5a〜5dの配設位置は気泡9に対し
て必ずしも等間隔である必要はなく、気泡9に対して所
定の位置でも良い。
FIG. 2 is a plan view of the balance sensation sensor 1 having the above-mentioned structure (note that the above-mentioned FIG. 1 is a sectional view taken along the line AA of FIG. 2, and the protective film 7 is omitted in FIG. 2). Shown).
As shown in FIG. 2, the above-mentioned magnetic resistance elements 5 are specifically formed in four pieces, and the four magnetic resistance elements 5a to 5d are bubbles 9.
Are formed at equal intervals around the center. That is, the bubbles 9
It is formed on an extension line in the XY direction that is orthogonal to each other with respect to the center, and is in a steady state (state without acceleration or inclination)
Are formed equidistant from the position of the bubble 9. However, the magnetic resistance elements 5a to 5d are not necessarily arranged at equal intervals with respect to the bubble 9, and may be provided at predetermined positions with respect to the bubble 9.

【0016】また、図3は磁性抵抗素子5a〜5dを、
不図示の接続線により接続した時の抵抗ブリッジ回路を
示す。同図において、磁性抵抗素子5aと5c、5bと
5dが各々直列回路を構成し、磁性抵抗素子5aと5c
の接続点に端子V1が接続され、磁性抵抗素子5bと5
dの接続点に端子V2が接続されている。この端子V1
及びV2は、例えば本実施例の平衡感覚センサ1が配設
された装置のCPU(中央処理部)に接続され、端子V
1及びV2の電圧値を検出できる構成である。また、磁
性抵抗素子5aと5bの他端は電源に接続され電源電圧
Vが供給されると共に、磁性抵抗素子5cと5dの他端
は接地されている。
Further, FIG. 3 shows the magnetoresistive elements 5a to 5d,
A resistance bridge circuit when connected by a connection line not shown is shown. In the figure, magnetic resistance elements 5a and 5c, 5b and 5d form a series circuit, and magnetic resistance elements 5a and 5c are formed.
The terminal V1 is connected to the connection point of the magnetic resistance elements 5b and 5
The terminal V2 is connected to the connection point of d. This terminal V1
And V2 are connected to, for example, the CPU (central processing unit) of the device in which the equilibrium sensor 1 of the present embodiment is arranged, and terminals V
This is a configuration capable of detecting the voltage values of 1 and V2. Further, the other ends of the magnetic resistance elements 5a and 5b are connected to a power source and supplied with a power supply voltage V, and the other ends of the magnetic resistance elements 5c and 5d are grounded.

【0017】次に、上述の構成の平衡感覚センサ1を、
ある装置に取り付け加速度を測定する場合について説明
する。加速度が全く加えられず、且つ装置が水平な場所
に配設されている時、平衡感覚センサ1内の気泡9は磁
性流体8の中心位置(定常位置)に位置する。しかし、
装置が可動することで加速度が加わると、定常位置に存
在した気泡9は加速度の方向と逆方向へ移動する。例え
ば、図4の(a)に示すように矢印X方向に加速度を受
けると、磁性流体8の中心に位置した気泡9は加速度の
方向と逆方向(矢印X’方向)へ移動し、磁性抵抗素子
5bに近ずく。そして、その移動距離Pは、平衡感覚セ
ンサ1(装置)に加わる加速度の大きさに比例し、磁性
抵抗素子5bを通過する磁束は加速度の大きさに比例し
て減少する。したがって、磁性抵抗素子5bの抵抗値は
低下し(例えば−ΔR)、同図の(b)に示す如く、端
子V2の電位は上昇する。この端子V2の電圧上昇は、
平衡感覚センサ1に加わる加速度が大きければ大きいほ
ど、気泡9が磁性抵抗5bに近ずく為磁性抵抗5bの抵
抗値が下がり、端子V2の電圧は高くなる。
Next, the balance sensation sensor 1 having the above structure is
A case where the device is attached to a device and the acceleration is measured will be described. When no acceleration is applied and the device is arranged in a horizontal position, the bubble 9 in the equilibrium sensor 1 is located at the center position (steady position) of the magnetic fluid 8. But,
When acceleration is applied by moving the device, the bubbles 9 existing at the steady position move in the direction opposite to the acceleration direction. For example, as shown in (a) of FIG. 4, when an acceleration is applied in the direction of arrow X, the bubble 9 located at the center of the magnetic fluid 8 moves in the direction opposite to the direction of acceleration (direction of arrow X '), and the magnetic resistance is increased. Approach the element 5b. The moving distance P is proportional to the magnitude of the acceleration applied to the balance sensation sensor 1 (device), and the magnetic flux passing through the magnetoresistive element 5b decreases in proportion to the magnitude of the acceleration. Therefore, the resistance value of the magnetic resistance element 5b decreases (for example, -ΔR), and the potential of the terminal V2 increases as shown in (b) of the same figure. The voltage rise at this terminal V2 is
As the acceleration applied to the equilibrium sensor 1 increases, the resistance value of the magnetic resistance 5b decreases and the voltage of the terminal V2 increases because the bubble 9 approaches the magnetic resistance 5b.

【0018】一方、上述とは逆に、図5の(a)に示す
ように矢印X’方向に加速度を受けると、気泡9は加速
度の方向と逆方向(矢印X方向)へ移動する。そして、
その移動距離P’も、加速度の大きさに比例し、磁性抵
抗素子5dを通過する磁束は減少し、磁性抵抗素子5c
の抵抗値が小さくなる(図5の(b)、−ΔR)。この
為、端子V1の電圧は低下し、平衡感覚センサ1に加わ
る加速度が大きければ大きいほど、気泡9が磁性抵抗素
子5cに近ずくので、この端子V1の電圧低下は大き
い。
On the other hand, contrary to the above, when the acceleration is applied in the direction of the arrow X'as shown in FIG. 5A, the bubble 9 moves in the direction opposite to the direction of the acceleration (direction of the arrow X). And
The moving distance P ′ is also proportional to the magnitude of the acceleration, the magnetic flux passing through the magnetic resistance element 5d decreases, and the magnetic resistance element 5c
Resistance value becomes small ((b) of FIG. 5, -ΔR). Therefore, the voltage at the terminal V1 decreases, and as the acceleration applied to the equilibrium sensation sensor 1 increases, the bubble 9 approaches the magnetoresistive element 5c, and the voltage decrease at the terminal V1 increases.

【0019】また、図6の(a)に示すように矢印Y方
向、又は矢印Y’方向に加速度を受ける場合も同様であ
り、矢印Y’方向に加速度を受けた場合、気泡9が矢印
Y方向に移動するので磁性抵抗素子5dの抵抗値が例え
ばΔR低下し、端子V2の電圧は低下する。逆に、矢印
Y方向に加速度を受ける場合、気泡9が矢印Y’方向に
移動するので磁性抵抗5aの抵抗値がΔR低下し、端子
V1の電圧は上昇する。
The same applies to the case where acceleration is applied in the arrow Y direction or the arrow Y'direction as shown in FIG. 6 (a). Since the magnetic resistance element 5d moves in the direction, the resistance value of the magnetoresistive element 5d decreases by ΔR, and the voltage of the terminal V2 decreases. On the contrary, when the acceleration is applied in the direction of the arrow Y, the bubble 9 moves in the direction of the arrow Y ', so that the resistance value of the magnetic resistance 5a is decreased by ΔR and the voltage of the terminal V1 is increased.

【0020】したがって、以上から図4に示す如く端子
V2の電位が高い時矢印X方向に加速度を受け、図5に
示す如く端子V1の電位が低い時矢印X’方向に加速度
を受け、図6に示す如く端子V2の電圧が低い時矢印Y
方向に加速度を受け、同図に示す如く端子V1の電圧が
高い時矢印Y’方向に加速度を受けていることが判る。
すなわち、端子V1及びV2の出力電圧をCPU等へ出
力し、その電圧値の変化を不図示の微分回路で微分する
ことにより、加速度の方向とその大きさを知ることがで
きる。そして、検出する電圧が大きい時当該方向への加
速度が大きく、またその大きさも予め端子V1、端子V
2に現れる電圧値と加速度の大きさの関係を計測し、そ
の微分値をメモリ等に記憶しておくことにより、容易に
判断できる。
Therefore, as shown in FIG. 4, when the potential of the terminal V2 is high, acceleration is exerted in the direction of arrow X, and when the potential of the terminal V1 is low, acceleration is exerted in the direction of arrow X'as shown in FIG. When the voltage of the terminal V2 is low, as shown in arrow Y
It can be seen that acceleration is applied in the direction Y, and when the voltage at the terminal V1 is high as shown in the figure, the acceleration is applied in the direction of the arrow Y '.
That is, the direction of acceleration and its magnitude can be known by outputting the output voltages of the terminals V1 and V2 to a CPU or the like and differentiating the change in the voltage value by a differentiating circuit (not shown). When the voltage to be detected is large, the acceleration in that direction is large, and the magnitude thereof is also the terminal V1 and the terminal V in advance.
The relationship between the voltage value appearing at 2 and the magnitude of acceleration is measured, and the differential value thereof is stored in a memory or the like, so that it can be easily determined.

【0021】尚、本実施例では5a〜5dの4個の磁性
抵抗素子を配設し、4方向に対する加速度の測定を可能
としたが、気泡9を中心に8個の磁性抵抗素子5を配置
すれば、さらに加速度の検出方向が増加し、所謂分解能
を向上させることができる。
In this embodiment, four magnetic resistance elements 5a to 5d are arranged to measure the acceleration in four directions. However, eight magnetic resistance elements 5 are arranged around the bubble 9. If so, the detection direction of acceleration is further increased, and so-called resolution can be improved.

【0022】また、上述の実施例では、平衡感覚センサ
1を加速度の測定に適用した例について説明したが、物
体の傾き等の測定に適用できることは勿論である。ま
た、シリコンウェハ2等の基体に形成される凹部は、碗
状凹部に限らず円錐状の凹部等でも良い。また、本実施
例では基体としてシリコンウェハを使用した例について
説明したが、シリコンウェハに限らず基体に数十μm〜
数百μm以上の凹部の形成が可能であれば金属や樹脂、
ガラス等でも基体として使用することができる。
Further, in the above-described embodiment, the example in which the balance sensation sensor 1 is applied to the measurement of acceleration has been described, but it goes without saying that it can be applied to the measurement of the inclination of an object. Further, the concave portion formed in the substrate such as the silicon wafer 2 is not limited to the bowl-shaped concave portion, but may be a conical concave portion or the like. In addition, although an example in which a silicon wafer is used as a substrate has been described in the present embodiment, the substrate is not limited to a silicon wafer, and a substrate having a thickness of several tens of μm to
If it is possible to form a recess of several hundred μm or more, metal or resin,
Glass or the like can also be used as the substrate.

【0023】さらに、本実施例では気泡9(空気)を磁
性流体8に収納したが、気泡9に限らず非磁性体であれ
ば良い。また、磁性体であっても磁性流体8と透磁率の
異なる、例えば強磁性体であっても良い。但し、この場
合には、加速度等による強磁性体の移動によって磁性抵
抗素子5a〜5dの抵抗値は上述の説明とは逆になる。
Further, although the bubble 9 (air) is contained in the magnetic fluid 8 in this embodiment, it is not limited to the bubble 9 and may be any non-magnetic material. Further, it may be a magnetic substance or a ferromagnetic substance having a magnetic permeability different from that of the magnetic fluid 8, for example. However, in this case, the resistance value of the magnetoresistive elements 5a to 5d is opposite to the above description due to the movement of the ferromagnetic body due to acceleration or the like.

【0024】また、本実施例の平衡感覚センサ1は通常
の半導体製造プロセスにより形成できるので、当該セン
サと同時にセンサからの出力信号を増幅する為のアンプ
も形成することができ、アンプ等の集積回路を含めた1
チップ化が可能となる。
Further, since the balanced sensation sensor 1 of this embodiment can be formed by a normal semiconductor manufacturing process, an amplifier for amplifying an output signal from the sensor can be formed at the same time as the sensor, and an integrated amplifier or the like can be formed. 1 including the circuit
Chips are possible.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明によ
れば平衡感覚センサをICチップに形成したので、加速
度や傾斜の検知を行う例えば気泡や強磁性体と磁性抵抗
素子との間隔を数十μmオーダに形成でき、距離の二乗
に反比例して低下する磁界の強さを低下されることなく
磁性抵抗素子で検出することができる。したがって、緩
やかに変化する加速度や物体の傾きであっても正確に測
定することができる。
As described in detail above, according to the present invention, since the equilibrium sensor is formed on the IC chip, the gap between the magnetoresistive element and the bubble or the ferromagnetic material for detecting the acceleration and the inclination is detected. It can be formed in the order of several tens of μm, and the strength of the magnetic field that decreases in inverse proportion to the square of the distance can be detected by the magnetoresistive element without being decreased. Therefore, it is possible to accurately measure even the gradually changing acceleration and the inclination of the object.

【0026】また、半導体(ICチップ)の製造工程に
より、容易に多数の磁性抵抗素子を酸化膜上に形成で
き、あらゆる方向の加速度等を検出できる平衡感覚セン
サを簡単に作成できる。
Further, a large number of magnetoresistive elements can be easily formed on the oxide film by the manufacturing process of the semiconductor (IC chip), and a balance sensation sensor capable of detecting acceleration in all directions can be easily produced.

【0027】さらに、本実施例の平衡感覚センサ1は通
常の半導体製造プロセスにより作成できるので、平衡感
覚センサにアンプ等の集積回路を含めた1チップICの
製造が可能となる。
Further, since the balance sensation sensor 1 of this embodiment can be manufactured by a normal semiconductor manufacturing process, it becomes possible to manufacture a one-chip IC including an integrated circuit such as an amplifier in the balance sensation sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の平衡感覚センサの断面図である。FIG. 1 is a sectional view of a balance sensation sensor according to an embodiment.

【図2】一実施例の平衡感覚センサの平面図である。FIG. 2 is a plan view of the balance sensation sensor according to the embodiment.

【図3】磁性抵抗素子の回路ブロック図である。FIG. 3 is a circuit block diagram of a magnetic resistance element.

【図4】(a)は矢印X方向へ加速度を受けた時の平衡
感覚センサの状態を説明する構成図、(b)は矢印X方
向へ加速度を受けた時の磁性抵抗素子の回路状態を説明
する図である。
4A is a configuration diagram illustrating a state of a balance sensation sensor when an acceleration is applied in an arrow X direction, and FIG. 4B is a circuit state of a magnetoresistive element when an acceleration is applied in an arrow X direction. It is a figure explaining.

【図5】(a)は矢印X’方向へ加速度を受けた時の平
衡感覚センサの状態を説明する構成図、(b)は矢印
X’方向へ加速度を受けた時の磁性抵抗素子の回路状態
を説明する図である。
5A is a configuration diagram illustrating a state of a balance sensation sensor when an acceleration is applied in an arrow X ′ direction, and FIG. 5B is a circuit of a magnetoresistive element when an acceleration is applied in an arrow X ′ direction. It is a figure explaining a state.

【図6】(a)は矢印Y、又はY’方向へ加速度を受け
た時の平衡感覚センサの状態を説明する構成図、(b)
は矢印Y、又はY’方向へ加速度を受けた時の磁性抵抗
素子の回路状態を説明する図である。
FIG. 6A is a configuration diagram illustrating a state of the balance sensation sensor when an acceleration is applied in the arrow Y or Y ′ direction, and FIG.
FIG. 6 is a diagram illustrating a circuit state of a magnetoresistive element when an acceleration is applied in the direction of arrow Y or Y ′.

【符号の説明】[Explanation of symbols]

1 平衡感覚センサ 2 シリコンウェハ 3 酸化膜(SiO2) 4 強磁性体薄膜 5 磁性抵抗素子 5a〜5d 磁性抵抗素子 6 アルミニューム−シリコン(Al-Si)、又はアルミニ
ューム(Al) 7 保護膜 8 磁性流体 8’凹部 9 気泡 10 ガラス基板
1 Balance sensor 2 Silicon wafer 3 Oxide film (SiO 2 ) 4 Ferromagnetic thin film 5 Magnetoresistive element 5a to 5d Magnetoresistive element 6 Aluminum-silicon (Al-Si) or Aluminum (Al) 7 Protective film 8 Magnetic fluid 8'Concave 9 Bubble 10 Glass substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基体に形成された凹部に収納された磁性
流体と、該磁性流体と透磁率が異なり、該磁性流体内を
移動可能な移動体と、 前記基体に対して絶縁膜を介して形成された複数の磁性
抵抗素子と、 該複数の磁性抵抗素子を接続する接続部とを有し、 前記磁性抵抗素子は、前記移動体の定常位置に対して所
定の位置に形成されていることを特徴とする平衡感覚セ
ンサ。
1. A magnetic fluid housed in a recess formed in a base body, a movable body having a magnetic permeability different from that of the magnetic fluid and movable in the magnetic fluid, and an insulating film with respect to the base body. A plurality of magnetic resistance elements formed, and a connecting portion for connecting the plurality of magnetic resistance elements, wherein the magnetic resistance element is formed at a predetermined position with respect to a stationary position of the moving body. Balance sensor that is characterized by.
【請求項2】 前記基体は、シリコンウェハであること
を特徴とする請求項1記載の平衡感覚センサ。
2. The equilibrium sensor according to claim 1, wherein the substrate is a silicon wafer.
JP5020234A 1993-02-08 1993-02-08 Sense of equilibrium sensor Withdrawn JPH06229788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5020234A JPH06229788A (en) 1993-02-08 1993-02-08 Sense of equilibrium sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5020234A JPH06229788A (en) 1993-02-08 1993-02-08 Sense of equilibrium sensor

Publications (1)

Publication Number Publication Date
JPH06229788A true JPH06229788A (en) 1994-08-19

Family

ID=12021501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5020234A Withdrawn JPH06229788A (en) 1993-02-08 1993-02-08 Sense of equilibrium sensor

Country Status (1)

Country Link
JP (1) JPH06229788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848257A1 (en) * 1996-12-03 1998-06-17 Oki Electric Industry Co., Ltd. Shock or acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848257A1 (en) * 1996-12-03 1998-06-17 Oki Electric Industry Co., Ltd. Shock or acceleration sensor
US5970794A (en) * 1996-12-03 1999-10-26 Oki Electric Industry Co., Ltd. Shock sensor

Similar Documents

Publication Publication Date Title
EP2827165B1 (en) Magnetoresistance magnetic field gradient sensor
JP6438959B2 (en) Single chip Z-axis linear magnetoresistive sensor
CA2083008C (en) Magnetic field sensing device
EP3124989B1 (en) A monolithic three-axis magnetic field sensor and manufacturing method therefor
EP0286079B1 (en) Sensing devices utilizing magneto electric transducers
EP2818884B1 (en) Magneto-resistive sensor for measuring magnetic field
EP2682771B1 (en) Push-pull bridge magnetoresistance sensor
US11513141B2 (en) Current sensor having a flux concentrator for redirecting a magnetic field through two magnetic field sensing elements
EP2682772A1 (en) Individually packaged magnetoresistance angle sensor
US20130134970A1 (en) Integrated Magnetometer and its Manufacturing Process
CN109142784B (en) Differential mass block type tunnel magnetoresistive accelerometer device based on lever mechanism
EP3199965B1 (en) Magnetic sensor
JP2000514920A (en) Thin layer magnetic field sensor
US20130127454A1 (en) Magnetic field sensor including an anisotropic magnetoresistive magnetic sensor and a hall magnetic sensor
JPH0888423A (en) Magnetic sensor
CN113341354A (en) Three-axis magnetic resistance magnetic field sensor and manufacturing method thereof
US10497859B2 (en) Two-dimensional magnetic field sensor with a single integrated magnetic field concentrator
JPH06229788A (en) Sense of equilibrium sensor
US5589634A (en) Semiconductor acceleration sensor for detecting acceleration in orthogonal directions
Schott et al. Microsystem for high-accuracy 3-D magnetic-field measurements
JPH05142246A (en) Acceleration sensor
JPH01287470A (en) Semiconductor acceleration sensor
JP3961265B2 (en) Magnetic sensor
JP2552683B2 (en) Current sensor
KR20020057333A (en) Magnetoesistance-type vibration sensor and a method for sensing vibration using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509