JPH06196884A - High-heat-conductivity composite - Google Patents
High-heat-conductivity compositeInfo
- Publication number
- JPH06196884A JPH06196884A JP4346977A JP34697792A JPH06196884A JP H06196884 A JPH06196884 A JP H06196884A JP 4346977 A JP4346977 A JP 4346977A JP 34697792 A JP34697792 A JP 34697792A JP H06196884 A JPH06196884 A JP H06196884A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- composite
- metal
- thermal conductivity
- filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15312—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16152—Cap comprising a cavity for hosting the device, e.g. U-shaped cap
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高熱伝導性複合体に係
り、特に熱抵抗の軽減効果が大きく発熱体の放熱特性を
大幅に改善することが可能な高熱伝導性複合体に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high thermal conductivity composite body, and more particularly to a high thermal conductivity composite body having a large effect of reducing thermal resistance and capable of greatly improving the heat dissipation characteristics of a heating element.
【0002】[0002]
【従来の技術】従来から放熱シートまたは放熱グリース
などの放熱体を発熱体表面に装着したり塗布したりする
ことによって熱抵抗を低減し、発熱体からの熱の放散を
促進する冷却システムが、半導体部品、電子部品、重電
機器、事務機器およびエネルギ関連部品などの広い分野
で採用されている。2. Description of the Related Art Conventionally, there is a cooling system that reduces heat resistance by mounting or applying a heat dissipation body such as a heat dissipation sheet or heat dissipation grease on the surface of the heat generation body to promote heat dissipation from the heat generation body. It is used in a wide range of fields such as semiconductor parts, electronic parts, heavy electrical equipment, office equipment and energy related parts.
【0003】例えば半導体装置分野においては、図6に
示すようなモジュール構造体1が使用されている。すな
わちモジュール構造体1は、電気絶縁性を有するセラミ
ックス基板2上面に、発熱体となるLSIやパワーIC
等の半導体素子3が搭載され、さらに半導体素子3にて
発生した熱を効率的に放散させるために、半導体素子3
の上面に冷却部品としての放熱フィン4が接合されて構
成される。しかしながら、半導体素子3および放熱フィ
ン4の接合面には微小な凹凸が形成されているため、そ
のまま当接したままでは完全に密着することがなく、介
在する空気層が熱接触抵抗となり、放熱特性が低下して
しまう。そこで放熱フィン4と半導体素子3との接触圧
力を高めたり、両者の接合面に熱伝導性が良好な有機樹
脂接着剤5を充填して伝熱抵抗を低減したりする方策が
とられている。For example, in the field of semiconductor devices, a module structure 1 as shown in FIG. 6 is used. That is, the module structure 1 includes an LSI or a power IC, which is a heating element, on the upper surface of the ceramic substrate 2 having electrical insulation.
The semiconductor element 3 such as a semiconductor element 3 is mounted on the semiconductor element 3 in order to efficiently dissipate heat generated in the semiconductor element 3.
A radiation fin 4 as a cooling component is joined to the upper surface of the. However, since minute irregularities are formed on the joint surface between the semiconductor element 3 and the heat dissipation fin 4, the contact between the semiconductor element 3 and the heat dissipation fin 4 does not result in complete contact, and the intervening air layer serves as a thermal contact resistance, resulting in heat dissipation characteristics. Will decrease. Therefore, measures have been taken to increase the contact pressure between the radiation fin 4 and the semiconductor element 3 or to reduce the heat transfer resistance by filling the joint surface between them with the organic resin adhesive 5 having good thermal conductivity. .
【0004】この樹脂接着剤5を介在させることによ
り、接合面に生じた空隙(凹凸)を埋めることによって
熱接触抵抗を低減し、半導体素子3にて発生した熱6を
放熱フィン4方向に円滑に伝達せしめ、放熱特性の改善
を図っている。By interposing this resin adhesive 5, the voids (irregularities) formed in the joint surface are filled to reduce the thermal contact resistance, and the heat 6 generated in the semiconductor element 3 is smoothly moved toward the radiation fins 4. To improve the heat dissipation characteristics.
【0005】一方、図7に示すようにセラミックス多層
基板7上に半導体素子3を搭載した半導体パッケージ8
をボード9に実装する場合において、半導体素子3にて
発生した熱6をボード9側からも放散させる場合には、
セラミックス多層基板7とボード9との間に、シート状
またはグリース状(ペースト状)の放熱体10を介在さ
せている。On the other hand, as shown in FIG. 7, a semiconductor package 8 in which a semiconductor element 3 is mounted on a ceramic multilayer substrate 7.
In the case of mounting the heat sink 6 on the board 9 and dissipating the heat 6 generated in the semiconductor element 3 from the board 9 side,
A sheet-shaped or grease-shaped (paste-shaped) radiator 10 is interposed between the ceramic multilayer substrate 7 and the board 9.
【0006】ここでシート状の放熱体10の具体例とし
ては、例えばポリエチレン、ポリエステル、ポリプロピ
レン、ポリイミド、シリコンラバーなどの可撓性を有す
る有機系材料中に、窒化ホウ素、酸化ベリリウム、炭化
けい素などの熱伝導性が高い充填材を添加するか、また
は、これらの充填材を上記有機系材料に被覆したものが
使用されている。一方、グリース状の放熱体10の具体
例としては、例えば高熱伝導率を有するペースト状のシ
リコーン樹脂接着剤などが広く使用されている。Here, as a specific example of the sheet-shaped heat radiator 10, for example, boron nitride, beryllium oxide, or silicon carbide is used in a flexible organic material such as polyethylene, polyester, polypropylene, polyimide, or silicon rubber. A filler having a high thermal conductivity such as the above or the organic material is coated with the filler is used. On the other hand, as a specific example of the grease-like radiator 10, for example, a paste-like silicone resin adhesive having a high thermal conductivity is widely used.
【0007】上記のような放熱体10を介在させること
により、セラミックス多層基板7とボード9との密着度
が向上し、伝熱抵抗が低減されボード9側への放熱特性
も改善される。By interposing the heat radiator 10 as described above, the degree of adhesion between the ceramic multilayer substrate 7 and the board 9 is improved, the heat transfer resistance is reduced, and the heat dissipation characteristic to the board 9 side is also improved.
【0008】[0008]
【発明が解決しようとする課題】しかしながら上記のよ
うな従来のシート状放熱体においては、可撓性を有する
有機系材料の熱伝導率が一般に低い一方で熱膨張係数が
比較的に大きい欠点があった。したがって、上記シート
状放熱体を発熱体に被着した場合には、発熱体で発生し
た熱が円滑に系外に放出されなかったり、また放熱体と
発熱体との熱膨張差が大きい場合には、両者間の接着信
頼性が低下してしまう問題点があった。However, in the conventional sheet-shaped radiator as described above, there is a drawback that the organic material having flexibility generally has a low thermal conductivity but a relatively large coefficient of thermal expansion. there were. Therefore, when the sheet-shaped radiator is applied to the heating element, the heat generated in the heating element is not smoothly released to the outside of the system, or when the thermal expansion difference between the radiator and the heating element is large. However, there is a problem in that the adhesion reliability between the two is reduced.
【0009】一方、上記問題点に対処する放熱体として
特に他のセラミックス材料と比較して熱伝導率が高い微
細な窒化アルミニウムなどの無機粒子や金属粒子をフィ
ラーとして有機物マトリックス中に分散させることによ
り複合化し、全体として熱伝導率が高く、柔軟性にも優
れた放熱用複合体も提案されていた。On the other hand, as a heat radiator for dealing with the above problems, fine inorganic particles such as aluminum nitride or metal particles having high thermal conductivity as compared with other ceramic materials are dispersed as fillers in an organic matrix. There has also been proposed a composite for heat dissipation, which is composited, has a high thermal conductivity as a whole, and is excellent in flexibility.
【0010】しかしながら、上記放熱用複合体のように
微細な窒化アルミニウム原料粉末などの無機粒子や金属
粒子のみを樹脂などの有機物マトリックス中に混入させ
て調製した放熱用複合体では、無機粒子相互は不連続に
分散した状態にあり、無機粒子間には熱伝導性が低い有
機マトリックスが介在する構造となるため、放熱用複合
体全体の熱伝導率が上昇しにくい欠点があり、半導体素
子などの発熱部品からの排熱が滞り易く、冷却効率が向
上しにくい問題点があった。However, in the heat dissipation composite prepared by mixing only the inorganic particles such as fine aluminum nitride raw material powder or the metal particles into the organic matrix such as the resin as in the above heat dissipation composite, the inorganic particles do not interact with each other. Since it has a structure in which the organic matrix having low thermal conductivity is interposed between the inorganic particles in a discontinuously dispersed state, there is a drawback that the thermal conductivity of the entire heat dissipation composite is unlikely to increase, such as in semiconductor devices. There is a problem in that the exhaust heat from the heat-generating component is likely to be stagnant and the cooling efficiency is difficult to improve.
【0011】一方、近年の半導体製造技術の進歩によっ
て、半導体素子の高集積化や高速化および大電力化が急
速に進行している。このような半導体素子の大電力化や
高集積化等に伴って、半導体素子からの発熱量はさらに
増大化する傾向にあるため、半導体素子の放熱性をより
高める高熱伝導性複合体の開発が希求されている。On the other hand, due to recent advances in semiconductor manufacturing technology, high integration, high speed, and high power consumption of semiconductor elements are rapidly progressing. Since the amount of heat generated from a semiconductor element tends to further increase with the increase in power and high integration of such a semiconductor element, development of a high thermal conductive composite body that further enhances the heat dissipation of the semiconductor element has been pursued. It is sought after.
【0012】本発明は上記の課題および要請に対応すべ
く発案されたものであり、発熱体と冷却部品との熱接触
抵抗を低減し、発熱体の放熱特性をより向上させること
が可能な高熱伝導性複合体を提供することを目的とす
る。The present invention has been devised in order to meet the above-mentioned problems and requirements, and it is possible to reduce the thermal contact resistance between the heating element and the cooling component and to further improve the heat dissipation characteristics of the heating element. The purpose is to provide a conductive composite.
【0013】[0013]
【課題を解決するための手段】本発明者らは、上記目的
を達成するため、種々のマトリックス材料に各種無機組
成物および金属粒子などのフィラーを添加して放熱用複
合体を形成し、その放熱特性を比較評価した。その結
果、マトリックス樹脂中にフィラーを分散させるととも
に、マトリックス構成成分を変質分解しない温度であり
マトリックス樹脂の硬化温度より低い温度において液化
するような金属でマトリックス樹脂の一部を置き換え、
この金属によって上記フィラーが相互に連続的に溶着さ
れるようにフィラー間に架橋構造を形成して複合体を形
成したところ、複合体全体としての熱伝導率が高く、放
熱特性が優れた高熱伝導性複合体を得ることができた。
本発明は上記知見に基いて完成されたものである。In order to achieve the above object, the present inventors have added various inorganic compositions and fillers such as metal particles to various matrix materials to form a heat-radiating composite. The heat dissipation characteristics were compared and evaluated. As a result, while the filler is dispersed in the matrix resin, a part of the matrix resin is replaced with a metal that is liquefied at a temperature that does not deteriorate and decompose the matrix constituent components and is lower than the curing temperature of the matrix resin,
When a composite was formed by forming a cross-linking structure between the fillers so that the fillers were continuously welded to each other by this metal, the thermal conductivity of the composite as a whole was high, and the high thermal conductivity with excellent heat dissipation characteristics. A sex complex could be obtained.
The present invention has been completed based on the above findings.
【0014】すなわち本発明に係る高熱伝導性複合体
は、マトリックス樹脂中にフィラーが分散するととも
に、融点が500℃以下の低融点金属または共晶合金に
よって網目状に形成された金属網を介して上記フィラー
が相互に連続的に溶着されてなることを特徴とする。That is, in the high thermal conductivity composite according to the present invention, the filler is dispersed in the matrix resin, and the low melting point metal or eutectic alloy having a melting point of 500 ° C. or less is used to form a mesh-like metal network. The above-mentioned fillers are continuously welded to each other.
【0015】またマトリックス樹脂中に分散されるフィ
ラーが金属網を構成する金属より高い融点を有する金属
粒子および無機粒子の少なくとも一方で構成するとよ
い。The filler dispersed in the matrix resin may be composed of at least one of metal particles and inorganic particles having a melting point higher than that of the metal forming the metal network.
【0016】さらに無機粒子の熱伝導率が10W/m・
Kて以上であるものを使用する。Furthermore, the thermal conductivity of the inorganic particles is 10 W / m.
Use one that is K or above.
【0017】またフィラーとして、例えば窒化アルミニ
ウム焼結体粉末または窒化アルミニウム単結晶体粉末な
どを用いる場合、平均粒径はマトリックス中への分散を
良好にするため、30μm以下に設定するとよい。When, for example, an aluminum nitride sintered body powder or an aluminum nitride single crystal body powder is used as the filler, the average particle size is preferably set to 30 μm or less in order to improve the dispersion in the matrix.
【0018】上記複合体のマトリックスを構成する樹脂
材料としては、ポリ塩化ビニル樹脂、ポリエチレン、ポ
リプロピレン、ポリスチレン、ABS樹脂、アクリル樹
脂、ポリウレタンなどの柔軟性(可撓性)を有する高分
子樹脂が好適である。As the resin material constituting the matrix of the above composite, a polymer resin having flexibility such as polyvinyl chloride resin, polyethylene, polypropylene, polystyrene, ABS resin, acrylic resin and polyurethane is preferable. Is.
【0019】また上記マトリックス樹脂中に分散させる
フィラーとしては窒化硼素、窒化アルミニウム、炭化硅
素、窒化硅素などの無機粒子や銅などの金属粒子が用い
られる。これらのフィラーは複合体全体の熱伝導率を向
上させるために複合体容積に対して40〜70容積%の
割合で添加される。添加量が40容積%未満において
は、熱伝導率の改善効果が少ない一方、添加量が70容
積%を超える場合においては、フィラー用粒子を保持固
定するマトリックスの割合が相対的に低下し、複合体の
構造強度が低下してしまう。As the filler dispersed in the matrix resin, inorganic particles such as boron nitride, aluminum nitride, silicon carbide and silicon nitride, and metal particles such as copper are used. These fillers are added in a proportion of 40 to 70% by volume with respect to the volume of the composite in order to improve the thermal conductivity of the entire composite. When the added amount is less than 40% by volume, the effect of improving the thermal conductivity is small, while when the added amount exceeds 70% by volume, the ratio of the matrix holding and fixing the filler particles is relatively decreased, and The structural strength of the body is reduced.
【0020】一方マトリックス樹脂中に網目状に形成さ
れた金属網は、マトリックス樹脂中に分散した無機粒子
等のフィラーを相互に溶着せしめ、連続した伝熱経路を
形成することによって複合体全体の熱伝導性を高めるた
めに形成される。この金属網は、後述する製造時におい
てマトリックス樹脂の分解変質または硬化を防止するた
めに、融点が500℃以下の低融点金属またはそれらの
共晶合金によって形成される。低融点金属の具体例とし
てはSn(融点232℃)、Zn(融点419℃)、P
b(融点238℃)、In(融点156℃)、Cd(融
点321℃)、Te(融点450℃)、Bi (融点27
1℃)などがあるが、Pb,Cdは毒性について難点が
あり、安全性、汎用性、原料コストの観点からSn,Z
nまたはSn−Pb共晶合金などが好ましい。On the other hand, the metal mesh formed in the matrix resin in the form of a mesh has a filler such as inorganic particles dispersed in the matrix resin welded to each other to form a continuous heat transfer path, whereby the heat of the entire composite is improved. It is formed to enhance conductivity. This metal network is formed of a low melting point metal having a melting point of 500 ° C. or less or a eutectic alloy thereof in order to prevent decomposition and alteration or hardening of the matrix resin during the production described later. Specific examples of the low melting point metal include Sn (melting point 232 ° C.), Zn (melting point 419 ° C.), P
b (melting point 238 ° C.), In (melting point 156 ° C.), Cd (melting point 321 ° C.), Te (melting point 450 ° C.), Bi (melting point 27)
1 ° C), but Pb and Cd have difficulty in toxicity, and Sn, Z from the viewpoint of safety, versatility, and raw material cost.
An n or Sn-Pb eutectic alloy or the like is preferable.
【0021】上記金属網形成用金属は原料段階では金属
粉末としてフィラー用粒子とともにマトリックス樹脂中
に添加される。この金属粉末の添加量はフィラー用粒子
に対して容積%で50〜120%の割合で添加される。
添加量が50容積%未満の場合はマトリックス樹脂中に
連続した金属網が形成されにくく、熱伝導率の改善効果
が少なくなる。一方、添加量が120容積%を超える
と、複合体全体の剛性が高まり、可撓性が低下し、発熱
体表面に装着した際の密着度が低下し、いずれにしても
伝熱特性が阻害されてしまう。また、全体の熱伝導率も
低下する。The metal for forming the metal net is added to the matrix resin together with the filler particles as a metal powder at the raw material stage. The amount of the metal powder added is 50 to 120% by volume based on the filler particles.
If the amount added is less than 50% by volume, it is difficult to form a continuous metal network in the matrix resin, and the effect of improving the thermal conductivity decreases. On the other hand, when the amount added exceeds 120% by volume, the rigidity of the entire composite body is increased, the flexibility is reduced, the adhesion when mounted on the surface of the heating element is reduced, and the heat transfer characteristics are impaired in any case. Will be done. In addition, the thermal conductivity of the whole is lowered.
【0022】また上記金属網形成用の金属粉末は、フィ
ラー用粒子の周囲に均一に配置されるようにするため、
その平均粒径はフィラー用粒子より微細にすることが望
ましく、具体的には20μm以下より好ましくは1〜1
0μm程度にすることが望ましい。Further, the metal powder for forming the metal net is arranged in a uniform manner around the particles for filler,
It is desirable that the average particle size be smaller than that of the filler particles, specifically, 20 μm or less, more preferably 1 to 1
It is desirable to set it to about 0 μm.
【0023】本発明の好適な一実施例においては、微細
なAlN原料粉末をそのままマトリックス樹脂中に添加
してもよいが、さらに、AlN原料粉末を一旦成形焼結
して高熱伝導度のAlN焼結体とし、そのAlN焼結体
を改めて粉砕して調製したAlN焼結体粉末をフィラー
として添加することにより、さらに複合体の熱伝導度を
高めることができる。In a preferred embodiment of the present invention, the fine AlN raw material powder may be added to the matrix resin as it is, but the AlN raw material powder is once compacted and sintered to obtain an AlN sintered body having a high thermal conductivity. The thermal conductivity of the composite can be further increased by adding the AlN sintered powder prepared by crushing the AlN sintered body again as a filler to the composite.
【0024】すなわち本願発明者らの実験測定によれ
ば、平均粒径0.5〜1μmのAlN原料粉末自体はそ
のままでは30〜40W/m・K程度と低い熱伝導率し
か保持せず、このAlN原料粉末をそのままアクリル樹
脂中に分散せしめて複合体を調製した場合、複合体の熱
伝導率は1.0〜2.0W/m・Kと低い値しか取り得
ない。That is, according to the experimental measurement by the inventors of the present application, the AlN raw material powder itself having an average particle size of 0.5 to 1 μm itself retains a low thermal conductivity of about 30 to 40 W / m · K. When an AlN raw material powder is directly dispersed in an acrylic resin to prepare a composite, the thermal conductivity of the composite can be as low as 1.0 to 2.0 W / m · K.
【0025】しかるに本願発明のように、AlN原料粉
末を一旦焼結すると、120〜260W/m・K程度の
極めて高い熱伝導率を保持するようになる。However, once the AlN raw material powder is once sintered as in the present invention, an extremely high thermal conductivity of about 120 to 260 W / m · K is maintained.
【0026】放熱用複合体の構成材料となる上記窒化ア
ルミニウム焼結体は、本質的に高熱伝導性を備える材料
であるが、その原料材質や焼結条件、熱処理条件によっ
て種々の熱伝導率を有するものが得られるため、複合体
の要求特性から一般に150W/m・K以上、好ましく
は170W/m・K以上の高熱伝導率を有するAlN焼
結体を使用することが望ましい。The above-mentioned aluminum nitride sintered body, which is a constituent material of the heat dissipation composite, is essentially a material having high thermal conductivity, but various thermal conductivities can be obtained depending on its raw material, sintering conditions and heat treatment conditions. From the characteristics required of the composite, it is desirable to use an AlN sintered body having a high thermal conductivity of generally 150 W / m · K or more, preferably 170 W / m · K or more, since the one having the above can be obtained.
【0027】上記のようなAlN焼結体は通常下記のよ
うな手順で製造される。すなわち、平均粒径0.1〜5
μm程度の窒化アルミニウム原料粉末に、焼結助剤とし
て周期律表のIIa 族あるいはIIIa族元素の化合物を0.
1〜5重量%添加した混合粉末を成形し、得られた成形
体を、N2 ガスまたはアルゴンガスなどの非酸化性雰囲
気中で温度1600〜1950℃で2〜10時間焼結し
て製造される。The AlN sintered body as described above is usually manufactured by the following procedure. That is, the average particle size is 0.1 to 5
A compound of Group IIa or Group IIIa of the Periodic Table is added to an aluminum nitride raw material powder of about .mu.m as a sintering aid.
1 to 5% by weight of the mixed powder is molded, and the obtained molded body is sintered at a temperature of 1600 to 1950 ° C. for 2 to 10 hours in a non-oxidizing atmosphere such as N 2 gas or argon gas. It
【0028】このようにして得られたAlN焼結体には
原料粉末中に混入していた不純物の酸素等によって形成
された酸化物粒界相が残っており、この粒界相が熱伝導
の妨げになっていると考えられる。In the AlN sintered body thus obtained, there remains an oxide grain boundary phase formed by impurities such as oxygen mixed in the raw material powder, and this grain boundary phase has a thermal conductivity. It seems to be an obstacle.
【0029】そこでAlN焼結体の熱伝導率をさらに向
上させるために、さらにカーボン蒸気や窒素ガスを含む
還元雰囲気中で温度1800〜1900℃で2〜100
Hr程度熱処理することにより、AlN焼結体の高純度
化が図られる。すなわち粒界相を構成していたAl5 Y
3 O12等の酸化物は、カーボンと窒素とが共存している
雰囲気中で高温で還元窒化されAlNになる一方、酸素
はカーボンと結合して焼結体外に放出される。その結
果、AlN焼結体組織から熱伝導を阻害する粒界相の酸
化物が除去され200〜260W/m・K程度の高熱伝
導率を有するAlN焼結体が得られる。Therefore, in order to further improve the thermal conductivity of the AlN sintered body, a temperature of 1800 to 1900 ° C. is 2 to 100 in a reducing atmosphere further containing carbon vapor and nitrogen gas.
By performing the heat treatment for about Hr, the AlN sintered body can be highly purified. That is, Al 5 Y that constituted the grain boundary phase
Oxides such as 3 O 12 are reduced and nitrided to AlN at a high temperature in an atmosphere in which carbon and nitrogen coexist, while oxygen is combined with carbon and released outside the sintered body. As a result, the oxide of the grain boundary phase that inhibits heat conduction is removed from the AlN sintered body structure, and an AlN sintered body having a high thermal conductivity of about 200 to 260 W / m · K is obtained.
【0030】こうして得られたAlN焼結体は通常のボ
ールミル、アトライタまたは振動ミル等の混合粉砕機を
使用し、乾式粉砕法または湿式粉砕法または双方を組み
合せた粉砕工程において所定粒径となるように粉砕され
る。粉砕されたAlN焼結体は分級しておく。The AlN sintered body thus obtained has a predetermined particle size in a dry pulverizing method, a wet pulverizing method or a pulverizing step in which both are combined by using an ordinary mixing mill such as a ball mill, an attritor or a vibration mill. Is crushed into. The crushed AlN sintered body is classified.
【0031】樹脂マトリックス中に分散させる窒化アル
ミニウム焼結体粉末などのフィラーの平均粒径は、マト
リックス樹脂中への分散を良好にするために、30μm
以下に設定するとよい。平均粒径が30μmを超えるよ
うに粗大になると、粒子表面の凹凸が大きくなって伝熱
抵抗となる空気層が形成され易くなるためである。The average particle size of the filler such as the aluminum nitride sintered body powder dispersed in the resin matrix is 30 μm in order to improve the dispersion in the matrix resin.
Set the following. This is because if the average particle size becomes coarse so as to exceed 30 μm, the unevenness of the particle surface becomes large and an air layer that becomes a heat transfer resistance is easily formed.
【0032】AlN焼結体の粉砕後の平均粒径は10〜
15μmの範囲に設定することがより好ましい。The average particle size of the AlN sintered body after pulverization is 10 to 10.
It is more preferable to set in the range of 15 μm.
【0033】また上記のように粉砕して得られた窒化ア
ルミニウム焼結体粉末などのフィラーのマトリックス樹
脂に対する濡れ性を改善し、分散性を高める目的で、フ
ィラー用粒子をマトリックス樹脂中に混合する前に、予
め表面改質処理を施すことが望ましい。表面改質処理の
具体例としては、粉砕して得た窒化アルミニウム焼結体
粉末などのフィラーに対して0.1〜1重量%のカップ
リング剤等を滴下し、充分に混合しておく。カップリン
グ剤は各フィラー粒子表面に薄い被膜層(コーティング
層)を形成し、フィラー粒子の樹脂に対する濡れ性を著
しく向上させる。その結果、マトリックス樹脂中にフィ
ラー粒子が均一に分散した複合体組織が得られる。Further, for the purpose of improving the wettability of the filler such as the aluminum nitride sintered body powder obtained by pulverizing as described above with respect to the matrix resin and enhancing the dispersibility, filler particles are mixed in the matrix resin. Before that, it is desirable to carry out a surface modification treatment in advance. As a specific example of the surface modification treatment, 0.1 to 1% by weight of a coupling agent or the like is dropped into a filler such as an aluminum nitride sintered body powder obtained by pulverization and sufficiently mixed. The coupling agent forms a thin coating layer (coating layer) on the surface of each filler particle, and remarkably improves the wettability of the filler particle with the resin. As a result, a composite structure in which the filler particles are uniformly dispersed in the matrix resin can be obtained.
【0034】そして本発明に係る高熱伝導性複合体は、
上記AlN焼結体粉末のフィラーの体積分率が40〜7
0%となるように高分子樹脂粉末を配合し、さらに金属
網形成用の低融点金属粉末またはその共晶合金粉末をフ
ィラー用粒子に対して容積%で50〜120%混練配合
して、さらに有機バインダ等を添加して原料混合体を調
製し、しかる後に原料混合体をプレス成形法、ドクター
ブレード法、射出成形法、押出し成形法またはロール成
形法を使用して所定形状に成形し、しかる後に成形体中
の有機樹脂成分が変質あるいは分解しない程度の温度範
囲(200〜450℃)に成形体全体を昇温して1〜5
時間保持し、その後、常温まで徐冷して製造される。The high thermal conductivity composite body according to the present invention comprises
The volume fraction of the filler of the AlN sintered body powder is 40 to 7
The polymer resin powder is blended so as to be 0%, and the low melting point metal powder for forming the metal net or the eutectic alloy powder thereof is kneaded and blended by 50 to 120% by volume with respect to the filler particles. A raw material mixture is prepared by adding an organic binder and the like, and then the raw material mixture is molded into a predetermined shape by using a press molding method, a doctor blade method, an injection molding method, an extrusion molding method or a roll molding method. After that, the temperature of the entire molded body is raised to a temperature range (200 to 450 ° C.) at which the organic resin component in the molded body is not altered or decomposed, and the temperature is increased to 1 to 5
It is held for a time and then slowly cooled to room temperature to manufacture.
【0035】すなわち、上記成形体の熱処理過程におい
て低融点金属粉末または共晶合金粉末は、溶融して液状
になり、有機樹脂マトリックス中に分散するフィラー間
を繋ぐように網目状の架橋構造を形成する。この架橋構
造が形成された成形体を冷却すると、架橋構造を保持し
たままの形で液状金属が凝固する。その結果、マトリッ
クス樹脂中に分散したフィラー粒子が網目状の金属網を
介して連続的に溶着した複合体組織が得られる。That is, in the heat treatment process of the above-mentioned molded body, the low melting point metal powder or the eutectic alloy powder is melted into a liquid state and forms a network-like crosslinked structure so as to connect the fillers dispersed in the organic resin matrix. To do. When the molded body in which the crosslinked structure is formed is cooled, the liquid metal solidifies while maintaining the crosslinked structure. As a result, a composite structure is obtained in which the filler particles dispersed in the matrix resin are continuously welded through the mesh-shaped metal network.
【0036】このように有機樹脂マトリックス中に分散
したフィラー間が金属網によって連結された構造を有す
る複合体においては、複合体の表面から裏面方向に高熱
伝導率を有する金属網とフィラーとにより連続した放熱
経路が形成さるため、複合体全体の熱伝導率が大幅に上
昇する。すなわち複合体の一方の表面部分に付与された
熱は連続した金属網を介してフィラーからフィラーへと
効率良く伝達される。このとき、放熱経路は低熱伝導率
を有するマトリックス樹脂の影響を殆ど受けることがな
い。一方で樹脂体および金属網は可撓性に優れているた
め、放熱面に対する密着性が損われることも少ない。し
たがって、熱伝導性能に優れた複合体が得られる。In the composite having the structure in which the fillers dispersed in the organic resin matrix are connected by the metal net as described above, the metal net having a high thermal conductivity and the filler are continuous from the front surface to the back surface of the composite. Since the heat dissipation path is formed, the thermal conductivity of the entire composite is significantly increased. That is, the heat applied to one surface portion of the composite is efficiently transferred from the filler to the filler through the continuous metal net. At this time, the heat radiation path is hardly affected by the matrix resin having low thermal conductivity. On the other hand, since the resin body and the metal net are excellent in flexibility, the adhesiveness to the heat radiation surface is less likely to be impaired. Therefore, a composite having excellent thermal conductivity can be obtained.
【0037】[0037]
【作用】上記構成に係る高熱伝導性複合体によれば、樹
脂マトリックス中に分散したフィラー粒子が高熱伝導性
を有する金属網によって連結され、複合体の表裏に亘っ
て連続した放熱経路が形成されているため、従来の放熱
体と比較して熱伝導率が非常に大きく、柔軟性も優れて
いる。したがって、発熱体と冷却部品との接合面に介在
させた場合に両者の密着度を損うことなく、両者間の熱
抵抗を大幅に低減でき、発熱体の放熱特性を大幅に改善
することができる。According to the high thermal conductivity composite having the above structure, the filler particles dispersed in the resin matrix are connected by the metal net having high thermal conductivity to form a continuous heat dissipation path over the front and back of the composite. Therefore, the thermal conductivity is very large and the flexibility is excellent as compared with the conventional radiator. Therefore, when the heating element and the cooling component are interposed on the joint surface, the thermal resistance between them can be significantly reduced without impairing the adhesion between them, and the heat dissipation characteristics of the heating element can be greatly improved. it can.
【0038】[0038]
【実施例】次に本発明の一実施例について添付図面を参
照して説明する。An embodiment of the present invention will now be described with reference to the accompanying drawings.
【0039】実施例1 低融点金属として平均粒径5μmの微細なSn粉末粒子
を、フィラーとなる平均粒径25μmの窒化硼素粉末に
対して90容積%となるように添加し、これにマトリッ
クス樹脂としてのポリ塩化ビニルを複合体全体の20重
量%となるように添加した。さらに可塑剤としてのジブ
チルフタレート(DBP)を複合体全体に対して5重量
%となるように添加して配合粉を調製した。次に配合粉
をニーダーによって3時間混練して可撓性を有する原料
混合体25を得た。 Example 1 As a low melting point metal, fine Sn powder particles having an average particle size of 5 μm were added so as to be 90% by volume with respect to boron nitride powder having an average particle size of 25 μm as a filler, and added to this matrix resin. Polyvinyl chloride was added so as to be 20% by weight of the whole composite. Further, dibutyl phthalate (DBP) as a plasticizer was added so as to be 5% by weight with respect to the entire composite to prepare a blended powder. Next, the blended powder was kneaded with a kneader for 3 hours to obtain a raw material mixture 25 having flexibility.
【0040】原料混合体25の組織断面を顕微鏡で観察
したところ、図1に示すように、粒状組織が観察され
た。すなわち、ポリ塩化ビニル樹脂マトリックス11中
にフィラーとしての窒化硼素粉末12が均一に分散して
おり、この窒化硼素粉末12の周囲に低融点金属粉末と
してのSn粉末13が付着していた。When the cross section of the structure of the raw material mixture 25 was observed with a microscope, a granular structure was observed as shown in FIG. That is, the boron nitride powder 12 as a filler was uniformly dispersed in the polyvinyl chloride resin matrix 11, and the Sn powder 13 as the low melting point metal powder was attached around the boron nitride powder 12.
【0041】次に上記原料混合体25を図5に示す加熱
装置20に充填し、複合体を形成するとともに、その伝
熱特性の測定および評価を行なった。Next, the raw material mixture 25 was charged into the heating device 20 shown in FIG. 5 to form a composite, and the heat transfer characteristics thereof were measured and evaluated.
【0042】ここで加熱装置20は、図5に示すよう
に、周囲への熱の流出を防止するために周囲を断熱材2
1で被覆した装置本体20aの内底部に板状ヒータ22
を配置し、この板状ヒータ22の上面に所定高さ(t)
のテフロン製の囲い23と蓋24とを配して構成され
る。Here, as shown in FIG. 5, the heating device 20 surrounds the heat insulating material 2 in order to prevent heat from flowing out to the surroundings.
The plate-shaped heater 22 is provided on the inner bottom of the apparatus main body 20a covered with 1.
Is placed on the upper surface of the plate-shaped heater 22 at a predetermined height (t).
It is configured by arranging a Teflon enclosure 23 and a lid 24.
【0043】そして加熱装置20の囲い23内に上記原
料混合体25を充填し、底部に設置した板状ヒータ22
を通電し、原料混合体25全体を250℃まで加熱し、
この温度で3時間保持した。Then, the raw material mixture 25 is filled in the enclosure 23 of the heating device 20, and the plate-shaped heater 22 installed at the bottom is installed.
To heat the entire raw material mixture 25 to 250 ° C.,
Hold at this temperature for 3 hours.
【0044】加熱操作時における原料混合体25の粒子
構造は図2に示す通りであり、低融点金属として添加し
たSn粉末が溶融して樹脂マトリックス11内で窒化硼
素粉末12を取り囲み、架橋構造を形成し、かつ網目状
に分布する液化金属14となっていた。The particle structure of the raw material mixture 25 during the heating operation is as shown in FIG. 2, and the Sn powder added as the low melting point metal is melted to surround the boron nitride powder 12 in the resin matrix 11 to form a crosslinked structure. The liquefied metal 14 was formed and distributed in a mesh.
【0045】次に上記液化金属14を含む原料混合体2
5を毎時50℃の降温速度で常温まで冷却したところ、
図3に示す組織構造を有する複合体16が得られた。す
なわち図2において溶融していたSnの液化金属14
は、冷却後に凝固して図3に示すように、架橋構造をそ
のまま保持して凝固し、マトリックス樹脂11中に金属
網15が形成されていた。Next, a raw material mixture 2 containing the liquefied metal 14
When 5 was cooled to room temperature at a cooling rate of 50 ° C./hour,
A composite 16 having the structure shown in FIG. 3 was obtained. That is, the liquefied Sn metal 14 which was melted in FIG.
As shown in FIG. 3, solidified after cooling, the crosslinked structure was maintained as it was and solidified, and the metal net 15 was formed in the matrix resin 11.
【0046】次に得られた複合体16の放熱特性を評価
するために、図5に示した加熱装置20の板状ヒータ2
2の上面に複合体16を載置した。そして板状ヒータ2
2の設定温度を100℃に固定し、板状ヒータ22の表
面温度T0 と、複合体16の上面側の表面温度T1 を経
時的に測定し、両表面の温度差ΔT(=T0 −T1 )と
時間との関係について図4に示す結果を得た。Next, in order to evaluate the heat dissipation characteristics of the obtained composite 16, the plate heater 2 of the heating device 20 shown in FIG.
The composite 16 was placed on the upper surface of No. 2. And the plate heater 2
The set temperature of No. 2 is fixed at 100 ° C., the surface temperature T 0 of the plate heater 22 and the surface temperature T 1 of the upper surface side of the composite body 16 are measured with time, and the temperature difference ΔT (= T 0 between both surfaces). The results shown in FIG. 4 were obtained for the relationship between −T 1 ) and time.
【0047】実施例2 低融点金属として平均粒径5μmの微細なSn−Zn共
晶合金(組成:85.4mol%Sn−14.6mol%Zn粉
末粒子を、フィラーとなる平均粒径25μmの窒化アル
ミニウム焼結体粉末に対して90容積%となるように添
加し、これにマトリックス樹脂としてのポリ塩化ビニル
を複合体全体の20重量%となるように添加した。さら
に可塑剤としてのジブチルフタレート(DBP)を複合
体全体に対して5重量%となるように添加して配合粉を
調製した。次に配合粉をニーダーによって3時間混練し
て可撓性を有する原料混合体を得た。 Example 2 A fine Sn-Zn eutectic alloy (composition: 85.4 mol% Sn-14.6 mol% Zn powder particles having an average particle diameter of 5 μm as a low-melting point metal was nitrided with an average particle diameter of 25 μm as a filler). It was added to the aluminum sintered body powder in an amount of 90% by volume, and polyvinyl chloride as a matrix resin was added to this in an amount of 20% by weight of the whole composite. DBP) was added so as to be 5% by weight with respect to the entire composite to prepare a blended powder, and then the blended powder was kneaded with a kneader for 3 hours to obtain a raw material mixture having flexibility.
【0048】以下実施例1と同様にして加熱装置20の
板状ヒータ22上の囲い23内に原料混合体を流し込
み、板状ヒータ22により、原料混合体全体を250℃
まで加熱して3時間保持した後に、毎時50℃の降温速
度で常温まで冷却し、実施例2に係る複合体を調製し
た。そして得られた複合体について実施例1と同様な条
件で放熱特性の測定試験を実施し、図4に示す結果を得
た。Thereafter, in the same manner as in Example 1, the raw material mixture was poured into the enclosure 23 on the plate-shaped heater 22 of the heating device 20, and the plate-shaped heater 22 was used to heat the entire raw material mixture to 250 ° C.
After heating to 3 hours and holding for 3 hours, it was cooled to room temperature at a cooling rate of 50 ° C./hour to prepare a composite according to Example 2. Then, the obtained composite was subjected to a measurement test of heat dissipation characteristics under the same conditions as in Example 1, and the results shown in FIG. 4 were obtained.
【0049】比較例1 金属網形成用の低融点金属粉末を添加せず、フィラーと
なる窒化硼素粉末に、樹脂マトリックスとしてのポリ塩
化ビニルを全体の20%、可塑剤のDBPを全体の5w
t%となるように添加し、ニーダーにて3時間混練し
た。実施例1と同様に、板状ヒータの上に流し出し、装
置全体を断熱材にて覆って加熱処理して複合体を形成し
た。この状態で板状ヒータを100℃に設定し、板状ヒ
ータの表面温度T0 と、混合物の上面側の表面温度T1
を測定し、温度差ΔTを時間に対して観測した。 Comparative Example 1 Without adding a low melting point metal powder for forming a metal net, 20% of polyvinyl chloride as a resin matrix and 5% of DBP as a plasticizer were added to boron nitride powder as a filler.
It was added so as to be t% and kneaded with a kneader for 3 hours. In the same manner as in Example 1, the mixture was cast onto a plate heater, the whole device was covered with a heat insulating material, and heat treatment was performed to form a composite. In this state, the plate heater is set to 100 ° C., the surface temperature T 0 of the plate heater and the surface temperature T 1 of the upper surface side of the mixture are set.
Was measured and the temperature difference ΔT was observed with respect to time.
【0050】比較例2 金属網形成用の低融点金属粉末を添加せず、フィラーと
なる窒化アルミニウム粉末に、樹脂マトリックスとして
のポリ塩化ビニルを全体の20%、可塑剤のDBPを全
体の5wt%となるように添加し、ニーダーにて3時間
混練した。 Comparative Example 2 Without adding a low melting point metal powder for forming a metal net, 20% of polyvinyl chloride as a resin matrix and 5% by weight of DBP of a plasticizer were added to aluminum nitride powder as a filler. And kneaded in a kneader for 3 hours.
【0051】実施例1と同様に、板状ヒータの上に流し
出し、装置全体を断熱材にて覆って加熱処理して複合体
を形成した。この状態で板状ヒータを100℃に設定
し、板状ヒータの表面温度T0 と、混合物の上面側の表
面温度T1 を測定し、温度差ΔTを時間に対して観測し
た。In the same manner as in Example 1, the mixture was cast onto a plate-shaped heater, the whole apparatus was covered with a heat insulating material and heat-treated to form a composite. The plate heater in this state is set to 100 ° C., and the surface temperature T 0 of the plate heater, the surface temperature T 1 of the upper surface of the mixture was measured to observe a temperature difference ΔT versus time.
【0052】上記実施例1〜2および比較例1〜2の各
複合体の放熱特性の測定結果を図4にまとめて示す。The measurement results of the heat dissipation characteristics of the composites of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIG.
【0053】図4に示す結果から明らかなように、低融
点金属を添加して網目状の金属網をマトリックス樹脂中
に形成した実施例1〜2に係る複合体は、金属網が伝熱
経路として有効に機能するため、熱伝達性能が極めて優
れていることが確認された。As is clear from the results shown in FIG. 4, in the composites according to Examples 1 and 2 in which the low melting point metal was added to form the mesh-shaped metal mesh in the matrix resin, the metal mesh had a heat transfer path. It was confirmed that the heat transfer performance was extremely excellent because it effectively functions as.
【0054】一方、金属網を形成しない比較例1〜2に
係る複合体では、高熱伝導率を有するフィラーを添加し
たものであっても、放熱特性が相対的に低下することが
判明した。On the other hand, in the composites according to Comparative Examples 1 and 2 in which the metal net is not formed, it was found that the heat dissipation characteristics were relatively deteriorated even when the filler having the high thermal conductivity was added.
【0055】[0055]
【発明の効果】以上説明の通り本発明に係る高熱伝導性
複合体によれば、樹脂マトリックス中に分散したフィラ
ー間が高熱伝導性を有する金属網によって連結され、複
合体の表裏に亘って連続した放熱経路が形成されている
ため、従来の放熱体と比較して熱伝導率が非常に大き
く、柔軟性も優れている。したがって、発熱体と冷却部
品との接合面に介在させた場合に両者の密着度を損うこ
となく、両者間の熱抵抗を大幅に低減でき、発熱体の放
熱特性を大幅に改善することができる。As described above, according to the high thermal conductivity composite of the present invention, the fillers dispersed in the resin matrix are connected by the metal net having high thermal conductivity, and the composite is continuous over the front and back of the composite. Since the heat dissipation path is formed, the heat conductivity is very large and the flexibility is excellent as compared with the conventional heat radiator. Therefore, when the heating element and the cooling component are interposed on the joint surface, the thermal resistance between them can be significantly reduced without impairing the adhesion between them, and the heat dissipation characteristics of the heating element can be greatly improved. it can.
【図1】本発明に係る高熱伝導性複合体の原料混合体段
階(加熱前)における粒状組織を示す図。FIG. 1 is a diagram showing a granular structure in a raw material mixture stage (before heating) of a high thermal conductivity composite according to the present invention.
【図2】原料混合体の加熱処理時における粒状組織を示
す図。FIG. 2 is a diagram showing a granular structure during heat treatment of a raw material mixture.
【図3】原料混合体を加熱処理した後に冷却して形成し
た本発明に係る複合体の粒状組織を示す図。FIG. 3 is a view showing a granular structure of a composite according to the present invention formed by heating a raw material mixture and then cooling it.
【図4】本発明に係る高熱伝導性複合体の放熱特性を比
較例とともに示す図。FIG. 4 is a diagram showing the heat dissipation characteristics of the high thermal conductivity composite according to the present invention together with a comparative example.
【図5】原料混合体を加熱するとともに、複合体の放熱
特性を測定するために使用した加熱装置の構成を示す断
面図。FIG. 5 is a cross-sectional view showing the configuration of a heating device used for heating the raw material mixture and measuring the heat dissipation characteristics of the composite.
【図6】従来の放熱体を使用したモジュール構造体の構
成例を示す断面図。FIG. 6 is a sectional view showing a configuration example of a module structure using a conventional radiator.
【図7】従来の放熱用複合体を介して半導体パッケージ
をボードに装着した状態を示す断面図。FIG. 7 is a cross-sectional view showing a state in which a semiconductor package is mounted on a board via a conventional heat dissipation composite.
【符号の説明】 1 モジュール構造体 2 セラミックス基板 3 半導体素子(チップ) 4 放熱フィン 5 樹脂接着剤 6 熱 7 セラミックス多層基板 8 半導体パッケージ 9 ボード 10 放熱体 11 ポリ塩化ビニル(マトリックス樹脂) 12 窒化硼素粉末(フィラー) 13 Sn粉末(低融点金属) 14 液化金属 15 金属網 16 複合体 20 加熱装置 20a 装置本体 21 断熱材 22 板状ヒータ 23 囲い 24 蓋 25 原料混合体[Explanation of reference numerals] 1 module structure 2 ceramics substrate 3 semiconductor element (chip) 4 radiating fin 5 resin adhesive 6 heat 7 ceramics multilayer substrate 8 semiconductor package 9 board 10 radiator 11 polyvinyl chloride (matrix resin) 12 boron nitride Powder (filler) 13 Sn powder (low melting point metal) 14 Liquefied metal 15 Metal mesh 16 Composite 20 Heating device 20a Device body 21 Heat insulating material 22 Plate heater 23 Enclosure 24 Lid 25 Raw material mixture
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久野 勝美 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 岩崎 秀夫 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 藤森 良経 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Katsumi Kuno 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Research & Development Center (72) Inventor Hideo Iwasaki Komukai-Toshiba, Kawasaki-shi, Kanagawa Town No. 1 Incorporated Toshiba Corporation R & D Center (72) Inventor Ryosuke Fujimori No. 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba R & D Center
Claims (4)
るとともに、融点が500℃以下の低融点金属または共
晶合金によって網目状に形成された金属網を介して上記
フィラーが相互に連続的に溶着されてなることを特徴と
する高熱伝導性複合体。1. A filler is dispersed in a matrix resin, and the fillers are continuously welded to each other through a metal mesh formed in a mesh shape by a low melting point metal or a eutectic alloy having a melting point of 500 ° C. or less. A highly heat-conductive composite characterized by being
ーが金属網を構成する金属より高い融点を有する金属粒
子および無機粒子の少なくとも一方であることを特徴す
る高熱伝導性複合体。2. A high thermal conductivity composite, wherein the filler dispersed in the matrix resin is at least one of metal particles and inorganic particles having a melting point higher than that of the metal forming the metal network.
上であることを特徴とする請求項2記載の高熱伝導性複
合体。3. The high thermal conductivity composite according to claim 2, wherein the inorganic particles have a thermal conductivity of 10 W / m · K or more.
および窒化アルミニウム単結晶体粉末の少なくとも一方
であり、平均粒径が30μm以下であることを特徴とす
る請求項2記載の高熱伝導性複合体。4. The high thermal conductive composite according to claim 2, wherein the inorganic particles are at least one of an aluminum nitride sintered body powder and an aluminum nitride single crystal body powder, and have an average particle size of 30 μm or less. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4346977A JPH06196884A (en) | 1992-12-25 | 1992-12-25 | High-heat-conductivity composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4346977A JPH06196884A (en) | 1992-12-25 | 1992-12-25 | High-heat-conductivity composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06196884A true JPH06196884A (en) | 1994-07-15 |
Family
ID=18387094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4346977A Pending JPH06196884A (en) | 1992-12-25 | 1992-12-25 | High-heat-conductivity composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06196884A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000043186A (en) * | 1998-07-31 | 2000-02-15 | Nippon Steel Corp | Good heat conductive composite material |
JP2001339019A (en) * | 2000-03-23 | 2001-12-07 | Kitagawa Ind Co Ltd | Heat conducting material and its manufacturing method |
WO2005111146A1 (en) * | 2004-05-17 | 2005-11-24 | Techno Polymer Co., Ltd. | Thermal conductive resin composition, method for producing same and housing |
US6995205B2 (en) | 2001-09-27 | 2006-02-07 | Nippon Kagaku Yakin Co., Ltd. | Resin composition with high thermal conductivity and method of producing the same |
WO2006132185A1 (en) * | 2005-06-06 | 2006-12-14 | Nippon Kagaku Yakin Co., Ltd. | Insulative and thermally conductive resin composition and formed article, and method for production thereof |
JP2007211156A (en) * | 2006-02-10 | 2007-08-23 | Teijin Ltd | Resin composition improved in heat-resistance and mechanical property and its preparation method |
JP2008256329A (en) * | 2007-04-09 | 2008-10-23 | Ohbayashi Corp | Underground heat exchanger |
US7558520B2 (en) | 2003-10-24 | 2009-07-07 | Ricoh Company, Ltd. | Heating member for an image forming apparatus, having improved releasibility and conductivity |
US7999018B2 (en) | 2007-04-24 | 2011-08-16 | E. I. Du Pont De Nemours And Company | Thermoplastic resin composition having electromagnetic interference shielding properties |
CN103289650A (en) * | 2013-06-09 | 2013-09-11 | 北京依米康科技发展有限公司 | Low-melting metal conductive paste |
JP5309989B2 (en) * | 2006-04-07 | 2013-10-09 | 日本電気株式会社 | Thermally conductive resin material and molded body thereof |
WO2015016221A1 (en) * | 2013-07-31 | 2015-02-05 | 住友理工株式会社 | Elastomer molded article and method for producing same |
JP2017132661A (en) * | 2016-01-28 | 2017-08-03 | 積水化学工業株式会社 | Boron nitride nano tube material, thermosetting material, cured product, method for producing cured product and laminate |
-
1992
- 1992-12-25 JP JP4346977A patent/JPH06196884A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000043186A (en) * | 1998-07-31 | 2000-02-15 | Nippon Steel Corp | Good heat conductive composite material |
JP2001339019A (en) * | 2000-03-23 | 2001-12-07 | Kitagawa Ind Co Ltd | Heat conducting material and its manufacturing method |
US6995205B2 (en) | 2001-09-27 | 2006-02-07 | Nippon Kagaku Yakin Co., Ltd. | Resin composition with high thermal conductivity and method of producing the same |
CN1308399C (en) * | 2001-09-27 | 2007-04-04 | 日本科学冶金株式会社 | Resin composition with high thermal conductivity and method of producing the same |
US7558520B2 (en) | 2003-10-24 | 2009-07-07 | Ricoh Company, Ltd. | Heating member for an image forming apparatus, having improved releasibility and conductivity |
WO2005111146A1 (en) * | 2004-05-17 | 2005-11-24 | Techno Polymer Co., Ltd. | Thermal conductive resin composition, method for producing same and housing |
WO2006132185A1 (en) * | 2005-06-06 | 2006-12-14 | Nippon Kagaku Yakin Co., Ltd. | Insulative and thermally conductive resin composition and formed article, and method for production thereof |
JP5340595B2 (en) * | 2005-06-06 | 2013-11-13 | 日本科学冶金株式会社 | Insulating thermally conductive resin composition, molded article, and method for producing the same |
JP2007211156A (en) * | 2006-02-10 | 2007-08-23 | Teijin Ltd | Resin composition improved in heat-resistance and mechanical property and its preparation method |
JP5309989B2 (en) * | 2006-04-07 | 2013-10-09 | 日本電気株式会社 | Thermally conductive resin material and molded body thereof |
JP2008256329A (en) * | 2007-04-09 | 2008-10-23 | Ohbayashi Corp | Underground heat exchanger |
US7999018B2 (en) | 2007-04-24 | 2011-08-16 | E. I. Du Pont De Nemours And Company | Thermoplastic resin composition having electromagnetic interference shielding properties |
CN103289650A (en) * | 2013-06-09 | 2013-09-11 | 北京依米康科技发展有限公司 | Low-melting metal conductive paste |
WO2015016221A1 (en) * | 2013-07-31 | 2015-02-05 | 住友理工株式会社 | Elastomer molded article and method for producing same |
JP2015030735A (en) * | 2013-07-31 | 2015-02-16 | 住友理工株式会社 | Elastomer molding, and manufacturing method thereof |
JP2017132661A (en) * | 2016-01-28 | 2017-08-03 | 積水化学工業株式会社 | Boron nitride nano tube material, thermosetting material, cured product, method for producing cured product and laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1425364B1 (en) | Dry thermal interface material | |
JP5036696B2 (en) | Thermally conductive sheet and power module | |
JP3256587B2 (en) | High thermal conductive radiator and method of manufacturing the same | |
JPH06196884A (en) | High-heat-conductivity composite | |
JP2002532914A (en) | Method of applying phase change thermal interface material | |
TW200814266A (en) | Thermal interconnect and interface materials, methods of production and uses thereof | |
JP7282950B2 (en) | Heat dissipation structure of electric circuit device | |
JP2000239542A (en) | Powder composition and its production, and heat- conductive substrate and it production | |
JPH1126661A (en) | Radiation spacer | |
JPH07162177A (en) | Radiator | |
JP4014454B2 (en) | Resin composition, method for producing the same, and heat radiating member | |
JP3178805B2 (en) | Heat radiation spacer | |
JP3655207B2 (en) | Heat dissipation member for electronic device and method for manufacturing the same | |
JPH06164174A (en) | Heat radiation sheet | |
JP3865957B2 (en) | Thermally conductive compounds | |
JP2004022964A (en) | Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE | |
JPH0997988A (en) | Thermally conductive compound | |
JPH05326743A (en) | Insulated heat dissipating substrate for semiconductor element mounting | |
JP2004296726A (en) | Heat dissipating member, package for containing semiconductor element, and semiconductor device | |
JP2000294700A (en) | Resin molding and method of manufacturing the same and application field | |
JP3757636B2 (en) | Method for producing heat conductive silicone rubber composition for forming heat radiating sheet and heat conductive silicone rubber composition for forming heat radiating sheet | |
WO2023211414A2 (en) | A high thermal conductor nano hybrid composite material for thermal interface applications and a production method thereof | |
JPH11307698A (en) | Heat dissipating spacer | |
Tong et al. | Thermal interface materials in electronic packaging | |
JP2002020625A (en) | Composition with high-heat conductivity and its use |