JP4014454B2 - Resin composition, method for producing the same, and heat radiating member - Google Patents
Resin composition, method for producing the same, and heat radiating member Download PDFInfo
- Publication number
- JP4014454B2 JP4014454B2 JP2002170810A JP2002170810A JP4014454B2 JP 4014454 B2 JP4014454 B2 JP 4014454B2 JP 2002170810 A JP2002170810 A JP 2002170810A JP 2002170810 A JP2002170810 A JP 2002170810A JP 4014454 B2 JP4014454 B2 JP 4014454B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- aluminum nitride
- resin composition
- nitride powder
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Lubricants (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高結晶性窒化アルミニウム粉末の充填された樹脂組成物、その製造方法及び放熱部材に関する。
【0002】
【従来の技術】
近年、発熱性電子部品の高密度化等により、放熱部材に対する熱伝導性の要求が益々高まっている。また、携帯用パソコンをはじめ、電子機器の小型、薄型、軽量化が進み、今後もこの方向性は変わらないので、これらの電子機器へ用いる放熱部材も高熱伝導化にあわせて、熱抵抗を少なくするために更なる薄化が要求される。ここで、放熱部材としては、シリコーンゴムに熱伝導性無機粉末が充填された硬化物からなる放熱シート、シリコーンゲルに熱伝導性無機粉末が充填され、柔軟性を有する硬化物からなる放熱スペーサー、液状シリコーンに熱伝導性無機粉末が充填された流動性のある放熱グリースが例示される。
【0003】
放熱部材の熱伝導率を向上させるには、樹脂に熱伝導性無機粉末を高充填させると共に薄化すればよく、薄化のためには低粘度に調整された樹脂組成物が用いられる。熱伝導性無機粉末としては、窒化アルミニウム粉末が例示され、その充填率を高めるための多くの提案がある。たとえば、オルガノポリシロキサンに平均粒径0.5〜5μmの球状六方晶窒化アルミニウム粒子を充填する(特公平6−39591号公報)、平均粒径が0.5〜10μmで、100μm以上の粒子を含まない窒化アルミニウム粉末と、酸化亜鉛、アルミナ、窒化硼素、炭化珪素等の無機粉末とを、液状シリコーンに充填する(特開2000−10973号公報)、などである。
【0004】
しかしながら、これらの窒化アルミニウム粉末の結晶性は大きくないので熱伝導率は十分に高くなく、放熱部材の高熱伝導化には自ずと限度があった。そこで、本出願人は、窒化アルミニウム粉末とイットリア等の焼結助剤を含む混合原料を焼結して得られた窒化アルミニウム焼結体の粉砕物と、金属粉とを併用することを提案した(特開2001−158609号公報)。しかしながら、この技術においては、窒化アルミニウム焼結体の粉砕時に、粒子内に再度歪みが発生する、粒子のエッジが鋭利になるなどし、放熱部材が放熱グリースである場合には、更なる高流動性と高熱伝導性を有するものにはなりにくいことが未解決であった。
【0005】
一方、金属粉を充填する技術(特開2000−62873号公報)においては、窒化アルミニウム粉末よりも高熱伝導性の付与が可能となるが、絶縁性ではないので放熱グリースとして使用するには制約がある。そこで、金属粉表面を酸化又は窒化して絶縁性を付与することが提案(特開平11−12481号公報)されている。しかし、これが充填された放熱グリースは、熱伝導率が最大でも2.15W/mKであり、期待したほどまでには高くならず、また絶縁性ではあるが、酸化膜や窒化膜の厚みは0.1μm以下であるため、耐電圧は期待できない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記に鑑み、窒化アルミニウム粉末が充填された高熱伝導性かつ絶縁性の樹脂組成物と、その製造方法と、放熱部材、特に放熱グリースを提供することである。本発明の目的は、高結晶性窒化アルミニウム粉末と、この高結晶性窒化アルミニウム粉末よりも平均粒径の小さい金属粉末とを樹脂に充填させることによって達成することができる。
【0007】
【課題を解決するための手段】
すなわち、本発明は、X線回折によるミラー指数(100)面、(002)面及び(101)面の3つの回折ピークの平均半価幅が0.095°以下で、平均粒径10〜50μmである高結晶性窒化アルミニウム粉末と、平均粒径がこの高結晶性窒化アルミニウム粉末よりも小さく、熱伝導率が250W/mK以上である金属粉末とが樹脂に充填されてなり、熱伝導率が4W/mK以上、絶縁抵抗が1×109Ω以上であることを特徴とする樹脂組成物である。この発明においては、窒化アルミニウム粉末の含有率が42〜73質量%、金属粉末が銅粉末でありその含有率が17〜48質量%、樹脂が液状シリコーンでありその含有率が8〜10質量%であることが好ましい。また、本発明は、窒化アルミニウム粉末を窒化硼素製容器に充填し、黒鉛発熱体の加熱炉を用い、一酸化炭素ガスと窒素ガスの混合ガス雰囲気下で加熱してから分級して、X線回折によるミラー指数(100)面、(002)面及び(101)面の3つの回折ピークの平均半価幅が0.095°以下で、平均粒径10〜50μmである高結晶性窒化アルミニウム粉末とした後、その高結晶性窒化アルミニウム粉末と、平均粒径が高結晶性窒化アルミニウム粉末よりも小さく、熱伝導率が250W/mK以上である金属粉末と、樹脂とを混合することを特徴とする本発明の樹脂組成物の製造方法である。また、本発明は、本発明の樹脂組成物からなることを特徴とする電子部品の放熱部材、特に樹脂を液状シリコーンとした放熱グリースである。
【0008】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0009】
本発明の樹脂組成物において、その充填材は、高結晶性窒化アルミニウム粉末と金属粉末とが必須成分となる。充填材の構成比率は、80%(質量%、以下同じ)以上(100%を含む)がこの必須成分であり、100%でない時の残部は、高結晶性窒化アルミニウム粉末以外の窒化アルミニウム粉末、窒化ケイ素粉末、窒化ホウ素粉末、アルミナ粉末、炭化ホウ素粉末、炭化ケイ素粉末から選ばれた一種又は二種以上であることが好ましい。
【0010】
高結晶性窒化アルミニウム粉末は、Cu−kα(2θ)のX線回折によるミラー指数(100)面、(002)面及び(101)面の3つの回折ピークの平均半価幅(以下、単に「半価幅」という。)が0.095°以下で、平均粒径10〜50μmである窒化アルミニウム粉末である。この詳細については、特願2001−317982号明細書に記載されており、本発明においては、その明細書の実施例に記載された方法で製造されたものが使用できる。
【0011】
本発明においては、高結晶性窒化アルミニウム粉末の半価幅が特に重要である。半価幅は結晶性の指標であり、結晶性が高いほど半価幅は小さくなる。結晶性を左右する因子は、粉砕等のメカノケミカル的な作用による粒子表面の結晶の乱れ、表面や内部に不純物が存在することによる結晶欠陥等に起因する乱れ、結晶子の大きさ等である。本発明においては、半価幅が0.095°以下、好ましくは0.085°以下の高結晶性窒化アルミニウム粉末が用いられる。この半価幅の値は、従来の窒化アルミニウム粉末が0.2〜0.4°程度であるのに対して極めて小さいことが特異的である。半価幅が0.095°をこえると、それが充填された樹脂組成物の熱伝導率は著しく向上しない。本発明において、半価幅を上記3つの回折ピークの半価幅の平均値としたのは、配向性の影響をできるだけなくして結晶性の判断を行うためである。
【0012】
高結晶性窒化アルミニウム粉末の平均粒径は、10〜50μmであり、好ましくは20〜40μmである。平均粒径が10μm未満であると、樹脂組成物内での粒子間接触点数が増え、熱抵抗は大きくなる。また、平均粒径が50μmをこえると、放熱部材の薄化が困難となる。
【0013】
本発明で使用される金属粉末は、その平均粒径が高結晶性窒化アルミニウム粉末のそれよりも小さいことが条件となる。好ましくは、平均粒径10μm以下の範囲内であって、高結晶性窒化アルミニウム粉末の平均粒径よりも90〜30%小さいこと、すなわち平均粒径10μm以下の範囲内であって、高結晶性窒化アルミニウム粉末の平均粒径の10〜70%の平均粒径をもつことである。このように、平均粒径を違えることによって、放熱部材が薄化しても、高結晶性窒化アルミニウム粉の平均粒径が大きいので、高電圧における絶縁性を確保できる。金属粉末の熱伝導率については、高結晶性窒化アルミニウムと同等以上が好ましく、250W/mK以上、より好ましくは400W/mK以上である。250W/mK未満では高結晶性窒化アルミニウム粉末を単独で充填した樹脂組成物よりも熱伝導率は向上しない。
【0014】
このような金属粉末としては、銅、金、銀から選ばれた一種又は二種以上が好ましいが、価格を考慮すると、銅粉が最適となる。
【0015】
高結晶性窒化アルミニウム粉末と金属粉末の樹脂への充填率は、樹脂組成物の熱伝導率が4W/mK以上、絶縁抵抗が1×109Ω以上となるように決定される。その割合の一例を示せば、高結晶性窒化アルミニウム粉末の充填率が42〜73質量%、銅粉末17〜48質量%、液状シリコーン樹脂が8〜10質量である。樹脂組成物の熱伝導率が4W/mK未満では、放熱特性が不十分となる。また、絶縁抵抗が1×109Ω・cm未満では、絶縁が不十分となり、電子部品に電圧をかけたときに、電子部品とアルミフィン等の放熱フイン間でショートする場合がある。たとえば、放熱部材を100μm(0.01cm)に制御して塗布した場合、1×108Ω・cmしかなければ、1KVの電圧がかかれば、1mAの電流が流れてしまう。グリースは流動性があるので、塗工時の膜厚は10μmになる場合もあり、使用する電圧にもよるが、絶縁を保証するには、1×109Ω・cm以上が必要である。
【0016】
本発明で用いられる樹脂としては、液状シリコーン、合成油などの油状物質、パラフィン系鉱油、未硬化液状エポキシ樹脂等が例示される。耐熱信頼性の点から、液状シリコーンが好ましい。液状シリコーンとしては、GE東芝シリコーン社製商品名「TSF451−1000」等が例示される。液状シリコーンを用いたときに、本発明の放熱部材は放熱グリースとなる。放熱グリースの流動性は、液状シリコーンの粘度と、高結晶性窒化アルミニウム粉末及び/又は金属粉末の充填量によって調整することができる。
【0017】
本発明の樹脂組成物は、上記諸材料をブレンダーやミキサーで混合後3本ロール等で混練りするか、万能混合攪拌機、ニーダー等で混練りすることによって製造することができる。
【0018】
本発明の樹脂組成物の用途としては、放熱部材があるが、何らこれに限られることはなく、熱伝導性樹脂一般、体温冷却用樹脂、温度測定用樹脂等にも使用できる。
【0019】
【実施例】
以下、実施例及び比較例をあげて更に具体的に本発明を説明する。
【0020】
実施例1〜4
アトマイズされた平均粒径25μmのアルミニウム粉末100質量部に対し、窒化アルミニウム粉末を骨材として15質量部を配合した混合粉末を、アルミニウム箔製円筒容器(高さ約20cm、直径約4cm)に入れ、窒素ガス(80体積%)−アンモニアガス(20体積%)の雰囲気下、最高温度1400℃に加熱された窒化炉で窒化して窒化アルミニウムインゴットを製造した。これをジョークラッシャー、Wロールクラッシャーを用いて1mm下の窒化アルミニウム粒に粉砕した後、ボールミルで30分間粉砕し、更に72μmの振動フルイで通過させ、窒化アルミニウム粉末を製造した。
【0021】
これを窒化硼素製容器に充填し、黒鉛発熱体の加熱炉を用い、一酸化炭素ガスと窒素ガスの混合ガス雰囲気下で加熱した後、45μmの振動篩いで分級し、表1の特性を有する高結晶性窒化アルミニウム粉末を製造した。雰囲気ガスの流量は、100リットル/分、昇温速度は、1200℃までは毎時600℃、1200℃から最高温度までは毎時100℃とし、最高温度1980℃における保持時間を2時間とした。
【0022】
高結晶性窒化アルミニウム粉末と、市販の銅粉末(福田金属製:商品名「HWQ−5μm」)及び液状シリコーン(GE東芝シリコーン社製商品名「TSF451−1000」)又はパラフィン系鉱油とを表2の割合で配合し、万能混合攪拌機を用いて15分間混合し、その後真空脱泡して樹脂組成物(放熱グリース)を得た。
【0023】
比較例1、2
高結晶性窒化アルミニウム粉末又は銅粉末を単独で用い、表2の割合としたこと以外は、実施例1と同様にして樹脂組成物を製造した。
【0024】
比較例3、4
高結晶性窒化アルミニウム粉末の代わりに、実施例1で製造された窒化アルミニウム粉末(比較例3)、又は市販窒化アルミニウム粉末(トクヤマ社製商品名「Hグレード」)(比較例4)を用いたこと以外は、実施例1と同様にして樹脂組成物を得た。
【0025】
比較例5
銅粉末の代わりに、金属アルミニウム粉末(理論熱伝導率237W/mK)を使用したこと以外は、実施例1と同様にして樹脂組成物を得た。
【0026】
得られた樹脂組成物の粘度、熱伝導率、絶縁抵抗(体積固有抵抗)を以下に従って測定した。それらの結果を表2に示す。
【0027】
(1)粘度:キャピラリー・レオメーター(東洋精機社製「Capirograph」)を用い、せん断応力を0.37MPaとして測定した。
(2)熱伝導率:樹脂組成物をTO−3型銅製ヒーターケースと銅板の間に入れ、左右2点を径3mmのネジを用い5kgf・cmで締め付けてセットした後、ヒーターケースに電力15Wをかけて5分間保持した後、ヒーターケースと銅板の温度差を測定し、TO−3型の伝熱面積0.0006m2から、式、熱伝導率(W/mK)=〔電力(W)×樹脂組成物厚み(m)/〔伝熱面積(0.0006m2)×温度差(℃)〕から算出した。
(3)絶縁抵抗:8cm角の開口部を有する四フッ化エチレン樹脂製容器(厚み0.3mm)に、各実施例及び比較例の樹脂組成物を充填し、JIS C2123に準拠して体積固有抵抗を測定した。
【0028】
なお、本例で用いた窒化アルミニウム粉末の半価幅は、粉末X線回折装置を用い、ミラー指数(100)面、(002)面及び(101)面の3つの回折ピークの平均半価幅である。X線回折の管球はCuでKα1ピークを用いた。また、窒化アルミニウム粉末と銅粉末の平均粒径は、レーザー散乱式粒度測定計「マイクロトラックSPA7997型」によって測定した。
【0029】
【表1】
【0030】
【表2】
【0031】
表1、表2に示すとおり、高結晶性窒化アルミニウム粉末と金属粉末とが充填された本発明の樹脂組成物は、比較例に比べて高熱伝導性かつ高絶縁性を有することが示された。
【0032】
【発明の効果】
本発明によれば、高熱伝導性かつ高絶縁性の樹脂組成物と、その製造方法と、放熱部材、特に放熱グリースが提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition filled with highly crystalline aluminum nitride powder, a method for producing the same, and a heat dissipation member.
[0002]
[Prior art]
In recent years, demands for heat conductivity for heat dissipation members have been increasing due to higher density of heat-generating electronic components. In addition, the trend toward smaller, thinner, and lighter electronic devices, including portable personal computers, will not change in the future, so the heat dissipation members used in these electronic devices have a lower thermal resistance in line with higher thermal conductivity. Therefore, further thinning is required. Here, as the heat radiating member, a heat radiating sheet made of a cured product in which a silicone rubber is filled with a heat conductive inorganic powder, a heat radiating spacer made of a cured material having a silicone gel filled with a heat conductive inorganic powder and having flexibility, A fluid heat-release grease in which liquid silicone is filled with a heat conductive inorganic powder is exemplified.
[0003]
In order to improve the thermal conductivity of the heat dissipating member, the resin may be thinly filled with the heat conductive inorganic powder and the resin composition adjusted to a low viscosity is used for thinning. Examples of the heat conductive inorganic powder include aluminum nitride powder, and there are many proposals for increasing the filling rate. For example, organopolysiloxane is filled with spherical hexagonal aluminum nitride particles having an average particle size of 0.5 to 5 μm (Japanese Patent Publication No. 6-39591), and particles having an average particle size of 0.5 to 10 μm and 100 μm or more are used. For example, a liquid silicone is filled with an aluminum nitride powder not contained and an inorganic powder such as zinc oxide, alumina, boron nitride, and silicon carbide (Japanese Patent Laid-Open No. 2000-10993).
[0004]
However, since the crystallinity of these aluminum nitride powders is not large, the thermal conductivity is not sufficiently high, and there has been a limit to increase the thermal conductivity of the heat dissipation member. Therefore, the present applicant has proposed that a metal powder is used in combination with a pulverized product of an aluminum nitride sintered body obtained by sintering a mixed raw material containing a sintering aid such as aluminum nitride powder and yttria. (Japanese Patent Laid-Open No. 2001-158609). However, in this technique, when the aluminum nitride sintered body is pulverized, distortion occurs again in the particles, the edges of the particles become sharp, etc. However, it has not been solved that it is difficult to become a material having high heat conductivity.
[0005]
On the other hand, in the technique of filling metal powder (Japanese Patent Laid-Open No. 2000-62873), it is possible to impart higher thermal conductivity than aluminum nitride powder. is there. Thus, it has been proposed (Japanese Patent Laid-Open No. 11-12481) to provide an insulating property by oxidizing or nitriding the surface of the metal powder. However, the heat dissipating grease filled with this has a maximum thermal conductivity of 2.15 W / mK, which is not as high as expected, and is insulating, but the thickness of the oxide film or nitride film is 0. Since it is 1 μm or less, the withstand voltage cannot be expected.
[0006]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a highly thermally conductive and insulating resin composition filled with aluminum nitride powder , a manufacturing method thereof , and a heat dissipation member, particularly a heat dissipation grease. The object of the present invention can be achieved by filling a resin with a highly crystalline aluminum nitride powder and a metal powder having an average particle size smaller than that of the highly crystalline aluminum nitride powder.
[0007]
[Means for Solving the Problems]
That is, according to the present invention, the average half-value width of the three diffraction peaks of the Miller index (100) plane, (002) plane, and (101) plane by X-ray diffraction is 0.095 ° or less, and the average particle size is 10 to 50 μm. The resin is filled with a highly crystalline aluminum nitride powder and a metal powder having an average particle size smaller than that of the highly crystalline aluminum nitride powder and a thermal conductivity of 250 W / mK or more. 4W / mK or more, a resin composition characterized by insulation resistance of 1 × 10 9 Ω or more. In this invention, the content of aluminum nitride powder is 42 to 73% by mass, the metal powder is copper powder, the content is 17 to 48% by mass, the resin is liquid silicone, and the content is 8 to 10% by mass. It is preferable that In the present invention, a boron nitride container is filled with aluminum nitride powder, heated in a mixed gas atmosphere of carbon monoxide gas and nitrogen gas using a heating furnace of a graphite heating element, and classified. Highly crystalline aluminum nitride powder having an average half-value width of three diffraction peaks of the mirror index (100), (002) and (101) planes by diffraction of 0.095 ° or less and an average particle size of 10 to 50 μm Then, the highly crystalline aluminum nitride powder, a metal powder having an average particle size smaller than that of the highly crystalline aluminum nitride powder, and a thermal conductivity of 250 W / mK or more, and a resin are mixed. It is the manufacturing method of the resin composition of this invention. Further, the present invention is a heat dissipating member for an electronic component, particularly a heat dissipating grease in which the resin is liquid silicone, comprising the resin composition of the present invention .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0009]
In the resin composition of the present invention, the filler is essentially composed of highly crystalline aluminum nitride powder and metal powder. The composition ratio of the filler is 80% (mass%, the same shall apply hereinafter) or more (including 100%) as this essential component, and the balance when not 100% is aluminum nitride powder other than highly crystalline aluminum nitride powder, It is preferable that it is 1 type, or 2 or more types chosen from silicon nitride powder, boron nitride powder, alumina powder, boron carbide powder, silicon carbide powder.
[0010]
The highly crystalline aluminum nitride powder has an average half width of three diffraction peaks of the Miller index (100) plane, (002) plane, and (101) plane by X-ray diffraction of Cu-kα (2θ) (hereinafter simply referred to as “ This is an aluminum nitride powder having a half-value width of 0.095 ° or less and an average particle size of 10 to 50 μm. Details of this are described in Japanese Patent Application No. 2001-317982, and in the present invention, those produced by the methods described in Examples of the specification can be used.
[0011]
In the present invention, the half width of the highly crystalline aluminum nitride powder is particularly important. The half width is an index of crystallinity. The higher the crystallinity, the smaller the half width. Factors that affect crystallinity include disorder of crystal on the particle surface due to mechanochemical action such as pulverization, disorder due to crystal defects due to the presence of impurities on the surface and inside, size of crystallites, etc. . In the present invention, a highly crystalline aluminum nitride powder having a half width of 0.095 ° or less, preferably 0.085 ° or less is used. The value of this half-value width is specific to be extremely small as compared with the conventional aluminum nitride powder of about 0.2 to 0.4 °. When the half width exceeds 0.095 °, the thermal conductivity of the resin composition filled with the half width does not remarkably improve. In the present invention, the reason why the half width is defined as the average value of the half widths of the three diffraction peaks is to determine the crystallinity while minimizing the influence of orientation.
[0012]
The average particle size of the highly crystalline aluminum nitride powder is 10 to 50 μm, preferably 20 to 40 μm. When the average particle size is less than 10 μm, the number of contact points between particles in the resin composition increases, and the thermal resistance increases. On the other hand, if the average particle size exceeds 50 μm, it is difficult to thin the heat dissipation member.
[0013]
The metal powder used in the present invention is required to have an average particle size smaller than that of the highly crystalline aluminum nitride powder. Preferably, the average particle size is within the range of 10 μm or less, and is 90-30% smaller than the average particle size of the highly crystalline aluminum nitride powder, that is, within the range of the average particle size of 10 μm or less, and high crystallinity. It has an average particle size of 10 to 70% of the average particle size of the aluminum nitride powder . Thus, even if the heat dissipation member is thinned by changing the average particle diameter, the average particle diameter of the highly crystalline aluminum nitride powder is large, so that insulation at high voltage can be ensured. The thermal conductivity of the metal powder is preferably equal to or higher than that of highly crystalline aluminum nitride, 250 W / mK or higher, more preferably 400 W / mK or higher. If it is less than 250 W / mK, the thermal conductivity is not improved as compared with the resin composition filled with the highly crystalline aluminum nitride powder alone.
[0014]
As such a metal powder, one or two or more kinds selected from copper, gold, and silver are preferable, but considering the price, copper powder is optimal.
[0015]
The filling rate of the highly crystalline aluminum nitride powder and the metal powder into the resin is determined so that the thermal conductivity of the resin composition is 4 W / mK or more and the insulation resistance is 1 × 10 9 Ω or more. For example, the filling ratio of the highly crystalline aluminum nitride powder is 42 to 73 mass%, the copper powder is 17 to 48 mass% , and the liquid silicone resin is 8 to 10 mass . When the thermal conductivity of the resin composition is less than 4 W / mK, the heat dissipation characteristics are insufficient. If the insulation resistance is less than 1 × 10 9 Ω · cm, the insulation is insufficient, and when a voltage is applied to the electronic component, a short circuit may occur between the electronic component and the heat radiation fin such as an aluminum fin. For example, when the heat dissipation member is applied to a thickness of 100 μm (0.01 cm), if it is only 1 × 10 8 Ω · cm, a current of 1 mA flows if a voltage of 1 KV is applied. Since grease has fluidity, the film thickness at the time of coating may be 10 μm, and depending on the voltage used, 1 × 10 9 Ω · cm or more is required to ensure insulation.
[0016]
Examples of the resin used in the present invention include oily substances such as liquid silicone and synthetic oil, paraffinic mineral oil, uncured liquid epoxy resin, and the like. From the viewpoint of heat resistance reliability, liquid silicone is preferred. Examples of the liquid silicone include trade name “TSF451-1000” manufactured by GE Toshiba Silicone. When liquid silicone is used, the heat dissipating member of the present invention becomes heat dissipating grease. The fluidity of the heat dissipating grease can be adjusted by the viscosity of the liquid silicone and the filling amount of the highly crystalline aluminum nitride powder and / or metal powder.
[0017]
The resin composition of the present invention can be produced by mixing the above materials with a blender or a mixer and then kneading with a three-roll or the like, or kneading with a universal mixing stirrer, kneader or the like.
[0018]
The resin composition of the present invention includes a heat radiating member, but is not limited thereto, and can be used for general heat conductive resins, body temperature cooling resins, temperature measurement resins, and the like.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0020]
Examples 1-4
A mixed powder in which 15 parts by mass of aluminum nitride powder as an aggregate is mixed with 100 parts by mass of atomized aluminum powder having an average particle diameter of 25 μm is placed in an aluminum foil cylindrical container (height: about 20 cm, diameter: about 4 cm). Then, in an atmosphere of nitrogen gas (80% by volume) -ammonia gas (20% by volume), an aluminum nitride ingot was manufactured by nitriding in a nitriding furnace heated to a maximum temperature of 1400 ° C. This was pulverized into aluminum nitride grains 1 mm below using a jaw crusher and a W roll crusher, then pulverized for 30 minutes with a ball mill, and further passed through a 72 μm vibration sieve to produce aluminum nitride powder.
[0021]
This is filled in a boron nitride vessel, heated in a mixed gas atmosphere of carbon monoxide gas and nitrogen gas using a graphite heating element heating furnace, and then classified by a 45 μm vibrating sieve, and has the characteristics shown in Table 1. A highly crystalline aluminum nitride powder was produced. The flow rate of the atmospheric gas was 100 liters / minute, the heating rate was 600 ° C./hour up to 1200 ° C., 100 ° C./hour from 1200 ° C. to the maximum temperature, and the holding time at the maximum temperature of 1980 ° C. was 2 hours.
[0022]
Table 2 shows highly crystalline aluminum nitride powder, commercially available copper powder (made by Fukuda Metals: trade name “HWQ-5 μm”) and liquid silicone (trade name “TSF451-1000” made by GE Toshiba Silicone) or paraffinic mineral oil. The mixture was mixed for 15 minutes using a universal mixing stirrer, and then vacuum degassed to obtain a resin composition (heat dissipating grease).
[0023]
Comparative Examples 1 and 2
A resin composition was produced in the same manner as in Example 1 except that the highly crystalline aluminum nitride powder or copper powder was used alone and the ratios shown in Table 2 were used.
[0024]
Comparative Examples 3 and 4
Instead of the highly crystalline aluminum nitride powder, the aluminum nitride powder produced in Example 1 (Comparative Example 3) or the commercially available aluminum nitride powder (trade name “H grade” manufactured by Tokuyama Corporation) (Comparative Example 4) was used. Except for this, a resin composition was obtained in the same manner as in Example 1.
[0025]
Comparative Example 5
A resin composition was obtained in the same manner as in Example 1 except that metal aluminum powder (theoretical thermal conductivity 237 W / mK) was used instead of copper powder.
[0026]
The viscosity, thermal conductivity, and insulation resistance (volume resistivity) of the obtained resin composition were measured as follows. The results are shown in Table 2.
[0027]
(1) Viscosity: A capillary rheometer (“Capirograph” manufactured by Toyo Seiki Co., Ltd.) was used, and the shear stress was measured at 0.37 MPa.
(2) Thermal conductivity: The resin composition is put between a TO-3 type copper heater case and a copper plate, and the left and right points are set by tightening at 5 kgf · cm using a screw with a diameter of 3 mm, and then the heater case has a power of 15 W. after holding for 5 minutes over to measure the temperature difference between the heater case and the copper plate, the heat transfer area 0.0006M 2 of tO-3 type, wherein the thermal conductivity (W / mK) = [power (W) × Resin composition thickness (m) / [heat transfer area (0.0006 m 2 ) × temperature difference (° C.)]
(3) Insulation resistance: A tetrafluoroethylene resin container (thickness: 0.3 mm) having an opening of 8 cm square is filled with the resin composition of each example and comparative example, and is volume specific according to JIS C2123. Resistance was measured.
[0028]
The half width of the aluminum nitride powder used in this example is an average half width of three diffraction peaks of the Miller index (100) plane, (002) plane, and (101) plane using a powder X-ray diffractometer. It is. The tube of X-ray diffraction used Cu and the Kα1 peak. The average particle size of the aluminum nitride powder and the copper powder was measured by a laser scattering particle size meter “Microtrac SPA7997 type”.
[0029]
[ Table 1 ]
[0030]
[Table 2]
[0031]
As shown in Tables 1 and 2, it was shown that the resin composition of the present invention filled with the highly crystalline aluminum nitride powder and the metal powder has higher thermal conductivity and higher insulation than the comparative example. .
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the highly heat conductive and highly insulating resin composition , its manufacturing method, and a thermal radiation member, especially thermal radiation grease are provided.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170810A JP4014454B2 (en) | 2002-06-12 | 2002-06-12 | Resin composition, method for producing the same, and heat radiating member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170810A JP4014454B2 (en) | 2002-06-12 | 2002-06-12 | Resin composition, method for producing the same, and heat radiating member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004010880A JP2004010880A (en) | 2004-01-15 |
JP4014454B2 true JP4014454B2 (en) | 2007-11-28 |
Family
ID=30436929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002170810A Expired - Fee Related JP4014454B2 (en) | 2002-06-12 | 2002-06-12 | Resin composition, method for producing the same, and heat radiating member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4014454B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7695817B2 (en) | 2003-11-05 | 2010-04-13 | Dow Corning Corporation | Thermally conductive grease and methods and devices in which said grease is used |
JP4687887B2 (en) * | 2004-10-14 | 2011-05-25 | 信越化学工業株式会社 | Thermally conductive silicone grease composition |
US20070031684A1 (en) | 2005-08-03 | 2007-02-08 | Anderson Jeffrey T | Thermally conductive grease |
JP4942978B2 (en) * | 2005-09-30 | 2012-05-30 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive silicone grease composition and semiconductor device using the same |
JP4841341B2 (en) * | 2006-07-11 | 2011-12-21 | コスモ石油ルブリカンツ株式会社 | High thermal conductivity compound |
JP5759860B2 (en) * | 2011-10-12 | 2015-08-05 | 三井金属鉱業株式会社 | Composite copper powder |
US11254849B2 (en) | 2015-11-05 | 2022-02-22 | Momentive Performance Materials Japan Llc | Method for producing a thermally conductive polysiloxane composition |
EP3489280B1 (en) | 2016-07-22 | 2022-02-16 | Momentive Performance Materials Japan LLC | Surface treatment agent for thermally conductive polyorganosiloxane composition |
CN109415564B (en) * | 2016-07-22 | 2021-12-21 | 迈图高新材料日本合同公司 | Thermally conductive silicone composition |
TWI744361B (en) * | 2016-07-22 | 2021-11-01 | 日商邁圖高新材料日本合同公司 | Thermal conductive polysiloxane composition |
JP6879690B2 (en) | 2016-08-05 | 2021-06-02 | スリーエム イノベイティブ プロパティズ カンパニー | Resin composition for heat dissipation, its cured product, and how to use them |
TWI746856B (en) | 2017-05-31 | 2021-11-21 | 日商邁圖高新材料日本合同公司 | Thermally conductive polysiloxane composition |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03106996A (en) * | 1989-09-20 | 1991-05-07 | Hitachi Ltd | Thermally conductive grease composition and computer cooling structure made by using it |
JP4330738B2 (en) * | 1999-11-29 | 2009-09-16 | 電気化学工業株式会社 | Aluminum nitride powder for resin filling and its use |
JP4330739B2 (en) * | 1999-11-29 | 2009-09-16 | 電気化学工業株式会社 | Aluminum nitride powder for resin filling and its use |
-
2002
- 2002-06-12 JP JP2002170810A patent/JP4014454B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004010880A (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5274439B2 (en) | Spherical hBN powder | |
EP2074058B1 (en) | Mixed boron nitride composition and method for making thereof | |
JP4014454B2 (en) | Resin composition, method for producing the same, and heat radiating member | |
WO2014199650A1 (en) | Thermosetting resin composition, method for producing thermally conductive sheet, and power module | |
JP5089908B2 (en) | High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof | |
JP2001503471A (en) | Conductive resin composition | |
JP3957596B2 (en) | Thermally conductive grease | |
JPWO2008133172A1 (en) | Composite filler for resin mixing | |
JP3891969B2 (en) | Thermally conductive grease | |
JP3256587B2 (en) | High thermal conductive radiator and method of manufacturing the same | |
JP2008222776A (en) | Heat-conductive silicone grease composition | |
WO2019031458A1 (en) | Low-dielectric-constant thermally-conductive heat dissipation member | |
JP7292941B2 (en) | Aluminum nitride composite filler | |
JP4481019B2 (en) | Mixed powder and its use | |
JP2010285569A (en) | Thermoconductive resin material and production method thereof | |
JP2021109825A (en) | Heat-conductive filler and heat-conductive composition containing the same | |
JP2001158610A (en) | Aluminum nitride powder for filling resin and use thereof | |
JP3739335B2 (en) | Heat dissipation member and power module | |
JP2001158609A (en) | Aluminum nitride powder for filling resin and use thereof | |
JP4124459B2 (en) | Grease | |
JP3764083B2 (en) | Method for producing aluminum nitride powder | |
JP4357064B2 (en) | Heat dissipation member | |
JP2015167181A (en) | Method of manufacturing heat dissipation sheet | |
JP2000022289A (en) | Resin composition for circuit board and circuit board using the same | |
WO2020196644A1 (en) | Bulk boron nitride particles, thermally conductive resin composition, and heat dissipating member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070911 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070911 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4014454 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110921 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120921 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120921 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130921 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |