[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06151219A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH06151219A
JPH06151219A JP4301340A JP30134092A JPH06151219A JP H06151219 A JPH06151219 A JP H06151219A JP 4301340 A JP4301340 A JP 4301340A JP 30134092 A JP30134092 A JP 30134092A JP H06151219 A JPH06151219 A JP H06151219A
Authority
JP
Japan
Prior art keywords
magnet
hot
alloy
bending
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4301340A
Other languages
Japanese (ja)
Inventor
Seiji Ihara
清二 伊原
Osamu Kobayashi
理 小林
Fumio Takagi
富美男 高城
Sei Arai
聖 新井
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4301340A priority Critical patent/JPH06151219A/en
Publication of JPH06151219A publication Critical patent/JPH06151219A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To mold an R-Fe-B cast and hot-worked magnet by conducting a hot bending work. CONSTITUTION:R (provided that R indicates at least a kind of rare-earth elements containing Y), Fe and B are used as a raw material component, the alloy having the aforesaid fundamental component is melted, cast and then the obtained cast ingot is hot-worked at the temperature of 500 deg.C or higher, and a hot bending work is performed on the obtained rolled magnet. In the above-mentioned process, the average crystal particle diameter after hot pressing should be 40mum or less, and besides, the standard deviation of crystal particle diameter distribution should be 15mum or less. Also, the crystal particles of particle diameter three times or more of average crystal particle diameter should not be contained. As a result, generation of cracks due to performance of bending work can be suppressed, and the bending work at high distortional speed can be conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的配向による磁気
異方性を有する永久磁石の製造方法、特にR(ただしR
はYを含む希土類元素のうち少なくとも1種),Fe,
Bを原料基本成分とする永久磁石の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet having magnetic anisotropy due to mechanical orientation, especially R (where R is
Is at least one of rare earth elements including Y), Fe,
The present invention relates to a method for producing a permanent magnet containing B as a raw material basic component.

【0002】[0002]

【従来の技術】永久磁石は、一般家庭の各種電気製品か
ら大型コンピューターの周辺端末機器まで、幅広い分野
で使用されている重要な電気・電子材料の一つであり、
最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。
2. Description of the Related Art Permanent magnets are one of the important electric and electronic materials used in a wide range of fields from various household electric appliances to peripheral terminals for large computers.
With the recent demand for miniaturization and high efficiency of electrical products,
Permanent magnets are also required to have higher performance.

【0003】永久磁石は、外部から電気的エネルギーを
供給しないで磁界を発生するための材料であり、保磁力
が大きく、また残留磁束密度も高いものが適している。
The permanent magnet is a material for generating a magnetic field without supplying electric energy from the outside, and a material having a large coercive force and a high residual magnetic flux density is suitable.

【0004】現在使用されている永久磁石のうち代表的
なものはアルニコ系鋳造磁石、フェライト磁石及び希土
類−遷移金属系磁石であり、特に希土類−遷移金属系磁
石であるR−Co系永久磁石やR−Fe−B系永久磁石
は、極めて高い保磁力とエネルギー積を持つ永久磁石と
して、従来から多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico type cast magnets, ferrite magnets and rare earth-transition metal type magnets, especially R-Co type permanent magnets which are rare earth-transition metal type magnets. The R-Fe-B system permanent magnet has been extensively researched and developed as a permanent magnet having an extremely high coercive force and energy product.

【0005】従来、これらR−Fe−B系の高性能異方
性永久磁石の製造方法には、次のようなものがある。
Conventionally, there are the following methods for producing these R—Fe—B type high-performance anisotropic permanent magnets.

【0006】(1)まず、特開昭59-46008号公報やM.Sagaw
a,S.Fujimura,N.Togawa,H.Yamamotoand Y.Matsu-ura;J.
Appl.Phys.Vol.55(6),15 March 1984,p2083 等には、原
子百分比で8〜30%のR(ただしRはYを含む希土類元素
の少なくとも1種)、2〜28%のB及び残部Feからなる
磁気異方性焼結体であることを特徴とする永久磁石が粉
末冶金法に基づく焼結によって製造されることが開示さ
れている。
(1) First, Japanese Patent Laid-Open No. 59-46008 and M. Sagaw
a, S.Fujimura, N.Togawa, H.Yamamoto and Y.Matsu-ura; J.
Appl.Phys.Vol.55 (6), 15 March 1984, p2083, etc., 8 to 30% R (where R is at least one rare earth element including Y) and 2 to 28% B in atomic percentage. It is disclosed that a permanent magnet characterized by being a magnetic anisotropic sintered body composed of Fe and the balance Fe is manufactured by sintering based on the powder metallurgy method.

【0007】この焼結法では、溶解・鋳造により合金イ
ンゴットを作製し、粉砕して適当な粒度(数μm)の磁
性粉を得る。磁性粉は成形助剤のバインダーと混練さ
れ、磁場中でプレス成形されて成形体が出来上がる。成
形体はアルゴン中で1100℃前後の温度1時間焼結され、
その後室温まで急冷される。焼結後、600 ℃前後の温度
で熱処理する事により永久磁石はさらに保磁力を向上さ
せる。
In this sintering method, an alloy ingot is produced by melting and casting and crushed to obtain a magnetic powder having an appropriate particle size (several μm). The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to form a molded body. The molded body is sintered in argon at a temperature of around 1100 ° C for 1 hour,
Then it is rapidly cooled to room temperature. After sintering, the coercive force of the permanent magnet is further improved by heat treatment at a temperature of around 600 ° C.

【0008】また、この焼結磁石の熱処理に関しては特
開昭61-217540 号公報、特開昭62-165305 号公報等に、
多段熱処理の効果が開示されている。
Regarding the heat treatment of this sintered magnet, Japanese Patent Laid-Open No. 61-217540, Japanese Patent Laid-Open No. 62-165305, etc.
The effect of multi-step heat treatment is disclosed.

【0009】(2)特開昭59-211549 号公報や R.W.Lee; A
ppl.Phys.Lett.Vol.46(8),15 April1985, p790には、非
常に微細な結晶性の磁性相を持つ、メルトスピニングさ
れた合金リボンの微細片が樹脂によって接着されたR−
Fe−B磁石が開示されている。 この永久磁石は、ア
モルファス合金を製造するに用いる急冷薄帯製造装置
で、厚さ30μm程度の急冷薄片を作り、その薄片を樹脂
と混練してプレス成形することにより製造される。
(2) JP-A-59-211549 and RWLee; A
Vol. 46 (8), 15 April 1985, p790, ppl.Phys.Lett.Vol.46,8, R- has a resin-bonded fine piece of melt-spun alloy ribbon with a very fine crystalline magnetic phase.
Fe-B magnets are disclosed. This permanent magnet is manufactured by a quenching ribbon production apparatus used for producing an amorphous alloy, by making a quenching thin piece having a thickness of about 30 μm, kneading the thin piece with a resin and press-molding.

【0010】(3)特開昭60-100402 号公報や R.W.Lee; A
ppl.Phys.Lett.Vol.46(8),15 April1985, p790には、前
記(2) の方法で使用した急冷薄片を、真空中あるいは不
活性雰囲気中で2段階ホットプレス法と呼ばれる方法で
緻密で異方性を有するR−Fe−B磁石を得ることが開
示されている。
(3) Japanese Patent Laid-Open No. 60-100402 and RWLee; A
Vol.46 (8), 15 April1985, p790, ppl.Phys.Lett.Vol.46, the quenching thin piece used in the method of (2) above is described by a method called a two-step hot pressing method in vacuum or in an inert atmosphere. It is disclosed to obtain a dense and anisotropic R-Fe-B magnet.

【0011】(4)特開昭62-276803 号公報には、R(た
だしRはYを含む希土類元素のうち少なくとも1種)8
〜30原子%,B 2〜28原子%,Co 50原子%以下,A
l15原子%以下、及び残部が鉄及びその他の製造上不可
避な不純物からなる合金を溶解・鋳造後、該鋳造インゴ
ットを 500℃以上の温度で熱間加工することにより結晶
粒を微細化しまたその結晶軸を特定の方向に配向せしめ
て、該鋳造合金を磁気的に異方性化することを特徴とす
る希土類−鉄系永久磁石が開示されている。
(4) In Japanese Patent Laid-Open No. 62-276803, R (where R is at least one of rare earth elements including Y) 8
~ 30 atom%, B 2 ~ 28 atom%, Co 50 atom% or less, A
After melting and casting an alloy consisting of less than 15 atom% and the balance of iron and other impurities that are unavoidable in production, the cast ingot is subjected to hot working at a temperature of 500 ° C or higher to refine the crystal grains and the crystals. Disclosed is a rare earth-iron-based permanent magnet characterized by orienting its axis in a specific direction to magnetically anisotropy the cast alloy.

【0012】また、この方法では形状自由度が低いとい
う欠点があるが、それを補うために、熱間加工により異
方性化された永久磁石を板状にしたものを熱間で曲げ加
工を行なうことによって成形する方法が特開平2-252222
号公報、特願平2-315397に示されている。また、特開平
2-297910号公報には鋳造合金を熱間圧延によって配向さ
せた後、プレスにより円弧状に成形しラジアル配向磁石
を製造する方法が開示されている。これらの方法は、該
磁石材料がきわめて脆い R2Fe14B金属間化合物を主
相としてもちながら、低融点の粒界相をもち、高温にお
いて半溶融状態にあるため、組成変形しやすいという性
質を利用したものである。
In addition, this method has a drawback that the degree of freedom in shape is low, but in order to compensate for this, a plate-shaped permanent magnet anisotropy by hot working is subjected to hot bending. A method of molding by carrying out is disclosed in JP-A-2-252222.
Japanese Patent Application No. 2-315397. In addition,
Japanese Patent Laid-Open No. 2-297910 discloses a method for producing a radial oriented magnet by orienting a cast alloy by hot rolling and then forming it into an arc shape by pressing. These methods have the property that the magnet material has an extremely brittle R 2 Fe 14 B intermetallic compound as a main phase, has a grain boundary phase with a low melting point, and is in a semi-molten state at a high temperature, so that the composition is easily deformed. Is used.

【0013】[0013]

【発明が解決しようとする課題】叙上の(1)〜(4)の従来
のR−Fe−B系永久磁石の製造方法は、次のごとき欠
点を有している。
The conventional methods for manufacturing R-Fe-B based permanent magnets (1) to (4) above have the following drawbacks.

【0014】(1)の永久磁石の製造方法は、合金を粉末
にすることを必須とするものであるが、R−Fe−B系
合金はたいへん酸素に対して活性を有するので、粉末化
すると余計酸化が激しくなり、焼結体中の酸素濃度はど
うしても高くなってしまう。
The method for producing a permanent magnet of (1) essentially requires that the alloy be made into powder. However, since the R-Fe-B alloy is very active with respect to oxygen, it cannot be powdered. Oxidation becomes excessive, and the oxygen concentration in the sintered body will inevitably increase.

【0015】また粉末を成形するときに、例えばステア
リン酸亜鉛の様な成形助剤を使用しなければならず、こ
れは焼結工程で前もって取り除かれるのであるが、成形
助剤中の数割は、磁石体の中に炭素の形で残ってしま
い、この炭素は著しくR−Fe−B磁石の磁気性能を低
下させ好ましくない。
When molding the powder, it is necessary to use a molding aid such as zinc stearate, which is removed beforehand in the sintering process. However, it remains in the form of carbon in the magnet body, and this carbon remarkably deteriorates the magnetic performance of the R-Fe-B magnet, which is not preferable.

【0016】成形助剤を加えてプレス成形した後の成形
体はグリーン体と言われ、これは大変脆く、ハンドリン
グが難しい。従って焼結炉にきれいに並べて入れるのに
は、相当の手間が掛かることも大きな欠点である。
The green body is a green body after press-molding by adding a molding aid, which is very brittle and difficult to handle. Therefore, it takes a great deal of time to neatly put them side by side in the sintering furnace, which is a big drawback.

【0017】これらの欠点があるので、一般的に言って
R−Fe−B系の焼結磁石の製造には、高価な設備が必
要になるばかりでなく、その製造方法は生産効率が悪
く、結局磁石の製造コストが高くなってしまう。従っ
て、比較的原料費の安いR−Fe−B系磁石の長所を活
かすことが出来ない。
Due to these drawbacks, generally speaking, not only expensive equipment is required for producing an R--Fe--B system sintered magnet, but also the production method is inferior in production efficiency. Eventually, the manufacturing cost of the magnet increases. Therefore, it is not possible to take advantage of the advantages of the R-Fe-B magnets, which have relatively low raw material costs.

【0018】また、磁場中成形の工程においてラジアル
異方性を付与することも可能であるが、次の焼結工程で
収縮が起こるため、寸法精度が低く、この収縮のために
磁石に割れが起こりやすく歩留まりが悪いという欠点が
ある。これを解決するための手段として、板状に焼結し
た磁石に対し、900〜1150℃の温度で荷重を加え
て曲げ加工を行なう方法が 特開昭62-262405号公報及び
特開平1-270210号公報に開示されている。しかし、これ
らに示された方法では型に加えた荷重のみによって加工
を行なっているため、加工に時間がかかり、実際の生産
を考えると実用的でない。また、加工速度の制御ができ
ないため、割れを生じやすいという欠点がある。
It is also possible to impart radial anisotropy in the step of molding in a magnetic field, but since shrinkage occurs in the subsequent sintering step, the dimensional accuracy is low and the magnet is cracked due to this shrinkage. It has a drawback that it easily occurs and the yield is low. As a means for solving this, a method of bending a plate-shaped sintered magnet by applying a load at a temperature of 900 to 1150 ° C. is disclosed in JP-A-62-262405 and JP-A-1-270210. It is disclosed in the publication. However, in the methods shown in these, since the processing is performed only by the load applied to the mold, the processing takes time and is not practical considering the actual production. Further, since the processing speed cannot be controlled, there is a drawback that cracking is likely to occur.

【0019】次に (2)並びに (3)の永久磁石の製造方法
は、真空メルトスピニング装置を使用するが、この装置
は、現在では大変生産性が悪くしかも高価である。
Next, in the permanent magnet manufacturing methods of (2) and (3), a vacuum melt spinning device is used, but this device is currently very unproductive and expensive.

【0020】(2)の永久磁石は、原理的に等方性である
ので低エネルギー積であり、ヒステリシスループの角形
性も悪く、温度特性に対しても、使用する面においても
不利である。
Since the permanent magnet of (2) is isotropic in principle, it has a low energy product, the squareness of the hysteresis loop is poor, and it is disadvantageous in terms of temperature characteristics and use.

【0021】(3)の永久磁石を製造する方法は、ホット
プレスを二段階に使うというユニークな方法であるが、
実際に量産を考えると非効率であることは否めない。
The method (3) for manufacturing a permanent magnet is a unique method in which hot pressing is used in two steps.
It cannot be denied that it is inefficient when actually considering mass production.

【0022】更にこの方法では、高温例えば 800℃以上
では結晶粒の粗大化が著しく、それによって保磁力iH
cが極端に低下し、実用的な永久磁石にはならない。
Further, according to this method, the crystal grains are remarkably coarsened at a high temperature of, for example, 800 ° C. or higher, which causes a coercive force iH.
c is extremely reduced, and it does not become a practical permanent magnet.

【0023】(4)の永久磁石を製造する方法は、熱間加
工が一段階でよく、また磁石合金をカプセルに密封して
熱間加工を行なえるため加工時の雰囲気制御が不要であ
るなど製造工程全体が簡略なため、製造コストが低い、
粉末工程を含まないため酸素の含有量が少なく耐食性が
よい、機械的強度が高く大型の磁石が製造可能であると
いった多くの長所を持つ製造法である。しかしながら、
この様な製造方法は大型磁石の大量生産には適している
が、形状自由度が低く、複雑な形状の磁石や円形・リン
グ形状の磁石を製造する場合には、切削・研削などの加
工コストがかかる上に歩留まりが低く、全体の製造コス
トが高くなってしまうという問題があった。また、板状
の磁石については曲げ加工が可能であり、曲面の径方向
と板厚方向を一致させることによりラジアル異方性を付
与することも可能であるが、曲げ加工は歪速度、加工温
度、板厚に依存し、割れを生じやすいという問題があっ
た。この問題については、割れが発生しないように曲げ
加工を行なうためには600〜1500℃の加工温度で
かつ歪速度0.5/s以下にしなければならないことが
特願平2-315397に示されている。また、熱間加工後の磁
石合金の平均結晶粒径を40μm以下とし、曲げ加工前
に粒成長を起こす工程を含まないようにすることによ
り、容易に、しかも割れを生じることなく曲げ加工を行
なうことができることが 特願平4-36614に示されてい
る。
In the method of manufacturing a permanent magnet of (4), hot working may be performed in one step, and since hot working can be performed by sealing the magnet alloy in a capsule, it is not necessary to control the atmosphere at the time of working. Since the whole manufacturing process is simple, the manufacturing cost is low,
Since it does not include a powder process, it has many advantages such as low oxygen content, good corrosion resistance, high mechanical strength, and the ability to manufacture large magnets. However,
Although such a manufacturing method is suitable for mass production of large magnets, it has a low degree of freedom in shape, and in the case of manufacturing magnets with complicated shapes or circular / ring-shaped magnets, processing costs such as cutting and grinding are required. In addition to this, there is a problem that the yield is low and the overall manufacturing cost is high. In addition, plate magnets can be bent, and radial anisotropy can be imparted by matching the radial direction of the curved surface with the plate thickness direction. However, there is a problem that cracks are likely to occur depending on the plate thickness. Regarding this problem, Japanese Patent Application No. 2-315397 discloses that the bending temperature must be 600 to 1500 ° C. and the strain rate must be 0.5 / s or less in order to perform bending without cracking. ing. In addition, the average grain size of the magnet alloy after hot working is set to 40 μm or less so as not to include the step of causing grain growth before bending, so that bending can be performed easily and without causing cracks. What can be done is shown in Japanese Patent Application No. 4-36614.

【0024】しかしながら、これらの発明に関して追試
を行なった結果、上記曲げ加工は前記の条件の他に曲げ
加工前の磁石合金の結晶粒径及びその分布状態に大きく
影響を受けるため、高歪速度での加工を容易にするため
には曲げ加工前の磁石合金の結晶粒径分布を規定する必
要があることがわかった。しかし、特願平4-36614 には
結晶粒径分布に関しての詳細な記述がない。
However, as a result of conducting additional tests with respect to these inventions, the bending work is greatly affected by the crystal grain size and the distribution state of the magnet alloy before the bending work in addition to the above-mentioned conditions. It was found that it is necessary to specify the grain size distribution of the magnet alloy before bending in order to facilitate the processing of. However, Japanese Patent Application No. 4-36614 does not have a detailed description regarding the grain size distribution.

【0025】本発明は、以上の従来技術の欠点特に(4)
の永久磁石における形状自由度に関する問題を解決する
ものであり、その目的とするところは、曲げ加工前の磁
石合金の組織を詳細に規定することによって曲げ加工時
に起こる割れの発生を防ぎ、高歪速度での曲げ加工を可
能にすることにより、高性能かつ低コストの永久磁石の
製造方法を提供することにある。
The present invention has the above-mentioned drawbacks of the prior art, particularly (4).
Is to solve the problem regarding the degree of freedom of shape in the permanent magnet of the above, and its purpose is to prevent the occurrence of cracking during bending by specifying the structure of the magnet alloy before bending in detail, and to prevent high strain. An object of the present invention is to provide a high-performance and low-cost manufacturing method of a permanent magnet by enabling bending at a high speed.

【0026】[0026]

【課題を解決するための手段】本発明の永久磁石の製造
方法は、R(ただしRはYを含む希土類元素のうち少な
くとも1種),Fe,Bを原料基本成分とし、該基本成
分とする合金を溶解・鋳造し、次いで鋳造インゴットを
500℃以上の温度において熱間加工し、熱間で曲げ加
工を行なって製造する円弧状磁石において、熱間加工後
の磁石合金における平均結晶粒径が40μm以下であ
り、結晶粒径分布の標準偏差が15μm以下である磁石
合金に対し曲げ加工を行なうことを特徴とする。
According to the method for producing a permanent magnet of the present invention, R (where R is at least one of rare earth elements including Y), Fe and B are used as raw material basic components and the basic components are used. In an arc-shaped magnet produced by melting and casting an alloy, then hot working the cast ingot at a temperature of 500 ° C. or higher, and performing hot bending, the average crystal grain size in the magnet alloy after hot working is It is characterized in that the magnet alloy having a size of 40 μm or less and a standard deviation of the crystal grain size distribution of 15 μm or less is bent.

【0027】また、上記の熱間加工後の磁石合金におけ
る平均結晶粒径が40μm以下であり、平均結晶粒径の
3倍以上の結晶粒を含まない磁石合金に対し曲げ加工を
行なうことを特徴とする。
The magnet alloy after hot working has an average crystal grain size of 40 μm or less, and the magnet alloy containing no crystal grains of 3 times the average grain size or more is bent. And

【0028】前記のように、鋳造インゴットに熱間加工
を施して得られた磁石では、形状自由度が低く、磁石の
形状が複雑な場合、切削・研削などの加工コストが高く
なってしまうという問題があった。また、板状の磁石に
ついては曲げ加工が可能であるが、曲げ加工は歪速度、
加工温度、板厚に依存し、割れを生じやすいという問題
があった。本発明では、熱間加工後の磁石合金の平均結
晶粒径が40μm以下であり、なおかつ結晶粒径分布の
標準偏差を15μm以下とすることにより高歪速度にお
いても容易に、しかも割れが生じることなく曲げ加工を
行なうことができることを見いだした。また、上記の組
織を持った磁石合金においてさらに平均結晶粒径の3倍
以上の粒径の結晶粒を含まないような組織であれば、さ
らに熱間加工後の曲げ加工が容易になり、曲げ加工時の
割れの発生が抑えられ、高歪速度での曲げ加工が可能に
なることを見いだした。
As described above, a magnet obtained by subjecting a cast ingot to hot working has a low degree of freedom in shape, and if the magnet has a complicated shape, the machining cost such as cutting and grinding increases. There was a problem. In addition, the plate magnet can be bent, but the bending speed is
There is a problem that cracks are likely to occur depending on the processing temperature and the plate thickness. In the present invention, the average grain size of the magnet alloy after hot working is 40 μm or less, and the standard deviation of the grain size distribution is 15 μm or less so that cracks easily occur even at a high strain rate. It has been found that the bending process can be performed without the need. Further, in the magnet alloy having the above structure, if the structure does not further include crystal grains having a grain size three times or more of the average crystal grain size, bending after hot working becomes easier, We have found that the occurrence of cracks during processing is suppressed and bending at high strain rates is possible.

【0029】以下、本発明における永久磁石の好ましい
組成範囲について説明する。
The preferable composition range of the permanent magnet in the present invention will be described below.

【0030】希土類としては、Y,La,Ce,Pr,
Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luが候補として挙げられ、これらのうちの
1種あるいは2種以上を組み合わせて用いる。最も高い
磁気性能はPrで得られるので、実用的には Pr,P
r−Nd合金,Ce−Pr−Nd合金等が用いられる。
少量の重希土元素、例えばDy,Tb等は保磁力の向上
に有効である。
As rare earths, Y, La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, and Lu are listed as candidates, and one or more of these are used in combination. Since the highest magnetic performance can be obtained with Pr, practically, Pr, P
An r-Nd alloy, a Ce-Pr-Nd alloy, etc. are used.
A small amount of heavy rare earth element, such as Dy or Tb, is effective for improving the coercive force.

【0031】R−Fe−B系磁石の主相はR2Fe14
である。従ってRが8原子%未満では、もはや上記化合
物を形成せず高磁気特性は得られない。一方Rが30原
子%を越えると非磁性のRリッチ相が多くなり磁気特性
は著しく低下する。よってRの範囲は8〜30原子%が
適当である。しかし高い残留磁束密度のためには、好ま
しくはR8〜25原子%が適当である。
The main phase of the R-Fe-B magnet is R 2 Fe 14 B.
Is. Therefore, if R is less than 8 atomic%, the above compound is no longer formed and high magnetic properties cannot be obtained. On the other hand, when R exceeds 30 atom%, the nonmagnetic R-rich phase is increased and the magnetic properties are remarkably deteriorated. Therefore, the range of R is suitably 8 to 30 atomic%. However, for high residual magnetic flux density, R8 to 25 atomic% is preferable.

【0032】Bは、R2Fe14B 相を形成するための必
須元素であり、2原子%未満では菱面体のR−Fe系に
なるために高保磁力は望めない。また28原子%を越え
るとBに富む非磁性相が多くなり、残留磁束密度は著し
く低下してくる。しかし高保磁力を得るためには、好ま
しくはB8原子%以下がよく、それ以上では微細なR2
Fe14B 相を得ることが困難で、保磁力は小さい。
B is an essential element for forming the R 2 Fe 14 B phase, and if it is less than 2 atomic%, a rhombohedral R—Fe system is formed, so that a high coercive force cannot be expected. On the other hand, if it exceeds 28 atomic%, the non-magnetic phase rich in B is increased and the residual magnetic flux density is significantly lowered. However, in order to obtain a high coercive force, B8 atomic% or less is preferable, and if it is more than that, fine R 2
It is difficult to obtain the Fe 14 B phase, and the coercive force is small.

【0033】Coは本系磁石のキュリ−点を増加させる
のに有効な元素であるが、保磁力を小さくするので50
原子%以下がよい。
Co is an element effective in increasing the Curie point of the present system magnet, but since it reduces the coercive force, it is 50
Atomic% or less is good.

【0034】Cu,Ag,Au,Pd,Ga等のRリッ
チ相とともに存在し、その相の融点を低下させる元素
は、保磁力の増大効果を有する。しかし、これらの元素
は非磁性元素であるため、その量を増すと残留磁束密度
が減少するので、6原子%以下が好ましい。
An element that is present together with the R-rich phase such as Cu, Ag, Au, Pd, and Ga and that lowers the melting point of that phase has the effect of increasing the coercive force. However, since these elements are non-magnetic elements, the residual magnetic flux density decreases as the amount of these elements increases, so 6 atomic% or less is preferable.

【0035】熱間加工における温度は再結晶温度以上が
望ましく、本発明R−Fe−B系合金においては好まし
くは500℃以上である。
The temperature in hot working is preferably a recrystallization temperature or higher, and is preferably 500 ° C. or higher in the R—Fe—B type alloy of the present invention.

【0036】曲げ加工における温度は加工中に割れが発
生することなく生産性の高い加工速度での加工を実現さ
せるためには600℃以上が必要である。そしてその加
工温度が1050℃を超えると結晶粒の粗大化による保
磁力の低下を起こす可能性が高いので、これ以下の温度
が望ましい。
The temperature in bending is required to be 600 ° C. or higher in order to realize processing at a processing speed with high productivity without causing cracks during processing. If the processing temperature exceeds 1050 ° C., there is a high possibility that the coercive force will decrease due to the coarsening of crystal grains, so a temperature below this is desirable.

【0037】次に本発明の実施例について述べる。Next, examples of the present invention will be described.

【0038】[0038]

【実施例】【Example】

(実施例1)アルゴン雰囲気中で誘導加熱炉を用いて、
表1に示す組成の合金を溶解し、鋳造した。この時、希
土類、鉄及び銅の原料としては99.9%の純度のもの
を用い、ボロンはフェロボロンを用いた。
(Example 1) Using an induction heating furnace in an argon atmosphere,
Alloys having the compositions shown in Table 1 were melted and cast. At this time, raw materials of rare earth, iron and copper having a purity of 99.9% were used, and ferroboron was used as boron.

【0039】こうして得られた鋳造インゴットを鉄製の
カプセルに入れ、脱気し、密封して、加工温度950℃
で熱間圧延を施した。この時、一回の圧延での高さの減
少量が30%の圧延を4パス行い、総加工量が76%に
なるようにした。
The cast ingot thus obtained was placed in an iron capsule, degassed, sealed, and processed at a processing temperature of 950 ° C.
Was hot-rolled. At this time, rolling with a height reduction amount of 30% in one rolling was carried out for 4 passes so that the total working amount became 76%.

【0040】またこの熱間加工時においては、合金の圧
下方向に平行になるように結晶の磁化容易軸は配向し
た。こうして得られた圧延磁石から、幅15mm×長さ
20mm×厚さ2mmの板状サンプルを切り出した。こ
の板状サンプルを不活性ガス中で1000℃に加熱した
後、加工速度0.800mm/min(歪速度4.0×
10-4/s)で型曲げ加工を行ない、外径22mm、内
径18mmの円弧状磁石に成形した。この時、1条件に
つき6サンプルの加工を行なった。その結果を表2に示
す。ここで、成功数とは、同一条件で加工を行なった6
サンプルのうち、クラックが発生することなく曲げ加工
が完了したサンプルの数である。
During this hot working, the easy magnetization axis of the crystal was oriented so as to be parallel to the rolling direction of the alloy. A plate-like sample having a width of 15 mm, a length of 20 mm and a thickness of 2 mm was cut out from the rolled magnet thus obtained. After heating this plate-shaped sample to 1000 ° C. in an inert gas, the processing speed was 0.800 mm / min (strain rate 4.0 ×
The mold was bent at 10 −4 / s) to form an arc magnet having an outer diameter of 22 mm and an inner diameter of 18 mm. At this time, 6 samples were processed per one condition. The results are shown in Table 2. Here, the number of successes means that machining was performed under the same conditions.
It is the number of samples that have been completely bent without cracks.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】この結果より、熱間加工後の磁石合金にお
ける結晶粒径分布の標準偏差が15μmを超えるもの
は、加工性が悪く、曲げ加工で割れが生じていることが
わかる。
From these results, it is understood that the magnet alloy after hot working having a standard deviation of the crystal grain size distribution of more than 15 μm has poor workability and cracks are generated during bending.

【0044】(実施例2)実施例1と同様に、アルゴン
雰囲気中で誘導加熱炉を用いて、表3に示す組成の合金
を溶解し、鋳造した。この時、希土類、鉄及び銅の原料
としては、実施例1と同様に99.9%の純度のものを
用い、ボロンはフェロボロンを用いた。
(Example 2) As in Example 1, alloys having the compositions shown in Table 3 were melted and cast in an argon atmosphere using an induction heating furnace. At this time, as the raw materials of the rare earths, iron, and copper, those having a purity of 99.9% were used as in Example 1, and ferroboron was used as the boron.

【0045】こうして得られた鋳造インゴットを鉄製の
カプセルに入れ、脱気し、密封して、実施例1の場合と
同様に、加工温度950℃で熱間圧延を施した。この
時、加工度30%の圧延を4回行い、最終的な加工度が
76%になるようにした。
The cast ingot thus obtained was placed in an iron capsule, deaerated, sealed, and hot-rolled at a processing temperature of 950 ° C. as in Example 1. At this time, rolling with a workability of 30% was performed four times so that the final workability was 76%.

【0046】こうして得られた圧延磁石から、幅10m
m×長さ12mm×厚さ1mmの板状サンプルを切り出
した。この板状サンプルに対し組織観察を行ない平均粒
径及び結晶粒径分布を求めたところ、表4に示す分布で
あった。この板状サンプルを不活性ガス中で1000℃
に加熱した後、次の3条件で型曲げ加工を行ない、外径
14mm、内径12mmの円弧状磁石に成形した。
A width of 10 m is obtained from the rolled magnet thus obtained.
A plate-like sample of m × length 12 mm × thickness 1 mm was cut out. When the average grain size and crystal grain size distribution were determined by observing the structure of this plate sample, the distributions shown in Table 4 were obtained. This plate sample is heated at 1000 ° C in an inert gas.
After heating, the mold was bent under the following three conditions to form an arc-shaped magnet having an outer diameter of 14 mm and an inner diameter of 12 mm.

【0047】 条件1:歪速度1.5×10-4/s(加工速度0.21
6mm/min) 条件2:歪速度4.0×10-4/s(加工速度0.57
6mm/min) 条件3:歪速度7.5×10-4/s(加工速度1.08
0mm/min) この時、1条件につき6サンプルの加工を行なった。そ
の結果を表5に示す。ここで、成功数とは、同一条件で
加工を行なった6サンプルのうち、クラックが発生する
ことなく曲げ加工が完了したサンプルの数である。
Condition 1: Strain rate 1.5 × 10 −4 / s (processing speed 0.21
6 mm / min) Condition 2: Strain rate 4.0 × 10 −4 / s (processing speed 0.57
6 mm / min) Condition 3: Strain rate 7.5 × 10 −4 / s (processing speed 1.08
0 mm / min) At this time, 6 samples were processed per one condition. The results are shown in Table 5. Here, the number of successes is the number of samples that have been bent without causing cracks among the 6 samples processed under the same conditions.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】この結果より、熱間加工後の磁石合金にお
ける結晶粒径分布の標準偏差が15μmを超えるもの
は、加工性が劣っており、特に高歪速度での曲げ加工に
おいて割れが生じていることがわかる。
From these results, it was found that the magnet alloys having a standard deviation of the crystal grain size distribution in the hot-worked magnet alloy of more than 15 μm had poor workability, and cracks occurred especially in bending at a high strain rate. I understand.

【0052】(実施例3)実施例1及び2と同様に、ア
ルゴン雰囲気中で誘導加熱炉を用いて、表6に示す組成
の合金を溶解し、鋳造した。この時、希土類、鉄及び銅
の原料としては、実施例1及び2と同様に99.9%の
純度のものを用い、ボロンはフェロボロンを用いた。
(Example 3) As in Examples 1 and 2, alloys having the compositions shown in Table 6 were melted and cast in an argon atmosphere using an induction heating furnace. At this time, as the raw materials of the rare earths, iron and copper, those having a purity of 99.9% were used as in the case of Examples 1 and 2, and ferroboron was used as the boron.

【0053】こうして得られた鋳造インゴットを鉄製の
カプセルに入れ、脱気し、密封して、実施例1及び2の
場合と同様に、加工温度950℃で熱間圧延を施した。
この時、加工度30%の圧延を4回行い、最終的な加工
度が76%になるようにした。
The cast ingot thus obtained was placed in an iron capsule, deaerated, sealed, and hot-rolled at a working temperature of 950 ° C. as in Examples 1 and 2.
At this time, rolling with a workability of 30% was performed four times so that the final workability was 76%.

【0054】こうして得られた圧延磁石から、幅10m
m×長さ40mm×厚さ4mmのサンプルを切り出し
た。これらのサンプルについて組織観察を行ない、粒径
分布を調べたところ、すべてその標準偏差は15μm以
下であった。この板状サンプルを不活性ガス中で100
0℃に加熱した後、次に示す3条件で型曲げ加工を行な
い、外径25mm、内径21mmの円弧状磁石に成形し
た。
A width of 10 m is obtained from the rolled magnet thus obtained.
A sample of m × length 40 mm × thickness 4 mm was cut out. When the structure of these samples was observed and the particle size distribution was examined, the standard deviations were all 15 μm or less. This plate sample is placed in an inert gas to 100
After heating to 0 ° C., the mold was bent under the following three conditions to form an arc-shaped magnet having an outer diameter of 25 mm and an inner diameter of 21 mm.

【0055】 条件1:加工速度1.20mm/min(歪速度3.0
×10-4/s) 条件2:加工速度3.00mm/min(歪速度7.5
×10-4/s) 条件3:加工速度4.00mm/min(歪速度1.0
×10-3/s) その結果を表7に示す。ここで、成功数とは加工により
クラックが発生することなく曲げ加工が完了したサンプ
ルの数である。
Condition 1: Processing speed 1.20 mm / min (strain speed 3.0
× 10 -4 / s) Condition 2: Processing speed 3.00 mm / min (strain speed 7.5)
× 10 -4 / s) Condition 3: Processing speed 4.00 mm / min (strain speed 1.0
× 10 -3 / s) The results are shown in Table 7. Here, the number of successes is the number of samples for which the bending process has been completed without the generation of cracks due to the process.

【0056】[0056]

【表6】 [Table 6]

【0057】[0057]

【表7】 [Table 7]

【0058】この結果より、熱間加工後の磁石合金で平
均結晶粒系の3倍以上の粒径の結晶粒を含んでいるもの
は、加工性が悪く、特に高歪速度における曲げ加工にお
いて割れが生じていることがわかる。
From these results, it is found that the magnet alloy after hot working containing crystal grains having a grain size three times or more of the average grain size has poor workability and cracks especially in bending at a high strain rate. It can be seen that

【0059】以上の実施例から、平均結晶粒径が40μ
m以下である熱間加工後の磁石合金において結晶粒径分
布の標準偏差を15μm以下とするようにして熱間で曲
げ加工することにより、曲げ加工時における割れの発生
を防ぐことができ、高歪速度での曲げ加工が可能になる
ことは明らかである。また、熱間加工後の磁石合金の結
晶粒径を40μm以下として、なおかつ平均結晶粒系の
3倍以上の粒径の結晶粒を含まないようにすることによ
り、粗大な結晶粒に起因する加工性の劣化が起こらず、
曲げ加工時における割れの発生を防ぎ、高歪速度での加
工が可能になることは明らかである。
From the above examples, the average crystal grain size is 40 μm.
In the magnet alloy after hot working having a temperature of m or less, the standard deviation of the crystal grain size distribution is set to 15 μm or less, and by performing hot bending, it is possible to prevent cracking during bending, Obviously, bending at a strain rate is possible. Further, by setting the crystal grain size of the magnet alloy after hot working to 40 μm or less and not containing the crystal grains having a grain size three times or more of the average grain size, the processing caused by the coarse crystal grains is performed. Deterioration of sex does not occur,
It is clear that cracking can be prevented from occurring during bending and that processing at a high strain rate becomes possible.

【0060】[0060]

【発明の効果】叙上のごとく本発明の永久磁石の製造方
法は、次のごとき効果を持つ。
As described above, the method for manufacturing a permanent magnet of the present invention has the following effects.

【0061】(1)製造プロセスが簡単であり、コストが
安い。
(1) The manufacturing process is simple and the cost is low.

【0062】(2)従来の焼結法と比較して、加工工数及
び生産投資額を著しく低減させることが出来る。
(2) Compared with the conventional sintering method, the processing man-hour and the production investment can be remarkably reduced.

【0063】(3)従来のメルトスピニング法による磁石
の製造方法と比較して、高性能でしかも低コストの磁石
を作ることが出来る。
(3) As compared with the conventional method for producing a magnet by the melt spinning method, a high-performance and low-cost magnet can be produced.

【0064】(4)従来の熱間加工法による磁石の製造方
法では製造が困難であった形状の磁石を低コストで生産
性よく製造することができる。
(4) A magnet having a shape that was difficult to manufacture by the conventional method for manufacturing a magnet by the hot working method can be manufactured at low cost with high productivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 聖 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 (72)発明者 秋岡 宏治 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor St. Arai 3-3-5 Yamato, Suwa-shi, Nagano Seiko Epson Corporation (72) Inventor Koji Akioka 3-3-5 Yamato, Suwa-shi, Nagano Seiko Epson Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種),Fe,Bを原料基本成分とし、該
基本成分とする合金を溶解・鋳造し、次いで鋳造インゴ
ットを500℃以上の温度において熱間加工し、熱間で
曲げ加工を行なって製造する円弧状磁石において、熱間
加工後の磁石合金の平均結晶粒径が40μm以下であ
り、結晶粒径分布の標準偏差が15μm以下である磁石
合金に対し曲げ加工を行なうことを特徴とする永久磁石
の製造方法。
1. R (where R is at least one of rare earth elements including Y), Fe and B as raw material basic components, an alloy having the basic components is melted and cast, and then a cast ingot is heated to 500 ° C. or higher. In an arc-shaped magnet manufactured by hot working at a temperature of, and hot bending, the average grain size of the magnet alloy after hot working is 40 μm or less, and the standard deviation of the grain size distribution is 15 μm. A method for producing a permanent magnet, which comprises bending the following magnet alloy.
【請求項2】 請求項1記載の曲げ加工において、熱間
加工後の平均結晶粒径の3倍以上の結晶粒を含まない磁
石合金に対し曲げ加工を行なうことを特徴とする永久磁
石の製造方法。
2. The manufacturing of a permanent magnet according to claim 1, wherein bending is performed on a magnet alloy that does not contain crystal grains that are three times or more of the average grain size after hot working. Method.
JP4301340A 1992-11-11 1992-11-11 Manufacture of permanent magnet Pending JPH06151219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4301340A JPH06151219A (en) 1992-11-11 1992-11-11 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4301340A JPH06151219A (en) 1992-11-11 1992-11-11 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH06151219A true JPH06151219A (en) 1994-05-31

Family

ID=17895686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4301340A Pending JPH06151219A (en) 1992-11-11 1992-11-11 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH06151219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108022707A (en) * 2016-11-04 2018-05-11 上海交通大学 A kind of thermal deformation or the reversely heat treatment process of extrusion Nd-Fe-B magnets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108022707A (en) * 2016-11-04 2018-05-11 上海交通大学 A kind of thermal deformation or the reversely heat treatment process of extrusion Nd-Fe-B magnets
CN108022707B (en) * 2016-11-04 2020-03-17 上海交通大学 Thermal treatment process for thermal deformation or reverse extrusion of Nd-Fe-B magnet

Similar Documents

Publication Publication Date Title
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
JPH06302417A (en) Permanent magnet and its manufacture
JPH06151219A (en) Manufacture of permanent magnet
JPH04143221A (en) Production of permanent magnet
JP2579787B2 (en) Manufacturing method of permanent magnet
JPH05135976A (en) Manufacture of permanent magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH05315113A (en) Manufacture of permanent magnet
JPH05315112A (en) Manufacture of permanent magnet
JPH04187722A (en) Production of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH05315170A (en) Manufacture of permanent magnet
JPH05135920A (en) Manufacture of permanent magnet
JPH06260359A (en) Production of rare-earth element permanent magnet
JPH06244012A (en) Manufacture of permanent magnet
JPH04324916A (en) Manufacture of rare earth/iron permanent magnet
JPH0422103A (en) Method of manufacturing permanent magnet
JPH04324907A (en) Manufacture of permanent magnet
JPH0418708A (en) Manufacture of permanent magnet
JPH05135921A (en) Rare earth permanent magnet and its manufacture