[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04324916A - Manufacture of rare earth/iron permanent magnet - Google Patents

Manufacture of rare earth/iron permanent magnet

Info

Publication number
JPH04324916A
JPH04324916A JP3095699A JP9569991A JPH04324916A JP H04324916 A JPH04324916 A JP H04324916A JP 3095699 A JP3095699 A JP 3095699A JP 9569991 A JP9569991 A JP 9569991A JP H04324916 A JPH04324916 A JP H04324916A
Authority
JP
Japan
Prior art keywords
heat treatment
rare earth
permanent magnet
rate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3095699A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Fumio Takagi
富美男 高城
Sei Arai
聖 新井
Seiji Ihara
清二 伊原
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3095699A priority Critical patent/JPH04324916A/en
Publication of JPH04324916A publication Critical patent/JPH04324916A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To accomplish low cost and high efficiency in the manufacture of permanent magnet containing R(R is at least a kind of element selected from rare-earth elements containing Y), Fe and B as fundamental raw material component. CONSTITUTION:An alloy having R(R is at least a kind of element selected from rare earth elements containing Y), Fe and B as the fundamental component of raw material, is fused and cast, it is brought into an anisotropic state by conducting a hot processing at 500 deg.C or higher, Then it is heat-treated at 1000 to 1050 deg.C, and another heat treatment is conducted at 450 to 700 deg.C. In order to obtain higher coercive force and higher efficiency, a heat treatment is conducted at 1000 to 1050 deg.C, then a two-step heat treatment, in which the material is cooled down to 450 deg.C or lower at the speed of 5 deg.C/min. or higher and then reheated again to 450 to 700 deg.C and cooled down to room temperature, is repeated twice or more times.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、機械的配向による磁気
異方性を有する永久磁石の製造方法、特にR(ただしR
はYを含む希土類元素のうち少なくとも1種),Fe,
Bを原料基本成分とする永久磁石の製造方法に関するも
のである。
[Industrial Application Field] The present invention relates to a method for manufacturing a permanent magnet having magnetic anisotropy due to mechanical orientation, and in particular R
is at least one rare earth element including Y), Fe,
This invention relates to a method for producing a permanent magnet using B as a basic raw material component.

【0002】0002

【従来の技術】永久磁石は、一般家庭の各種電気製品か
ら大型コンピューターの周辺端末機器まで、幅広い分野
で使用されている重要な電気・電子材料の一つであり、
最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。
[Prior Art] Permanent magnets are one of the important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to peripheral terminal equipment for large computers.
With the recent demand for smaller and more efficient electrical products,
Permanent magnets are also required to have increasingly higher performance.

【0003】永久磁石は、外部から電気的エネルギーを
供給しないで磁界を発生するための材料であり、保磁力
が大きく、また残留磁束密度も高いものが適している。
Permanent magnets are materials for generating magnetic fields without externally supplying electrical energy, and those with large coercive force and high residual magnetic flux density are suitable.

【0004】現在使用されている永久磁石のうち代表的
なものはアルニコ系鋳造磁石、フェライト磁石及び希土
類−遷移金属系磁石であり、特に希土類−遷移金属系磁
石であるR−Co系永久磁石やR−Fe−B系永久磁石
は、極めて高い保磁力とエネルギー積を持つ永久磁石と
して、従来から多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico cast magnets, ferrite magnets, and rare earth-transition metal magnets, particularly R-Co permanent magnets, which are rare earth-transition metal magnets. R-Fe-B permanent magnets have been extensively researched and developed as permanent magnets with extremely high coercive force and energy product.

【0005】従来、これらR−Fe−B系の高性能異方
性永久磁石の製造方法には、次のようなものがある。
Conventionally, there are the following methods for producing these R-Fe-B-based high-performance anisotropic permanent magnets.

【0006】(1)まず、特開昭59−46008号公
報や M.Sagawa,S.Fujimura,N.
Togawa,H.Yamamotoand Y.Ma
tsuura;J.Appl.Phys.Vol.55
(6),15 March 1984,p2083 等
には、原子百分比で8〜30%のR(ただしRはYを含
む希土類元素の少なくとも1種)、2〜28%のB及び
残部Feからなる磁気異方性焼結体であることを特徴と
する永久磁石が粉末冶金法に基づく焼結によって製造さ
れることが開示されている。
(1) First, Japanese Patent Laid-Open No. 59-46008 and M. Sagawa, S. Fujimura, N.
Togawa, H. Yamamoto and Y. Ma
tsuura;J. Appl. Phys. Vol. 55
(6), 15 March 1984, p2083 etc., a magnetic anisotropy consisting of 8 to 30% R (however, R is at least one rare earth element including Y), 2 to 28% B, and the balance Fe. It is disclosed that a permanent magnet characterized by being an orthogonal sintered body is manufactured by sintering based on a powder metallurgy method.

【0007】この焼結法では、溶解・鋳造により合金イ
ンゴットを作製し、粉砕して適当な粒度(数μm)の磁
性粉を得る。磁性粉は成形助剤のバインダーと混練され
、磁場中でプレス成形されて成形体が出来上がる。成形
体はアルゴン中で1100℃前後の温度1時間焼結され
、その後室温まで急冷される。焼結後、600 ℃前後
の温度で熱処理する事により永久磁石はさらに保磁力を
向上させる。
[0007] In this sintering method, an alloy ingot is produced by melting and casting, and then pulverized to obtain magnetic powder with a suitable particle size (several μm). The magnetic powder is kneaded with a binder, which is a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature of around 1100° C. for 1 hour and then rapidly cooled to room temperature. After sintering, the permanent magnet is heat-treated at a temperature of around 600°C to further improve its coercive force.

【0008】また、この焼結磁石の熱処理に関しては特
開昭61−217540 号公報、特開昭62−165
305 号公報等に、多段熱処理の効果が開示されてい
る。
[0008] Regarding heat treatment of this sintered magnet, Japanese Patent Application Laid-Open No. 61-217540 and Japanese Patent Application Laid-Open No. 62-165
No. 305 and the like disclose the effects of multistage heat treatment.

【0009】(2)特開昭59−211549 号公報
や R.W.Lee;  Appl.Phys.Let
t.Vol.46(8),15 April1985,
p790には、非常に微細な結晶性の磁性相を持つ、メ
ルトスピニングされた合金リボンの微細片が樹脂によっ
て接着されたR−Fe−B磁石が開示されている。  
この永久磁石は、アモルファス合金を製造するに用いる
急冷薄帯製造装置で、厚さ30μm程度の急冷薄片を作
り、その薄片を樹脂と混練してプレス成形することによ
り製造される。
(2) Japanese Unexamined Patent Publication No. 59-211549 and R. W. Lee; Appl. Phys. Let
t. Vol. 46(8), 15 April1985,
P790 discloses an R-Fe-B magnet in which fine pieces of melt-spun alloy ribbon with a very fine crystalline magnetic phase are bonded together with a resin.
This permanent magnet is manufactured by making a quenched thin piece with a thickness of about 30 μm using a quenched ribbon manufacturing apparatus used for manufacturing an amorphous alloy, and then kneading the thin piece with a resin and press-molding it.

【0010】(3)特開昭60−100402 号公報
や R.W.Lee; Appl. Phys.Let
t.Vol.46(8),15 April1985,
p790には、前記(2) の方法で使用した急冷薄片
を、真空中あるいは不活性雰囲気中で2段階ホットプレ
ス法と呼ばれる方法で緻密で異方性を有するR−Fe−
B磁石を得ることが開示されている。
(3) Japanese Unexamined Patent Publication No. 60-100402 and R. W. Lee; Appl. Phys. Let
t. Vol. 46(8), 15 April1985,
For p790, the quenched flakes used in the method (2) above are processed into a dense and anisotropic R-Fe-
It is disclosed to obtain a B magnet.

【0011】(4)特開昭62−276803 号公報
には、R(ただしRはYを含む希土類元素のうち少なく
とも1種)8〜30原子%,B 2〜28原子%,Co
 50原子%以下,Al 15原子%以下、及び残部が
鉄及びその他の製造上不可避な不純物からなる合金を溶
解・鋳造後、該鋳造インゴットを 500℃以上の温度
で熱間加工することにより結晶粒を微細化しまたその結
晶軸を特定の方向に配向せしめて、該鋳造合金を磁気的
に異方性化することを特徴とする希土類−鉄系永久磁石
が開示されている。
(4) JP-A No. 62-276803 discloses that R (R is at least one of rare earth elements including Y) 8 to 30 atomic %, B 2 to 28 atomic %, Co
After melting and casting an alloy consisting of 50 at% or less Al, 15 at% or less Al, and the balance being iron and other impurities unavoidable in manufacturing, the cast ingot is hot worked at a temperature of 500°C or higher to form crystal grains. A rare earth-iron permanent magnet is disclosed, which is characterized by making the cast alloy magnetically anisotropic by making the cast alloy finer and orienting its crystal axis in a specific direction.

【0012】また、この熱間加工磁石の熱処理に関して
は、特開昭63−114105に適切な温度範囲が、特
開平1−72732に2段熱処理の効果が開示されてい
る。他に、特願平2−122582,特願平2−127
412,特願平2−127413に構成元素に応じた適
切な熱処理が示  され、特願平2−127414に熱
処理時間が示され、特願平2−127415には割れを
防止するための熱処理後の冷却速度が示されている。
Regarding the heat treatment of this hot-processed magnet, an appropriate temperature range is disclosed in JP-A-63-114105, and the effect of two-stage heat treatment is disclosed in JP-A-1-72732. In addition, Japanese Patent Application No. 2-122582, Japanese Patent Application No. 2-127
412, Japanese Patent Application No. 2-127413 shows the appropriate heat treatment according to the constituent elements, Japanese Patent Application No. 2-127414 shows the heat treatment time, and Japanese Patent Application No. 2-127415 shows the heat treatment after heat treatment to prevent cracking. The cooling rate is shown.

【0013】[0013]

【発明が解決しようとする課題】叙上の(1)〜(4)
の従来のR−Fe−B系永久磁石の製造方法は、次のご
とき欠点を有している。
[Problem to be solved by the invention] (1) to (4) above
The conventional method for manufacturing R-Fe-B permanent magnets has the following drawbacks.

【0014】(1)の永久磁石の製造方法は、合金を粉
末にすることを必須とするものであるが、R−Fe−B
系合金はたいへん酸素に対して活性を有するので、粉末
化すると余計酸化が激しくなり、焼結体中の酸素濃度は
どうしても高くなってしまう。
[0014] The permanent magnet manufacturing method (1) requires the alloy to be powdered, but R-Fe-B
Since the alloy is very active against oxygen, oxidation becomes even more intense when it is powdered, and the oxygen concentration in the sintered body inevitably increases.

【0015】また粉末を成形するときに、例えばステア
リン酸亜鉛の様な成形助剤を使用しなければならず、こ
れは焼結工程で前もって取り除かれるのであるが、成形
助剤中の数割は、磁石体の中に炭素の形で残ってしまい
、この炭素は著しくR−Fe−B磁石の磁気性能を低下
させ好ましくない。
[0015] Furthermore, when molding the powder, a molding aid such as zinc stearate must be used, and this is removed beforehand during the sintering process, but several percent of the molding aid is , the carbon remains in the magnet body in the form of carbon, which is undesirable because it significantly reduces the magnetic performance of the R-Fe-B magnet.

【0016】成形助剤を加えてプレス成形した後の成形
体はグリーン体と言われ、これは大変脆く、ハンドリン
グが難しい。従って焼結炉にきれいに並べて入れるのに
は、相当の手間が掛かることも大きな欠点である。
[0016] The molded body after press molding with the addition of a molding aid is called a green body, which is very brittle and difficult to handle. Therefore, a major drawback is that it takes a considerable amount of effort to arrange them neatly in the sintering furnace.

【0017】これらの欠点があるので、一般的に言って
R−Fe−B系の焼結磁石の製造には、高価な設備が必
要になるばかりでなく、その製造方法は生産効率が悪く
、結局磁石の製造コストが高くなってしまう。従って、
比較的原料費の安いR−Fe−B系磁石の長所を活かす
ことが出来ない。
Due to these drawbacks, generally speaking, the production of R-Fe-B sintered magnets not only requires expensive equipment, but also has poor production efficiency. As a result, the manufacturing cost of the magnet increases. Therefore,
It is not possible to take advantage of the advantages of R-Fe-B magnets, which have relatively low raw material costs.

【0018】次に (2)並びに (3)の永久磁石の
製造方法は、真空メルトスピニング装置を使用するが、
この装置は、現在では大変生産性が悪くしかも高価であ
る。
Next, in the methods (2) and (3) for manufacturing permanent magnets, a vacuum melt spinning device is used.
This equipment is currently very unproductive and expensive.

【0019】(2)の永久磁石は、原理的に等方性であ
るので低エネルギー積であり、ヒステリシスループの角
形性も悪く、温度特性に対しても、使用する面において
も不利である。
Since the permanent magnet (2) is isotropic in principle, it has a low energy product, and the squareness of the hysteresis loop is also poor, which is disadvantageous in terms of temperature characteristics and use.

【0020】(3)の永久磁石を製造する方法は、ホッ
トプレスを二段階に使うというユニークな方法であるが
、実際に量産を考えると非効率であることは否めないで
あろう。更にこの方法では、高温例えば 800℃以上
では結晶粒の粗大化が著しく、それによって保磁力  
iHc が極端に低下し、実用的な永久磁石にはならな
い。
The method (3) for manufacturing permanent magnets is a unique method of using hot press in two stages, but it cannot be denied that it is inefficient when considering actual mass production. Furthermore, in this method, at high temperatures, e.g., 800°C or higher, the crystal grains become significantly coarsened, which reduces the coercive force.
The iHc is extremely low and it cannot be used as a practical permanent magnet.

【0021】(4)の永久磁石を製造する方法は、粉末
工程を含まず、ホットプレスも一段階でよいために、最
も製造工程が簡略化され、量産コストの低減が図れる製
造法であるが、磁気特性が焼結法に比べ低く、ばらつき
が大きいという問題があった。
[0021] The method (4) for manufacturing permanent magnets does not involve a powder process and requires only one step of hot pressing, so it is the manufacturing method that simplifies the manufacturing process the most and can reduce mass production costs. However, there was a problem that the magnetic properties were lower than those of the sintering method and had large variations.

【0022】本発明は、以上の従来技術の欠点、特に(
4) の永久磁石の性能面とそのばらつきの大きさの欠
点を解決するものであり、その目的とするところは、高
性能かつ低コストな希土類−鉄系永久磁石の製造方法を
提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art, especially (
4) This method solves the drawbacks of permanent magnet performance and its large variation, and its purpose is to provide a high-performance, low-cost manufacturing method for rare earth-iron permanent magnets. be.

【0023】[0023]

【課題を解決するための手段】本発明の希土類−鉄系永
久磁石の製造方法は、R(ただしRはYを含む希土類元
素のうち少なくとも1種),Fe,Bを原料基本成分と
し、該基本成分とする合金を溶解・鋳造し、次いで鋳造
インゴットを 500〜1100℃の温度において熱間
加工し、次に1000〜1050℃において熱処理し、
次なる熱処理として450〜700℃において熱処理す
る事を特徴とする。
[Means for Solving the Problems] The method for producing a rare earth-iron permanent magnet of the present invention uses R (where R is at least one rare earth element including Y), Fe, and B as basic raw material components, and The alloy as a basic component is melted and cast, then the cast ingot is hot worked at a temperature of 500 to 1100°C, then heat treated at 1000 to 1050°C,
The next heat treatment is characterized by heat treatment at 450 to 700°C.

【0024】また、更なる高性能化、高保磁力化のため
には請求項1の熱間加工後、1000〜1050℃にお
いて熱処理し、次に450℃以下まで5℃/分以上の速
度で冷却してから再度加熱して450〜700℃におい
て熱処理する事を特徴とする。
Further, in order to further improve the performance and increase the coercive force, after the hot working according to claim 1, heat treatment is performed at 1000 to 1050°C, and then cooling to 450°C or less at a rate of 5°C/min or more. It is characterized in that it is then heated again and heat treated at 450 to 700°C.

【0025】またもう一つの希土類−鉄系永久磁石の製
造方法は、R(ただしRはYを含む希土類元素のうち少
なくとも1種),Fe,Bを原料基本成分とし、該基本
成分とする合金を溶解・鋳造し、次いで鋳造インゴット
を 500〜1100℃の温度において熱間加工し、次
に 900〜1000℃において熱処理し、次に450
℃以下まで5℃/分以上の速度で冷却してから再度加熱
して450〜700℃において熱処理して室温まで冷却
する2段熱処理を2回以上繰り返す事を特徴とする。
Another method for producing a rare earth-iron permanent magnet is to use R (where R is at least one rare earth element including Y), Fe, and B as basic raw material components, and to produce an alloy as the basic component. is melted and cast, then the cast ingot is hot worked at a temperature of 500 to 1100°C, then heat treated at 900 to 1000°C, and then heated to 450°C.
It is characterized by repeating two or more times a two-stage heat treatment in which the material is cooled down to below 5°C at a rate of 5°C/minute or more, heated again, heat-treated at 450-700°C, and cooled to room temperature.

【0026】以下、本発明における永久磁石の好ましい
組成範囲について説明する。
The preferred composition range of the permanent magnet in the present invention will be explained below.

【0027】希土類としては、Y,La,Ce,Pr,
Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luが候補として挙げられ、これらのうちの
1種あるいは2種以上を組み合わせて用いる。最も高い
磁気性能はPrで得られるので、実用的には  Pr,
Pr−Nd合金,Ce−Pr−Nd合金等が用いられる
。 少量の重希土元素、例えばDy,Tb等は保磁力の向上
に有効である。
[0027] Rare earths include Y, La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, and Lu are listed as candidates, and one or more of these may be used in combination. The highest magnetic performance is obtained with Pr, so Pr,
Pr-Nd alloy, Ce-Pr-Nd alloy, etc. are used. A small amount of heavy rare earth elements, such as Dy and Tb, is effective in improving coercive force.

【0028】R−Fe−B系磁石の主相はR2Fe14
B である。従ってRが 8原子%未満では、もはや上
記化合物を形成せず高磁気特性は得られない。一方Rが
30原子%を越えると非磁性のRリッチ相が多くなり磁
気特性は著しく低下する。よってRの範囲は 8〜30
原子%が適当である。しかし高い残留磁束密度のために
は、好ましくはR 8〜25原子%が適当である。
The main phase of the R-Fe-B magnet is R2Fe14
It is B. Therefore, if R is less than 8 at %, the above-mentioned compound is no longer formed and high magnetic properties cannot be obtained. On the other hand, if R exceeds 30 atomic %, the nonmagnetic R-rich phase increases and the magnetic properties deteriorate significantly. Therefore, the range of R is 8 to 30
Atomic % is appropriate. However, for high residual magnetic flux densities, preferably R 8 to 25 atom % is suitable.

【0029】Bは、R2Fe14B 相を形成するため
の必須元素であり、 2原子%未満では菱面体のR−F
e系になるために高保磁力は望めない。また28原子%
を越えるとBに富む非磁性相が多くなり、残留磁束密度
は著しく低下してくる。しかし高保磁力を得るためには
、好ましくはB 8原子%以下がよく、それ以上では微
細なR2Fe14B相を得ることが困難で、保磁力は小
さい。
B is an essential element for forming the R2Fe14B phase, and if it is less than 2 atomic %, the rhombohedral R-F
Because it is e-based, high coercive force cannot be expected. Also 28 atomic%
If the value exceeds 1, the amount of B-rich nonmagnetic phase increases, and the residual magnetic flux density decreases significantly. However, in order to obtain a high coercive force, the B content is preferably 8 atomic % or less, and if it is more than that, it is difficult to obtain a fine R2Fe14B phase and the coercive force is small.

【0030】熱間加工における温度は再結晶温度以上が
望ましく、本発明R−Fe−B系合金においては好まし
くは 500℃以上である。そして、1100℃以上で
はR2Fe14B相が急激に粒成長して保磁力を失うの
でそれ以下の温度が好ましい。
The temperature during hot working is preferably at least the recrystallization temperature, and in the case of the R-Fe-B alloy of the present invention, it is preferably at least 500°C. At temperatures above 1100°C, the R2Fe14B phase rapidly grows grains and loses its coercive force, so a temperature below this temperature is preferred.

【0031】そして、熱処理温度は初晶のFeをすばや
く拡散するためと液体状態にある粒界相の組成を均一化
するためには 900℃以上が好ましく、磁石中の液体
相の流出が1050℃以上では激しく磁石の形状損失が
あるのでそれ以下の温度が好ましい。また、1000℃
以上ではFeの拡散や粒界相の均質化が速くおこるが、
1000℃以下では多大な時間が必要になる。しかし、
この 900〜1000℃の場合の必要時間は途中に4
50〜700℃まで冷却、熱処理することにより短縮で
きる。
[0031] The heat treatment temperature is preferably 900°C or higher in order to quickly diffuse the primary Fe crystals and to homogenize the composition of the grain boundary phase in the liquid state, and the outflow of the liquid phase in the magnet is preferably 1050°C. If the temperature is higher than that, the shape of the magnet will be severely lost, so a temperature lower than that is preferable. Also, 1000℃
Above this, diffusion of Fe and homogenization of the grain boundary phase occur quickly, but
At temperatures below 1000°C, a long time is required. but,
In the case of this temperature of 900 to 1000℃, the required time is 4
It can be shortened by cooling and heat treating to 50 to 700°C.

【0032】また、1000℃付近の高温から最終凝固
温度以下の 450℃以下迄を 5℃/分以上のスピー
ドで冷却することは粒界相の均一性を保つために必要で
ある。これ以下のスピードで冷却すると粒界相の組成分
布が激しく起こり磁石粒子一つ一つの磁気特性を変えて
磁石の保磁力、角形性を悪くする。
[0032] Furthermore, cooling from a high temperature around 1000°C to 450°C or lower, which is below the final solidification temperature, at a rate of 5°C/min or more is necessary to maintain the uniformity of the grain boundary phase. If the magnet is cooled at a speed lower than this, the composition distribution of the grain boundary phase will be severe, changing the magnetic properties of each magnet particle and deteriorating the coercive force and squareness of the magnet.

【0033】そして、450〜700℃の熱処理は粒界
相の共晶温度の直上の温度を採ることにより液相となっ
た粒界相が磁石粒子表面を清浄化し高保磁力が得られる
ために好ましい温度域である。
Heat treatment at 450 to 700° C. is preferable because the temperature is set just above the eutectic temperature of the grain boundary phase, so that the grain boundary phase, which has become a liquid phase, cleans the surface of the magnet particles and a high coercive force can be obtained. temperature range.

【0034】[0034]

【実施例】以下に本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0035】(実施例1)アルゴン雰囲気中で誘導加熱
炉を用いて、Pr10Nd6Fe77.5B5.1Cu
1.4なる組成の合金を溶解し、次いで鋳造した。この
時、希土類、鉄及び銅の原料としては99.9%の純度
のものを用い、ボロンはフェロボロンを用いた。
(Example 1) Using an induction heating furnace in an argon atmosphere, Pr10Nd6Fe77.5B5.1Cu
An alloy of composition 1.4 was melted and then cast. At this time, rare earth, iron, and copper raw materials with a purity of 99.9% were used, and boron was ferroboron.

【0036】次ぎに、この鋳造インゴットをSS41鋼
製のカプセルに入れ、真空にひき密封した。これに 9
75℃で加工度20%の熱間圧延を空気中で 2回、つ
ぎに加工度30%の熱間圧延を空気中で 3回行い、最
終的に加工度が78%になるようにした。この熱間加工
時においては、合金の押される方向に平行になるように
結晶の磁化容易軸が配向して磁気異方性が形成された。 この後、この圧延インゴットから切り出したサンプルに
対して表面を表面粗さRmax≦50μmまでに研磨し
た後、表1に示す800〜1100℃の温度T1におい
て20時間の熱処理をAr雰囲気炉で施し、炉内で 2
〜3℃/分の速度で550℃まで冷却し、引続き550
℃において3時間の熱処理を施した。
Next, this cast ingot was placed in a capsule made of SS41 steel and sealed under vacuum. 9 to this
Hot rolling at 75° C. with a workability of 20% was carried out twice in air, and then hot rolling at a workability of 30% was carried out three times in air, resulting in a final workability of 78%. During this hot working, the axis of easy magnetization of the crystal was oriented parallel to the direction in which the alloy was pressed, creating magnetic anisotropy. After that, the surface of the sample cut out from this rolled ingot was polished to a surface roughness Rmax≦50 μm, and then heat treated in an Ar atmosphere furnace for 20 hours at a temperature T1 of 800 to 1100°C shown in Table 1, in the furnace 2
Cool to 550°C at a rate of ~3°C/min, then cool to 550°C.
A heat treatment was performed at ℃ for 3 hours.

【0037】これらの熱処理後のサンプルの磁気特性と
表面粗さRmaxを表1に示す。なお、磁気特性はすべ
て 40kOeでパルス着磁後B−Hトレーサーを用い
て測定した。
Table 1 shows the magnetic properties and surface roughness Rmax of these heat-treated samples. All magnetic properties were measured using a B-H tracer after pulse magnetization at 40 kOe.

【0038】[0038]

【表1】[Table 1]

【0039】この表1から1000〜1050℃の熱処
理により、残留磁化の向上と保磁力の向上とが起こり、
最大エネルギー積が向上されていることがわかる。また
、熱処理温度が1050℃を越えると液相の溶出による
表面形状の損失が大きいので好ましくない事も解る。
[0039] From Table 1, heat treatment at 1000 to 1050°C improves residual magnetization and coercive force.
It can be seen that the maximum energy product has been improved. It is also understood that it is not preferable that the heat treatment temperature exceeds 1050° C. because the loss of surface shape due to elution of the liquid phase is large.

【0040】(実施例2)Pr15Tb1.0Fe68
Co10B4.8Cu1.2なる組成の合金(サンフ゜
ル2a)とPr10Nd7Fe76.5B5Cu1.0
Ga0.5なる組成の合金(サンフ゜ル2b)とCe1
.0Nd14.5Dy2Fe75.5B5.3Cu1.
0Al0.7なる組成の合金(サンフ゜ル2c)を実施
例1と同様に、溶解・鋳造し鋳造インゴットを得た。
(Example 2) Pr15Tb1.0Fe68
An alloy with a composition of Co10B4.8Cu1.2 (Sample 2a) and Pr10Nd7Fe76.5B5Cu1.0
Alloy with a composition of Ga0.5 (Sanfil 2b) and Ce1
.. 0Nd14.5Dy2Fe75.5B5.3Cu1.
An alloy having a composition of 0Al0.7 (Sanfil 2c) was melted and cast in the same manner as in Example 1 to obtain a cast ingot.

【0041】次ぎに、この鋳造インゴットから15mm
φ×15mmhの円柱状サンプルを切り出しその周囲に
5mm 厚さの鉄製リングをはめ込んで、アルゴン雰囲
気中、 950℃において、加工度80%までホットプ
レスした。この時のプレス圧力は 0.2〜0.9to
n/cm2であり、歪速度は10−3〜10−4/se
cであった。
Next, from this cast ingot, 15 mm
A cylindrical sample of φ x 15 mmh was cut out, a 5 mm thick iron ring was fitted around it, and hot pressed at 950° C. in an argon atmosphere to a working degree of 80%. The press pressure at this time is 0.2 to 0.9 to
n/cm2, and the strain rate is 10-3 to 10-4/se
It was c.

【0042】この後、Ar雰囲気炉を用いて1010℃
において12時間の熱処理を施した後室温まで10℃/
分の速度で冷却し、次ぎに 580℃において2.5時
間の熱処理を施した後、先と同様に10℃/分の速度で
冷却して切断、研磨して磁気特性を測定した。
[0042] After this, the temperature was increased to 1010°C using an Ar atmosphere furnace.
After heat treatment for 12 hours at
The sample was cooled at a rate of 10°C/min, then heat treated at 580°C for 2.5 hours, and then cooled at a rate of 10°C/min as before, cut and polished, and its magnetic properties were measured.

【0043】この磁石の磁気特性を、表2に示す。The magnetic properties of this magnet are shown in Table 2.

【0044】[0044]

【表2】[Table 2]

【0045】この表2に示すごとく、熱間加工法として
ホットプレス法を採用した場合でも実施例1の熱間圧延
法の場合と同様の熱処理の効果があることがわかる。
As shown in Table 2, it can be seen that even when the hot pressing method is employed as the hot working method, the same heat treatment effect as in the case of the hot rolling method of Example 1 is obtained.

【0046】(実施例3)アルゴン雰囲気中で誘導加熱
炉を用いて、Pr13.2Nd3.8Fe77.0B5
.2Cu0.8なる組成の合金を溶解し、次いで鋳造し
た。この時、希土類、鉄及び銅の原料としては99.9
%の純度のものを用い、ボロンはフェロボロンを用いた
(Example 3) Using an induction heating furnace in an argon atmosphere, Pr13.2Nd3.8Fe77.0B5
.. An alloy having a composition of 2Cu0.8 was melted and then cast. At this time, the raw materials for rare earths, iron and copper are 99.9
% purity, and ferroboron was used as boron.

【0047】次ぎに、この鋳造インゴットをSS41鋼
製のカプセルに入れ、真空にひき密封した。これに10
00℃に加熱後、加工度20%の熱間圧延を空気中で 
2回、つぎに加工度30%の熱間圧延を空気中で2回行
い、最後に加工度15%の熱間圧延を 1回行い、最終
的に加工度が73%になるようにした。
Next, this cast ingot was placed in a capsule made of SS41 steel and sealed under vacuum. 10 for this
After heating to 00℃, hot rolling with a working degree of 20% in air.
Then, hot rolling with a working degree of 30% was performed twice in air, and finally hot rolling was performed once with a working degree of 15%, so that the final working degree was 73%.

【0048】この後、この圧延インゴットからサンプル
を切り出し、研磨した後、1030℃において15時間
の熱処理をAr雰囲気炉で施し、炉内でガス冷却により
400℃までを表3に示す3〜15℃/分の速度で冷却
し、次に550℃において 4時間の熱処理を施し、室
温までを7℃/分の速度で冷却した。
[0048] Thereafter, a sample was cut out from this rolled ingot, polished, and then heat treated at 1030°C for 15 hours in an Ar atmosphere furnace, and heated to 400°C by gas cooling in the furnace at 3 to 15°C as shown in Table 3. The sample was cooled at a rate of 7° C./min, then heat treated at 550° C. for 4 hours, and cooled to room temperature at a rate of 7° C./min.

【0049】これらの熱処理後のサンプルの磁気特性を
表3に示す。なお、磁気特性はすべて 40kOeでパ
ルス着磁後B−H トレーサーを用いて測定した。
Table 3 shows the magnetic properties of the samples after these heat treatments. All magnetic properties were measured using a B-H tracer after pulse magnetization at 40 kOe.

【0050】[0050]

【表3】[Table 3]

【0051】この表3から1000〜1050℃の熱処
理後の冷却速度が 5℃/分以上であることにより、角
形性の向上と保磁力の向上とが起こり、最大エネルギー
積が向上されていることがわかる。
Table 3 shows that when the cooling rate after heat treatment at 1000 to 1050°C is 5°C/min or more, the squareness and coercive force are improved, and the maximum energy product is improved. I understand.

【0052】(実施例4)実施例3に用いた圧延インゴ
ットからサンプルを切り出し、研磨した後、次のような
条件で熱処理をAr雰囲気中で施した。
(Example 4) A sample was cut out from the rolled ingot used in Example 3, polished, and then heat treated in an Ar atmosphere under the following conditions.

【0053】条件1:950℃で20時間の熱処理後、
10℃/分の速度で冷却し、次に550℃で 4時間の
熱処理後7℃/分の速度で冷却。
Condition 1: After heat treatment at 950°C for 20 hours,
Cooled at a rate of 10°C/min, then heat treated at 550°C for 4 hours, then cooled at a rate of 7°C/min.

【0054】条件2:1020℃で20時間の熱処理後
、10℃/分の速度で冷却し、次に550℃で4時間の
熱処理後7℃/分の速度で冷却。
Condition 2: After heat treatment at 1020°C for 20 hours, cooling at a rate of 10°C/min, then heat treatment at 550°C for 4 hours, then cooling at a rate of 7°C/min.

【0055】条件3:950℃で40時間の熱処理後、
10℃/分の速度で冷却し、次に550℃で 8時間の
熱処理後7℃/分の速度で冷却。
Condition 3: After heat treatment at 950°C for 40 hours,
Cooled at a rate of 10°C/min, then heat treated at 550°C for 8 hours, then cooled at a rate of 7°C/min.

【0056】条件4:950℃で20時間の熱処理後、
10℃/分の速度で冷却し、次に550℃で 4時間の
熱処理後7℃/分の速度で冷却。これを2回繰り返し。
Condition 4: After heat treatment at 950°C for 20 hours,
Cooled at a rate of 10°C/min, then heat treated at 550°C for 4 hours, then cooled at a rate of 7°C/min. Repeat this twice.

【0057】条件5:950℃で20時間の熱処理後、
10℃/分の速度で冷却し、次に550℃で 4時間の
熱処理後7℃/分の速度で冷却。これを3回繰り返し。
Condition 5: After heat treatment at 950°C for 20 hours,
Cooled at a rate of 10°C/min, then heat treated at 550°C for 4 hours, then cooled at a rate of 7°C/min. Repeat this three times.

【0058】条件6:900℃で20時間の熱処理後、
10℃/分の速度で冷却し、次に550℃で 4時間の
熱処理後7℃/分の速度で冷却。これを2回繰り返し。
Condition 6: After heat treatment at 900°C for 20 hours,
Cooled at a rate of 10°C/min, then heat treated at 550°C for 4 hours, then cooled at a rate of 7°C/min. Repeat this twice.

【0059】条件7:975℃で20時間の熱処理後、
10℃/分の速度で冷却し、次に550℃で 4時間の
熱処理後7℃/分の速度で冷却。これを2回繰り返し。
Condition 7: After heat treatment at 975°C for 20 hours,
Cooled at a rate of 10°C/min, then heat treated at 550°C for 4 hours, then cooled at a rate of 7°C/min. Repeat this twice.

【0060】この7種類の熱処理後の各サンプルの磁気
特性を表4に示す。
Table 4 shows the magnetic properties of each sample after these seven types of heat treatment.

【0061】[0061]

【表4】[Table 4]

【0062】この表4の結果から900〜1000℃の
熱処理後、冷却速度が 5℃/分以上で冷却し475〜
700℃の熱処理をする事を2回以上繰り返すことは、
角形性の向上と保磁力の向上とを起こし、最大エネルギ
ー積を向上することに効果があることがわかる。
From the results in Table 4, after heat treatment at 900 to 1000°C, cooling at a cooling rate of 5°C/min or more resulted in a temperature of 475 to 1000°C.
Repeating heat treatment at 700℃ two or more times
It can be seen that it is effective in improving the squareness and coercive force, and increasing the maximum energy product.

【0063】(実施例5)表5に示す組成の合金を実施
例1〜4と同様に、溶解・鋳造した。また用いた原料も
同様の純度のものを用いた。
(Example 5) Alloys having the compositions shown in Table 5 were melted and cast in the same manner as in Examples 1 to 4. The raw materials used were also of similar purity.

【0064】次ぎに、この鋳造インゴットをSS41鋼
製のカプセルに入れ、真空にひき密封した。これに10
00℃に加熱後、加工度30%の熱間圧延を空気中で 
4回行い、最最終的に加工度が76%になるようにした
Next, this cast ingot was placed in a capsule made of SS41 steel and sealed under vacuum. 10 for this
After heating to 00℃, hot rolling with a working degree of 30% in air.
The process was repeated four times until the final degree of processing was 76%.

【0065】この後、この圧延インゴットからサンプル
を切り出し、研磨した後、1030℃において12時間
の熱処理をAr雰囲気炉で施し、炉内でガス冷却により
400℃までを15℃/分の速度で冷却し、次に600
℃において 4時間の熱処理を施し、室温までを10℃
/分の速度で冷却した。
[0065] After that, a sample was cut out from this rolled ingot, polished, and then heat treated at 1030°C for 12 hours in an Ar atmosphere furnace, and then cooled to 400°C at a rate of 15°C/min by gas cooling in the furnace. and then 600
Heat treated for 4 hours at ℃, then heated to room temperature at 10℃
Cooled at a rate of 1/min.

【0066】これらの熱処理後のサンプルの磁気特性を
表6に示す。なお、磁気特性はすべて 40kOeでパ
ルス着磁後B−H トレーサーを用いて測定した。
Table 6 shows the magnetic properties of these heat-treated samples. All magnetic properties were measured using a B-H tracer after pulse magnetization at 40 kOe.

【0067】[0067]

【表5】[Table 5]

【0068】[0068]

【表6】[Table 6]

【0069】以上の実施例から、R(ただしRはYを含
む希土類元素のうち少なくとも1種),Fe,Bを原料
基本成分とする永久磁石は、500℃以上の熱間加工に
より異方性化され、次に1000〜1050℃において
熱処理し、次なる熱処理として450〜700℃におい
て熱処理する事により高保磁力化、高性能化し、100
0〜1050℃において熱処理し、次に450℃以下ま
で5℃/分以上の速度で冷却してから再度加熱して45
0〜700℃において熱処理する事により、更なる高保
磁力化、角形性の向上が達成され、熱間加工後、次に 
900〜1000℃において熱処理し、次に450℃以
下まで5℃/分以上の速度で冷却してから再度加熱して
450〜700℃において熱処理して室温まで冷却する
2段熱処理を2回以上繰り返す事により上記と同様の更
なる高保磁力化、角形性の向上が達成され最高の (B
H)maxは30MGOeを越えることは明らかである
From the above examples, it can be seen that permanent magnets whose basic raw materials are R (where R is at least one rare earth element including Y), Fe, and B can be anisotropically formed by hot working at 500°C or higher. It is then heat treated at 1000 to 1050℃, and then heat treated at 450 to 700℃ to increase coercive force and improve performance.
Heat treated at 0 to 1050℃, then cooled to 450℃ or less at a rate of 5℃/min or more, and then heated again to 45℃.
Heat treatment at 0 to 700℃ further increases coercive force and improves squareness, and after hot working,
Two-stage heat treatment is repeated two or more times: heat treatment at 900-1000°C, then cooling at a rate of 5°C/min or more to below 450°C, heating again, heat-treating at 450-700°C, and cooling to room temperature. As a result, the same higher coercive force and improved squareness as above were achieved, resulting in the best (B
It is clear that H) max exceeds 30 MGOe.

【0070】[0070]

【発明の効果】叙上のごとく本発明の永久磁石の製造方
法は、次のごとき効果を持つ。
[Effects of the Invention] As described above, the method for manufacturing a permanent magnet of the present invention has the following effects.

【0071】(1)c軸配向率を高めることができ、残
留磁束密度Brを著しく高めることができ、結晶粒を微
細化することにより保磁力iHcを高めることができ、
  最大エネルギー積(BH)max を格段に向上さ
せることが出来た。
(1) The c-axis orientation rate can be increased, the residual magnetic flux density Br can be significantly increased, and the coercive force iHc can be increased by making the crystal grains finer.
It was possible to significantly improve the maximum energy product (BH) max.

【0072】(2)製造プロセスが簡単なのでコストが
安い。
(2) The manufacturing process is simple, so the cost is low.

【0073】(3)従来の焼結法と比較して、加工工数
及び生産投資額を著しく低減させることが出来る。
(3) Compared to conventional sintering methods, the number of processing steps and production investment can be significantly reduced.

【0074】(4)従来のメルトスピニング法による磁
石の製造方法と比較して、高性能でしかも低コストの磁
石を作ることが出来る。
(4) Compared to the conventional method of producing magnets using melt spinning, it is possible to produce magnets with high performance and at low cost.

【0075】(5)従来の熱間加工磁石と比較して、磁
気特性を向上させることが出来る。
(5) Magnetic properties can be improved compared to conventional hot-processed magnets.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  R(ただしRはYを含む希土類元素の
うち少なくとも1種),Fe,Bを原料基本成分とし、
該基本成分とする合金を溶解・鋳造し、次いで鋳造イン
ゴットを 500〜1100℃の温度において熱間加工
し、次に1000〜1050℃において熱処理し、次な
る熱処理として450〜700℃において熱処理する事
を特徴とする希土類−鉄系永久磁石の製造方法。
[Claim 1] R (where R is at least one rare earth element including Y), Fe, and B as basic raw material components,
The alloy as the basic component is melted and cast, then the cast ingot is hot worked at a temperature of 500 to 1100°C, then heat treated at 1000 to 1050°C, and then heat treated at 450 to 700°C as the next heat treatment. A method for producing a rare earth-iron permanent magnet, characterized by:
【請求項2】  請求項1の熱間加工後、1000〜1
050℃において熱処理し、次に450℃以下まで5℃
/分以上の速度で冷却してから再度加熱して450〜7
00℃において熱処理する事を特徴とする請求項1記載
の希土類−鉄系永久磁石の製造方法。
[Claim 2] After the hot working of Claim 1, 1000 to 1
Heat treated at 050℃, then 5℃ below 450℃
Cool at a rate of at least 450-7 minutes and then heat again.
2. The method for producing a rare earth-iron permanent magnet according to claim 1, characterized in that the heat treatment is carried out at 00°C.
【請求項3】  請求項1の熱間加工後、 900〜1
000℃において熱処理し、次に450℃以下まで5℃
/分以上の速度で冷却してから再度加熱して450〜7
00℃において熱処理して室温まで冷却する2段熱処理
を2回以上繰り返す事を特徴とする希土類−鉄系永久磁
石の製造方法。
Claim 3: After hot working according to Claim 1, 900-1
Heat treated at 000℃, then 5℃ to below 450℃
Cool at a rate of at least 450-7 minutes and then heat again.
A method for producing a rare earth-iron permanent magnet, characterized by repeating two or more times a two-stage heat treatment of heat treatment at 00°C and cooling to room temperature.
JP3095699A 1991-04-25 1991-04-25 Manufacture of rare earth/iron permanent magnet Pending JPH04324916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3095699A JPH04324916A (en) 1991-04-25 1991-04-25 Manufacture of rare earth/iron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3095699A JPH04324916A (en) 1991-04-25 1991-04-25 Manufacture of rare earth/iron permanent magnet

Publications (1)

Publication Number Publication Date
JPH04324916A true JPH04324916A (en) 1992-11-13

Family

ID=14144752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3095699A Pending JPH04324916A (en) 1991-04-25 1991-04-25 Manufacture of rare earth/iron permanent magnet

Country Status (1)

Country Link
JP (1) JPH04324916A (en)

Similar Documents

Publication Publication Date Title
JPS62198103A (en) Rare earth-iron permanent magnet
JPH04143221A (en) Production of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH04324916A (en) Manufacture of rare earth/iron permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JPH0142338B2 (en)
JPH04187722A (en) Production of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2573865B2 (en) Manufacturing method of permanent magnet
JP2746111B2 (en) Alloy for permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH0422103A (en) Method of manufacturing permanent magnet
JPH04324907A (en) Manufacture of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH04324908A (en) Manufacture of rare earth-iron permanent magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH04324904A (en) Manufacture of permanent magnet
JPH04324906A (en) Manufacture of permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JPH0418708A (en) Manufacture of permanent magnet
JPH0418707A (en) Manufacture of permanent magnet
KR20240030327A (en) METHOD OF PREPARING ThMn12 MAGNETIC MATERIAL POWDER
JPH04136131A (en) Manufacture of permanent magnet