JPH0613545A - Ferroelectric device - Google Patents
Ferroelectric deviceInfo
- Publication number
- JPH0613545A JPH0613545A JP16785992A JP16785992A JPH0613545A JP H0613545 A JPH0613545 A JP H0613545A JP 16785992 A JP16785992 A JP 16785992A JP 16785992 A JP16785992 A JP 16785992A JP H0613545 A JPH0613545 A JP H0613545A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ferroelectric
- electrode
- glass layer
- dielectric constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、強誘電体装置の構造に
関する。FIELD OF THE INVENTION The present invention relates to the structure of ferroelectric devices.
【0002】[0002]
【従来の技術】従来、強誘電体装置は、以下の如く形成
されていた。すなわち、強誘電体膜の二つの主面に対向
する金属電極が形成されて成るのが通例であった。2. Description of the Related Art Conventionally, a ferroelectric device has been formed as follows. That is, it has been customary that metal electrodes facing each other are formed on the two main surfaces of the ferroelectric film.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来技術
によると、強誘電体膜中のナトリュウム等のアルカリ・
イオン等のイオンの電界による移動や、強誘電体構成元
素である酸素やチタン等の構成元素の電界による移動に
伴う偏析や、電極と強誘電体との界面準位の異なる事等
により、強誘電体の電気的特性が一定しないと云う課題
や、寿命が短いと云う課題等、特性の安定性上の課題が
あった。However, according to the above-mentioned conventional technique, alkali such as sodium in the ferroelectric film is not formed.
Due to the movement of ions such as ions due to the electric field, the segregation accompanying the movement of the constituent elements such as oxygen and titanium, which are ferroelectric constituent elements due to the electric field, and the difference in the interface state between the electrode and the ferroelectric, There have been problems in stability of the characteristics such as the problem that the electric characteristics of the dielectric are not constant and the problem that the life is short.
【0004】本発明は、かかる従来技術の課題を解決す
る新しい強誘電体装置構造を提供する事を目的とする。It is an object of the present invention to provide a new ferroelectric device structure which solves the problems of the prior art.
【0005】[0005]
【課題を解決するための手段】上記課題を解決し、上記
目的を達成するために、本発明は、強誘電体装置に関
し、(1)強誘電体膜表面に燐ガラス層を形成するか、
あるいは該燐ガラス層を形成後除去する事、(2)強誘
電体膜表面にシリコン窒化膜を形成する事、(3)強誘
電体膜表面に少なくとも一個所以上窒化チタン膜から成
る電極を形成する事、および(4)少なくとも強誘電体
膜の一主面に、2個の電極を対向して形成する事、等の
手段を取る。In order to solve the above problems and achieve the above objects, the present invention relates to a ferroelectric device, which comprises (1) forming a phosphorus glass layer on the surface of a ferroelectric film, or
Alternatively, removing the phosphorous glass layer after forming it, (2) forming a silicon nitride film on the surface of the ferroelectric film, and (3) forming an electrode made of at least one titanium nitride film on the surface of the ferroelectric film. And (4) at least one main surface of the ferroelectric film is formed with two electrodes facing each other.
【0006】[0006]
【作用】燐ガラス層は酸化物強誘電体または高誘電率体
中のアルカリ金属可動イオンを捕獲し、特性の劣化を防
止し、特性の安定化を図る作用がある。The phosphorous glass layer has a function of trapping mobile ions of alkali metal in the oxide ferroelectric substance or high-dielectric constant substance, preventing deterioration of the characteristic, and stabilizing the characteristic.
【0007】シリコン窒化膜は酸化物強誘電体または高
誘電率体中からの酸素の放出を防止し、酸素欠損による
特性の劣化を防止する作用がある。The silicon nitride film has the function of preventing the release of oxygen from the oxide ferroelectric substance or the high dielectric constant substance and preventing the deterioration of the characteristics due to oxygen deficiency.
【0008】窒化チタン電極は酸化物強誘電体または高
誘電率体に設けられた電極下のチタンや酸素等の酸化物
強誘電体または高誘電率体の構成元素の電界印加あるい
は空間電荷制限電流による偏析を防止し、特性の安定化
を図る作用がある。The titanium nitride electrode is an electric field application or space charge limiting current of a constituent element of the oxide ferroelectric or high dielectric constant such as titanium or oxygen under the electrode provided on the oxide ferroelectric or high dielectric constant. It has the effect of preventing segregation due to and stabilizing the characteristics.
【0009】酸化物強誘電体膜または高誘電率体膜の一
主面に対向電極を設ける事により、電極と酸化物強誘電
体膜または高誘電率体膜との間の界面準位密度を同一と
成す事ができ、極性の反転による特性の変化を防止する
作用がある。By providing a counter electrode on one main surface of the oxide ferroelectric film or the high dielectric constant film, the interface state density between the electrode and the oxide ferroelectric film or the high dielectric constant film can be improved. They can be the same, and have the effect of preventing changes in characteristics due to polarity inversion.
【0010】[0010]
【実施例】以下、実施例により本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.
【0011】図1は、本発明の一実施例を示す強誘電体
装置の要部の断面図である。すなわち、シリコン等の半
導体等から成る基板101の表面にはシリコン酸化膜あ
るいはシリコン窒化膜等から成る絶縁膜102が形成さ
れて成り、該絶縁膜102上にはチタンー白金や白金等
から成る電極103が10nm厚さ程度形成され、該電
極103上に鉛・ジルコニュウム・チタン酸化物(PZ
T)、鉛・ランタン・ジルコニュウム・チタン酸化物
(PLZT)、あるいはチタン酸バリュウム等の強誘電
体膜105か、または酸化タンタルあるいは酸化チタン
等の高誘電率酸化物膜をスパッタ蒸着等により10nm
〜300nm厚さ程度形成するに際し、あらかじめCV
D法により形成したシリコン酸化物に酸化燐を混合した
燐ガラス、または前記強誘電体膜105または高誘電率
酸化物膜を形成後燐イオンを打ち込んで強誘電体膜10
5または高誘電率酸化物膜を燐ガラス化等して4mol
%程度の燐濃度を有する燐ガラス層103を10nm厚
さ程度形成し、前記強誘電体膜105または高誘電率酸
化物膜を形成後にも前記方法と同様な方法により燐ガラ
ス層106を前記強誘電体膜105または高誘電率酸化
物膜表面に10nm厚さ程度形成後、電極チタンー白金
や白金等から成る電極107を10nm厚さ程度形成し
たものであるが、前記燐ガラス層103は形成しなくて
も良く、前記燐ガラス層106は一旦形成後可動イオン
を捕獲させた後除去しても良く、さらに燐ガラス層10
3あるいは106を強誘電体膜105の側面にまで延在
させて形成しても良く、該燐ガラス層等は燐ガラス単層
のみならず酸化チタンや酸化シリコン等との多層構造で
あってもよい。この様に、強誘電体膜または高誘電率酸
化物膜等の表面に燐ガラス層を形成すると、該燐ガラス
層は強誘電体膜または高誘電率酸化物膜中の可動イオン
を捕獲し、可動イオンによる強誘電体膜または高誘電率
酸化物膜の特性劣化を防止し、特性の安定化を図る事が
できる効果がある。図2は、本発明の他の実施例を示す
強誘電体装置の要部の断面図である。すなわち、基板2
01上に形成された絶縁膜202上に電極203を形成
後、CVD法等によりシリコン窒化膜204を10nm
〜50nm厚さ程度形成し、次いで強誘電体膜205ま
たは高誘電率酸化物膜を10nm〜300nm厚さ程度
形成し、次いでCVD法等によりシリコン窒化膜206
を10nm〜50nm厚さ程度形成し、次いで電極20
7を形成したものであるが、シリコン窒化膜203ある
いは206を強誘電体膜205の側面にまで延在させて
形成しても良く、あるいはシリコン窒化膜203あるい
は206は電極203あるいは206の強誘電体膜20
5または高誘電率酸化物膜との界面を除く表面や側面
に、あるいはこの場合には電極表面にまで延在して形成
されても良く、更に前記実施例の燐ガラス層をシリコン
窒化膜204あるいは206と強誘電体膜205または
高誘電率酸化物膜との界面に形成しても良く、該シリコ
ン窒化膜はシリコン窒化膜単層のみならずシリコン酸化
膜や酸化チタン膜との多層膜構造であっても良い。この
場合に、強誘電体膜または高誘電率酸化物膜等を酸素ア
ニールや酸素プラズマ・アニールして酸素を飽和させた
後に、その表面にシリコン窒化膜を形成すると強誘電体
膜または高誘電率酸化物膜に酸素欠損を生じる事なく、
電界印加や空間電荷制限電流が流れる事による酸素欠損
に伴う特性劣化を防止する事ができる効果がある。FIG. 1 is a sectional view of the main part of a ferroelectric device showing an embodiment of the present invention. That is, an insulating film 102 made of a silicon oxide film or a silicon nitride film is formed on the surface of a substrate 101 made of a semiconductor such as silicon, and an electrode 103 made of titanium-platinum or platinum is formed on the insulating film 102. Is formed to a thickness of about 10 nm, and lead / zirconium / titanium oxide (PZ) is formed on the electrode 103.
T), lead, lanthanum, zirconium, titanium oxide (PLZT), or a ferroelectric film 105 such as barium titanate, or a high dielectric constant oxide film such as tantalum oxide or titanium oxide, which is formed to a thickness of 10 nm by sputtering deposition or the like.
When forming a film with a thickness of ~ 300 nm, CV
Phosphorous glass in which phosphorus oxide is mixed with silicon oxide formed by the D method, or the ferroelectric film 105 or the high dielectric constant oxide film is formed, and then phosphorus ions are implanted to form the ferroelectric film 10.
5 or 4 mol by converting the high-k oxide film to phosphorus glass
The phosphorus glass layer 103 having a phosphorus concentration of about 10% is formed to a thickness of about 10 nm, and even after the ferroelectric film 105 or the high dielectric constant oxide film is formed, the phosphorus glass layer 106 is formed by the same method as described above. The electrode 107 made of titanium-platinum, platinum, or the like is formed on the surface of the dielectric film 105 or the high-dielectric-constant oxide film to a thickness of about 10 nm, and the phosphor glass layer 103 is formed. The phosphorous glass layer 106 may be omitted once, and then the mobile glass may be removed after the mobile ions are captured.
3 or 106 may be formed to extend to the side surface of the ferroelectric film 105, and the phosphor glass layer or the like may be not only a phosphor glass single layer but also a multilayer structure with titanium oxide, silicon oxide or the like. Good. Thus, when the phosphorus glass layer is formed on the surface of the ferroelectric film or the high dielectric constant oxide film, the phosphorus glass layer traps the mobile ions in the ferroelectric film or the high dielectric constant oxide film, There is an effect that the characteristic deterioration of the ferroelectric film or the high dielectric constant oxide film due to mobile ions can be prevented and the characteristics can be stabilized. FIG. 2 is a sectional view of a main part of a ferroelectric device showing another embodiment of the present invention. That is, the substrate 2
01, the electrode 203 is formed on the insulating film 202 formed on the insulating film 202, and the silicon nitride film 204 is formed to a thickness of 10 nm by the CVD method or the like.
˜50 nm thick, then a ferroelectric film 205 or high dielectric constant oxide film is formed to a thickness of about 10 nm to 300 nm, and then a silicon nitride film 206 is formed by a CVD method or the like.
To a thickness of about 10 nm to 50 nm, and then the electrode 20
7 is formed, the silicon nitride film 203 or 206 may be formed to extend to the side surface of the ferroelectric film 205. Alternatively, the silicon nitride film 203 or 206 may be formed of the ferroelectric material of the electrode 203 or 206. Body membrane 20
5 or on the surface or side surface excluding the interface with the high dielectric constant oxide film, or in this case, extending to the electrode surface. Further, the phosphorus glass layer of the above-described embodiment is formed on the silicon nitride film 204. Alternatively, it may be formed at the interface between 206 and the ferroelectric film 205 or the high-dielectric-constant oxide film, and the silicon nitride film is not only a silicon nitride film single layer but also a multi-layer film structure of a silicon oxide film or a titanium oxide film. May be In this case, if a ferroelectric film or a high-dielectric-constant oxide film is annealed with oxygen or oxygen plasma / annealed to saturate oxygen and then a silicon nitride film is formed on the surface, the ferroelectric film or the high-dielectric constant film is formed. Without causing oxygen deficiency in the oxide film,
There is an effect that it is possible to prevent characteristic deterioration due to oxygen deficiency due to application of an electric field or flow of a space charge limiting current.
【0012】図3は、本発明のその他の実施例を示す強
誘電体装置の要部の断面図である。すなわち、基板30
1上の絶縁膜302上に電極303を形成後、強誘電体
膜304または高誘電率酸化物膜を10nm〜300n
m厚さ程度形成し、窒化チタン膜305から成る電極を
CVD法やスパッタ蒸着法等により10nm〜100n
m厚さ程度形成したものであるが、該窒化チタン膜30
5上または該窒化チタン膜305下に他の金属や合金か
ら成る電極を積層して形成しても良く、また前記電極3
03も窒化チタン膜や窒化チタン膜と他の金属や合金と
の積層構造から成る電極であっても良い。更に、前記実
施例等に示した燐ガラス層やシリコン窒化膜あるいはそ
れらの積層膜を窒化チタン電極と強誘電体膜304との
界面に形成しても良い。この場合に、強誘電体膜または
高誘電率酸化物膜等を酸素アニールや酸素プラズマ・ア
ニールして酸素を飽和させた後に、その表面に窒化チタ
ン電極を形成すると強誘電体膜または高誘電率酸化物膜
に酸素欠損を生じる事なく、電界印加や空間電荷制限電
流が流れる事による酸素欠損に伴う特性劣化を防止する
事ができる効果がある。FIG. 3 is a sectional view of a main part of a ferroelectric device showing another embodiment of the present invention. That is, the substrate 30
After the electrode 303 is formed on the insulating film 302 on the first dielectric film 304, a ferroelectric film 304 or a high dielectric constant oxide film is formed to a thickness of 10 nm to 300 n.
The thickness of the titanium nitride film 305 is about 10 nm to 100 n by a CVD method or a sputter deposition method.
The titanium nitride film 30 has a thickness of about m
5 or below the titanium nitride film 305 may be formed by laminating electrodes made of another metal or alloy.
Reference numeral 03 may also be an electrode having a laminated structure of a titanium nitride film or a titanium nitride film and another metal or alloy. Furthermore, the phosphorous glass layer, the silicon nitride film, or a laminated film thereof shown in the above-described embodiments may be formed at the interface between the titanium nitride electrode and the ferroelectric film 304. In this case, if a titanium nitride electrode is formed on the surface of the ferroelectric film or high dielectric constant oxide film by oxygen annealing or oxygen plasma annealing to saturate the oxygen, the ferroelectric film or high dielectric constant There is an effect that it is possible to prevent characteristic deterioration due to oxygen deficiency due to application of an electric field or flow of a space charge limiting current without causing oxygen deficiency in the oxide film.
【0013】図4は、本発明の更にその他の実施例を示
す強誘電体装置の要部の断面図である。すなわち、基板
401上の絶縁膜402上に電極403を形成後、強誘
電体膜404または高誘電率酸化物膜を5nm〜300
nm厚さ程度形成し、該強誘電体膜404または高誘電
率酸化物膜の表面に対向して形成された2つの対向電極
405および406を形成したものであるが、前記電極
403は必ずしも必要ではなく、また対向電極405お
よび406は強誘電体膜404または高誘電率酸化物膜
の一主面に形成されていれば良く、すなわち対向電極4
05および406は絶縁膜402と強誘電体膜404ま
たは高誘電率酸化物膜との界面に形成されても良い。更
に、前記実施例等に示した燐ガラス層やシリコン窒化膜
あるいはそれらの積層膜や窒化チタン電極を本実施例に
適用しても良い事は云うまでもない。この様に、強誘電
体膜または高誘電率酸化物膜の一主面に対向電極を設け
ると、各電極と強誘電体膜または高誘電率酸化物膜との
界面処理が同一となり、界面準位密度も同一となり、電
極の極性を変化させても電気的特性の対称性が良好と成
り、電気的特性の安定化を図る事ができる効果がある。FIG. 4 is a sectional view of a main part of a ferroelectric device showing still another embodiment of the present invention. That is, after forming the electrode 403 on the insulating film 402 on the substrate 401, a ferroelectric film 404 or a high dielectric constant oxide film is formed in a thickness of 5 nm to 300 nm.
The two electrodes 405 and 406 are formed so as to have a thickness of about 10 nm and face the surface of the ferroelectric film 404 or the high dielectric constant oxide film, but the electrode 403 is not always necessary. Instead, the counter electrodes 405 and 406 may be formed on one main surface of the ferroelectric film 404 or the high dielectric constant oxide film, that is, the counter electrode 4
05 and 406 may be formed at the interface between the insulating film 402 and the ferroelectric film 404 or the high dielectric constant oxide film. Further, it goes without saying that the phosphorus glass layer, the silicon nitride film, the laminated film thereof, or the titanium nitride electrode shown in the above-mentioned embodiments may be applied to this embodiment. In this way, when the counter electrode is provided on one main surface of the ferroelectric film or the high dielectric constant oxide film, the interface treatment between each electrode and the ferroelectric film or the high dielectric constant oxide film becomes the same, and the interface The unit densities are also the same, and even if the polarity of the electrode is changed, the symmetry of the electric characteristics becomes good, and there is an effect that the electric characteristics can be stabilized.
【0014】尚、本発明は実施例等に示した平面型強誘
電体装置のみならず、縦型強誘電体装置やダイナミック
・メモリのコンデンサー部や独立型強誘電体コンデンサ
ー等の強誘電体装置等にも適用する事ができる事は云う
までもない。The present invention is not limited to the planar type ferroelectric device shown in the embodiments and the like, but may be a vertical type ferroelectric device, a ferroelectric memory device such as a capacitor portion of a dynamic memory or an independent type ferroelectric capacitor. It goes without saying that it can also be applied to etc.
【0015】[0015]
【発明の効果】本発明により、強誘電体の電気的特性が
一定し、寿命が長い、特性の安定した強誘電体装置を提
供する事ができる効果がある。According to the present invention, it is possible to provide a ferroelectric device in which the electric characteristics of the ferroelectric substance are constant, the life is long, and the characteristics are stable.
【図1】本発明の一実施例を示す強誘電体装置の要部の
断面図である。FIG. 1 is a sectional view of an essential part of a ferroelectric device showing an embodiment of the present invention.
【図2】本発明の他の実施例を示す強誘電体装置の要部
の断面図である。FIG. 2 is a sectional view of a main part of a ferroelectric device showing another embodiment of the present invention.
【図3】本発明のその他の実施例を示す強誘電体装置の
要部の断面図である。FIG. 3 is a cross-sectional view of a main part of a ferroelectric device showing another embodiment of the present invention.
【図4】本発明の更にその他の実施例を示す強誘電体装
置の要部の断面図である。FIG. 4 is a sectional view of a main part of a ferroelectric device showing still another embodiment of the present invention.
101、201、301、401・・・基板 102、202、302、402・・・絶縁膜 103、107、203、207、303、403・・
・電極 104、106・・・燐ガラス層 105、205、304、404・・・強誘電体膜 204、206・・・シリコン窒化膜 305・・・窒化チタン膜 405、406・・・対向電極101, 201, 301, 401 ... Substrate 102, 202, 302, 402 ... Insulating film 103, 107, 203, 207, 303, 403 ...
Electrode 104, 106 ... Phosphorous glass layer 105, 205, 304, 404 ... Ferroelectric film 204, 206 ... Silicon nitride film 305 ... Titanium nitride film 405, 406 ... Counter electrode
Claims (4)
て成るか、あるいは該燐ガラス層を形成後除去して成る
事を特徴とする強誘電体装置。1. A ferroelectric device characterized in that a phosphor glass layer is formed on the surface of a ferroelectric film, or is formed and then removed.
されて成る事を特徴とする強誘電体装置。2. A ferroelectric device characterized in that a silicon nitride film is formed on the surface of the ferroelectric film.
窒化チタン膜から成る電極が形成されて成る事を特徴と
する強誘電体装置。3. A ferroelectric device characterized in that at least one portion of an electrode made of a titanium nitride film is formed on the surface of the ferroelectric film.
の電極が対向して形成されて成る事を特徴とする強誘電
体装置。4. A ferroelectric device characterized in that at least one main surface of a ferroelectric film is formed with two electrodes facing each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16785992A JPH0613545A (en) | 1992-06-25 | 1992-06-25 | Ferroelectric device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16785992A JPH0613545A (en) | 1992-06-25 | 1992-06-25 | Ferroelectric device |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11180752A Division JP2000082782A (en) | 1999-06-25 | 1999-06-25 | Ferroelectric device |
JP11180751A Division JP2000101029A (en) | 1999-06-25 | 1999-06-25 | Ferroelectric device |
JP18075399A Division JP3599607B2 (en) | 1999-06-25 | 1999-06-25 | Dynamic memory and method of manufacturing dynamic memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0613545A true JPH0613545A (en) | 1994-01-21 |
Family
ID=15857418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16785992A Pending JPH0613545A (en) | 1992-06-25 | 1992-06-25 | Ferroelectric device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0613545A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4866531A (en) * | 1986-12-11 | 1989-09-12 | Tokyo Electric Co., Ltd. | Recording medium feeding apparatus |
KR100273884B1 (en) * | 1996-07-24 | 2000-12-15 | 가네꼬 히사시 | Reduced fatigue ferroelectric element |
JP2007287856A (en) * | 2006-04-14 | 2007-11-01 | Toshiba Corp | Method for manufacturing semiconductor device |
-
1992
- 1992-06-25 JP JP16785992A patent/JPH0613545A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4866531A (en) * | 1986-12-11 | 1989-09-12 | Tokyo Electric Co., Ltd. | Recording medium feeding apparatus |
KR100273884B1 (en) * | 1996-07-24 | 2000-12-15 | 가네꼬 히사시 | Reduced fatigue ferroelectric element |
JP2007287856A (en) * | 2006-04-14 | 2007-11-01 | Toshiba Corp | Method for manufacturing semiconductor device |
US8609487B2 (en) | 2006-04-14 | 2013-12-17 | Kabushiki Kaisha Toshiba | Method of manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6128178A (en) | Very thin film capacitor for dynamic random access memory (DRAM) | |
US8581353B2 (en) | Multi-layer gate dielectric | |
KR20040060443A (en) | Capacitor of a semiconductor device and manufacturing method whereof | |
JPH11204746A (en) | Ferroelectric memory device and its manufacture | |
KR20010014838A (en) | Amorphous dielectric capacitors on silicon | |
JPH09139472A (en) | Ferroelectric memory | |
US5763911A (en) | Micro-cellular capacitor for use in implantable medical devices | |
KR100947064B1 (en) | Capacitor of semiconductor device and memory device having the same | |
JPH0685193A (en) | Semiconductor device | |
JPH0613545A (en) | Ferroelectric device | |
JPH0687493B2 (en) | Thin film capacitors | |
JP3599607B2 (en) | Dynamic memory and method of manufacturing dynamic memory | |
JPH05343616A (en) | Dielectric element and its manufacture | |
KR100239418B1 (en) | Semiconductor device capacitor and manufacturing method thereof | |
JP2000082782A (en) | Ferroelectric device | |
JP2002359291A (en) | Manufacturing method for ferroelectric device, and the ferroelectric device | |
JP2000101029A (en) | Ferroelectric device | |
JPH0687490B2 (en) | Thin film capacitor and manufacturing method thereof | |
JP3442097B2 (en) | Ferroelectric thin film and ferroelectric semiconductor device | |
JPH0513706A (en) | Semiconductor device | |
JPH0624222B2 (en) | Method of manufacturing thin film capacitor | |
EP1249037A2 (en) | Method to prevent oxygen out-diffusion from basrtio3 containing micro-electronic device | |
JPH1140778A (en) | Manufacture of capacitor of semiconductor device | |
KR920010201B1 (en) | Semidonductor device and method for manufacturing of the same | |
JPH11274325A (en) | Semiconductor device and its manufacture |