[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06113885A - Production of 3-hydroxybutyric acid and its ester - Google Patents

Production of 3-hydroxybutyric acid and its ester

Info

Publication number
JPH06113885A
JPH06113885A JP26016292A JP26016292A JPH06113885A JP H06113885 A JPH06113885 A JP H06113885A JP 26016292 A JP26016292 A JP 26016292A JP 26016292 A JP26016292 A JP 26016292A JP H06113885 A JPH06113885 A JP H06113885A
Authority
JP
Japan
Prior art keywords
hydroxybutyric acid
hydrolase
ester
reaction
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26016292A
Other languages
Japanese (ja)
Inventor
Joji Kato
錠治 加藤
Hiroshi Oshima
寛 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nard Institute Ltd
Original Assignee
Nard Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nard Institute Ltd filed Critical Nard Institute Ltd
Priority to JP26016292A priority Critical patent/JPH06113885A/en
Publication of JPH06113885A publication Critical patent/JPH06113885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE:To efficiently produce a 3-hydroxybutyric acid and its ester, useful as medicines such as antibiotic substances or biodegradable polymers and having optical activity. CONSTITUTION:The objective 3-hydroxybutyric acid at a ratio [(R)/(S)] different from that of a raw material mixture is obtained by using a mixture of an (R)-3-hydroxybutyric acid ester with an (S)-3-hydroxybutyric acid ester and reacting a hydrolase therewith. Furthermore, the objective 3-hydroxybutyric acid ester at a ratio [(R)/(S)] different from that of the raw material mixture is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗生物質等の医薬品の
製造原料や生分解性ポリマーのモノマ−成分等として有
用な、光学活性を有する3−ヒドロキシ酪酸および3−
ヒドロキシ酪酸エステルを、加水分解酵素を利用して効
率よく製造する方法に関するものである。
FIELD OF THE INVENTION The present invention relates to optically active 3-hydroxybutyric acid and 3-hydroxybutyric acid which are useful as raw materials for the production of pharmaceuticals such as antibiotics and monomer components of biodegradable polymers.
The present invention relates to a method for efficiently producing hydroxybutyric acid ester using a hydrolase.

【0002】[0002]

【従来の技術】3−ヒドロキシ酪酸およびそのエステル
(以下3−ヒドロキシ酪酸類ということがある)は、生
分解性ポリマー(バイオプラスチックス)の合成原料、
光学活性4−アセトキシ−β−ラクタムの出発原料、あ
るいは各種活性天然物、例えばカミキリムシノ防御物
質、シトロネトール、各種フェロモン、コレトジオー
ル、エスペリンなどのファインケミカル合成の原料等と
して有用であり、その需要は今後ますます増加していく
ものと考えられる。
2. Description of the Related Art 3-Hydroxybutyric acid and its ester (hereinafter sometimes referred to as 3-hydroxybutyric acid) are raw materials for synthesizing biodegradable polymers (bioplastics),
It is useful as a starting material for optically active 4-acetoxy-β-lactam, or as a raw material for various active natural products, for example, fine chemical syntheses such as kamikirimushino defense substance, citronetol, various pheromones, choletodiol, and esperin. It is expected to increase more and more.

【0003】この3−ヒドロキシ酪酸類は生体内に豊富
に存在する化合物であり、生物、特に微生物を利用する
光学活性体の合成の歴史はかなり古い。しかし本格的な
合成研究が行なわれる様になったのは、3−ヒドロキシ
酪酸類の需要が大きくなってきたごく最近のことであ
る。
These 3-hydroxybutyric acids are abundant compounds in the living body, and the history of synthesizing optically active substances utilizing organisms, particularly microorganisms, is quite old. However, it was only recently that the demand for 3-hydroxybutyric acids increased, that full-scale synthetic research came to be carried out.

【0004】ところで、生体内に存在する3−ヒドロキ
シ酪酸類は光学活性を有しており、上記の様な合成反応
に使用される3−ヒドロキシ酪酸類の殆どは(R)体で
ある。これに対し合成反応によって製造される3−ヒド
ロキシ酸類は(R/S)体からなるラセミ体であるか
ら、これらを光学活性な化合物として有効に活用するに
は、合成反応の後ラセミ体を分割するか或は合成法を工
夫することが必要となる。
By the way, the 3-hydroxybutyric acids present in the living body have optical activity, and most of the 3-hydroxybutyric acids used in the above synthetic reaction are the (R) form. On the other hand, the 3-hydroxy acids produced by the synthetic reaction are racemic bodies consisting of (R / S) isomers. Therefore, in order to effectively utilize them as optically active compounds, the racemic isomers are separated after the synthetic reaction. Or, it is necessary to devise a synthetic method.

【0005】こうした状況のもとで現在実施されている
光学活性を有する3−ヒドロキシ酪酸類の合成方法とし
ては、3−オキシ酸の立体区別還元、脂肪酸の立体区別
β−水酸化、菌体が作るポリ−3−ヒドロキシ酸の加水
分解の3つに分類される。しかしながら、上記の方法で
は、ラセミ体の分割が非常に煩雑であるか目的物質の収
率が非常に低く、工業的規模での実用化に適した方法と
はいえない。
Under these circumstances, as methods for synthesizing optically active 3-hydroxybutyric acids, stereoselective reduction of 3-oxyacid, stereoselective β-hydroxylation of fatty acid, and bacterial cells are available. Hydrolysis of the poly-3-hydroxy acid produced is classified into three categories. However, the above method cannot be said to be suitable for practical use on an industrial scale because the resolution of the racemate is very complicated or the yield of the target substance is very low.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、光学
活性を有する3−ヒドロキシ酪酸及びそのエステルを、
酵素法を利用して効率よく製造することのできる方法を
提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to provide optically active 3-hydroxybutyric acid and its ester,
It is intended to provide a method which can be efficiently produced by utilizing an enzymatic method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すること
のできた本発明に係る光学活性を有する3−ヒドロキシ
酪酸およびそのエステルの製法とは、(R)−3−ヒド
ロキシ酪酸エステルと(S)−3−ヒドロキシ酪酸エス
テルとの混合物を原料とし、これに加水分解酵素を作用
させることにより、原料混合物の(R)/(S)比率と
は異なった(R)/(S)比率の3−ヒドロキシ酪酸を
得、或は未加水分解物として(R)/(S)比率の異な
る3−ヒドロキシ酪酸エステルを得るところに要旨を有
するものである。
The process for producing optically active 3-hydroxybutyric acid and its ester according to the present invention, which has been able to achieve the above object, includes (R) -3-hydroxybutyric acid ester and (S) By using a mixture with -3-hydroxybutyrate as a raw material and reacting it with a hydrolase, a (R) / (S) ratio different from the (R) / (S) ratio of the raw material mixture of 3- The gist is to obtain hydroxybutyric acid or to obtain 3-hydroxybutyric acid ester having a different (R) / (S) ratio as an unhydrolyzed product.

【0008】この製法を実施するに当たり、加水分解酵
素の酵素活性および光学選択性は、使用する溶媒の種類
によって変ってくるので、該酵素の種類に応じて、制限
された量の水を含む反応系、あるいは非水系の有機溶媒
系が適宜選択して使用される。好ましい加水分解酵素と
しては、Candida属、Aspergillus
属、Rhizopus属、Rhizomucor属、M
ucor属、Arthrobacter属、Bacil
lus属、Pseudomonus属に属する菌群から
選択される1種の菌もしくはブタ膵臓由来の加水分解酵
素などが例示される。
In carrying out this production method, the enzymatic activity and the optical selectivity of the hydrolase vary depending on the type of solvent used. Therefore, a reaction containing a limited amount of water depending on the type of the enzyme. A system or a non-aqueous organic solvent system is appropriately selected and used. As a preferable hydrolase, Candida genus, Aspergillus
Genus, Rhizopus, Rhizomucor, M
ucor, Arthrobacter, Bacil
Examples thereof include one kind of bacterium selected from the group of bacteria belonging to the genus lus and the genus Pseudomonus, or a hydrolase derived from porcine pancreas.

【0009】[0009]

【作用】本発明では、上記の様に(R)−3−ヒドロキ
シ酪酸エステルと(S)−3−ヒドロキシ酪酸エステル
との混合物を原料として使用し、これに加水分解酵素を
作用させて酵素反応を行ない、上記(R)体もしくは
(S)体の一方を選択的に加水分解させることによっ
て、原料の(R)/(S)比率とは異なる(R)/
(S)比率の3−ヒドロキシ酪酸を得、あるいは未加水
分解物として原料の(R)/(S)比率とは異なる
(R)/(S)比率の3−ヒドロキシ酪酸エステルを得
るものであり、使用する加水分解酵素の種類に応じて溶
媒を適宜選択することにより、光学活性を有する3−ヒ
ドロキシ酪酸またはそのエステルを収率よく得ることが
できる。この酵素反応を反応式で示すと次の通りであ
る。
In the present invention, a mixture of (R) -3-hydroxybutyric acid ester and (S) -3-hydroxybutyric acid ester is used as a raw material as described above, and a hydrolase is allowed to act on it to carry out an enzymatic reaction. By selectively hydrolyzing one of the (R) form and the (S) form, the ratio (R) / (S) of the raw material is different from the ratio (R) /
A (S) ratio of 3-hydroxybutyric acid or an unhydrolyzed product of a (R) / (S) ratio of 3-hydroxybutyric acid ester different from the (R) / (S) ratio of the raw material is obtained. By appropriately selecting a solvent according to the type of hydrolase used, optically active 3-hydroxybutyric acid or its ester can be obtained in good yield. This enzymatic reaction is shown as a reaction formula as follows.

【0010】[0010]

【化1】 [Chemical 1]

【0011】この反応で使用する加水分解酵素として
は、リパーゼ、エステラーゼ、プロテアーゼなどを挙げ
ることができ、より具体的には、Candida属、A
spergillus属、Rhizopus属、Rhi
zomucor属、Mucor属、Arthrobac
ter属、Bacillus属、Pseudomonu
s属よりなる群から選択される1種、もしくはブタ膵臓
由来の加水分解酵素等が好ましいものとして例示され
る。
As the hydrolase used in this reaction, lipase, esterase, protease and the like can be mentioned. More specifically, Candida genus, A
spergillus, Rhizopus, Rhi
genus zomucor, genus Mucor, Arthrobac
ter, Bacillus, Pseudomonu
One kind selected from the group consisting of s genus, or a hydrolase derived from porcine pancreas is exemplified as a preferable one.

【0012】これらの加水分解酵素を用いた酵素反応時
の基質濃度は、用いる溶媒の種類によって異なるので一
律に決めることはできないが、通常は0.005〜7.
7モルの範囲から選択され、水溶媒中で反応を行なうと
きは0.1モル近傍、水制限系では7モル近傍、有機溶
媒系では0.2モル近傍が特に好ましい。
The substrate concentration during the enzymatic reaction using these hydrolases cannot be uniformly determined because it depends on the type of solvent used, but usually 0.005 to 7.
It is selected from the range of 7 mol, and when the reaction is carried out in a water solvent, it is preferably about 0.1 mol, in a water-limited system, about 7 mol, and in an organic solvent system, about 0.2 mol is particularly preferable.

【0013】反応液のpHも各加水分解酵素の最適pH
が異なるので一概には決められないが、好ましいのはp
H3〜8の範囲、より好ましくはpH5〜7.5の範囲
である。この場合、反応液のpHを安定に保つため緩衝
液を使用するのがよく、通常は0.01〜0.15モル
のりん酸緩衝液が使用される。緩衝液を使用しない場合
は、塩酸、硫酸等の鉱酸と水酸化ナトリウム、水酸化カ
リウム等のアルカリを用いて反応液のpHを最適pHに
調節すればよい。反応温度も、各加水分解酵素の最適温
度が異なるので一律に決めることは適当でないが、通常
は5〜65℃、より一般的には25〜45℃の範囲から
選択される。
The pH of the reaction solution is also the optimum pH for each hydrolase.
However, it is preferable that p
It is in the range of H3 to 8, more preferably in the range of pH 5 to 7.5. In this case, it is preferable to use a buffer solution to keep the pH of the reaction solution stable, and usually 0.01 to 0.15 mol of phosphate buffer solution is used. When the buffer solution is not used, the pH of the reaction solution may be adjusted to an optimum pH using a mineral acid such as hydrochloric acid or sulfuric acid and an alkali such as sodium hydroxide or potassium hydroxide. It is not appropriate to uniformly determine the reaction temperature because the optimum temperature of each hydrolase is different, but it is usually selected from the range of 5 to 65 ° C, and more generally 25 to 45 ° C.

【0014】本発明を実施する場合、加水分解酵素の種
類によって最適溶媒の種類が異なることは先に述べた
が、水溶媒中あるいは水制限系で反応を行なう場合は、
(R)体または(S)体の3−ヒドロキシ酪酸エステル
体に対して0.1〜1000モル%、より好ましくは5
0〜300モル%の水を使用するのがよく、また有機溶
媒中で反応を行なう場合は、該エステル体に対して10
〜1000モル%、より好ましくは50〜300モル%
の範囲が推奨される。尚、酵素反応を有機溶剤中で行な
う場合においても、加水分解のため適量の水を反応系に
存在させなければならないことはいうまでもない。
As described above, when the present invention is carried out, the type of optimum solvent varies depending on the type of hydrolase.
0.1-1000 mol%, more preferably 5 mol% relative to the 3-hydroxybutyric acid ester form of the (R) form or the (S) form
It is preferable to use 0 to 300 mol% of water, and when the reaction is carried out in an organic solvent, 10 to the ester is used.
~ 1000 mol%, more preferably 50-300 mol%
The range of is recommended. Needless to say, even when the enzymatic reaction is carried out in an organic solvent, an appropriate amount of water must be present in the reaction system for hydrolysis.

【0015】しかし、3−ヒドロキシ酪酸とそのエステ
ルの分離を行なう際に、生成物中に存在する水分量が少
ない場合は、適当な乾燥剤によって容易に脱水を行なう
ことができるが、反応生成物中に多量の水が存在する
と、例えば減圧乾燥法等を採用したときに、目的物と水
との共沸等が起こってそれらの分離効率が低下してく
る。従って反応系に存在する水は必要最小限に止めるの
がよく、本発明を実施するに当たっては、水分量の制限
された系もしくは有機溶媒を用いてこの中に必要量の水
を存在させた系で酵素反応を行なうのが好ましい。
However, when 3-hydroxybutyric acid and its ester are separated, if the amount of water present in the product is small, the reaction product can be easily dehydrated with an appropriate desiccant. If a large amount of water is present, for example, when a reduced pressure drying method or the like is adopted, azeotropy between the target substance and water occurs, and the separation efficiency of them decreases. Therefore, the water present in the reaction system should be kept to a necessary minimum, and in carrying out the present invention, a system having a limited amount of water or a system in which a necessary amount of water is present using an organic solvent is used. It is preferable to carry out the enzymatic reaction with.

【0016】ここで使用される有機溶媒としては、n−
ヘキサン、シクロヘキサン、ベンゼン、トルエン、ジエ
チルエーテル、ジメチルエーテル、ジブチルエーテル、
クロロホルム、四塩化炭素、メチルエチルケトンなどの
水難溶性有機溶媒;ジオキサン、ジメチルスルフォキシ
ド、アセトンなどの水溶性有機溶媒を使用することがで
き、これらは単独で使用してもよくあるいは必要により
2種以上の混合溶媒として使用することができる。
The organic solvent used here is n-
Hexane, cyclohexane, benzene, toluene, diethyl ether, dimethyl ether, dibutyl ether,
It is possible to use poorly water-soluble organic solvents such as chloroform, carbon tetrachloride, and methyl ethyl ketone; water-soluble organic solvents such as dioxane, dimethyl sulfoxide, and acetone, which may be used alone or, if necessary, two or more kinds. Can be used as a mixed solvent of.

【0017】ところで、反応溶媒の種類によっては加水
分解酵素の活性および光学選択性が異なり、酵素活性を
発現する場合と発現しない場合が生じてくるばかりでな
く、生成物中に占める(R)体と(S)体の比率が反転
することもある。従って、使用する加水分解酵素の種類
に応じて最適の溶媒を選択し、且つ最適温度および最適
pH域で酵素反応を行なうことが望まれる。尚、それら
の選択は、後述する実施例などを参照して、本発明を実
施する者がその都度行なえばよい。
By the way, depending on the type of reaction solvent, the activity and optical selectivity of the hydrolase are different, and in some cases the enzyme activity is expressed and in the other case it is not expressed. The ratio of the (S) body may be reversed. Therefore, it is desired to select an optimum solvent according to the type of hydrolase to be used and to carry out the enzyme reaction at the optimum temperature and pH range. It should be noted that those who carry out the present invention may make such selections each time with reference to the examples described later.

【0018】反応終了後は、公知の方法、例えば反応生
成物を減圧蒸留等によって3−ヒドロキシ酪酸とそのエ
ステルに分離すればよく、それにより原料混合物に対し
て光学活性の高められた3−ヒドロキシ酪酸もしくはそ
のエステルを収率よく得ることができる。
After completion of the reaction, a known method, for example, the reaction product may be separated into 3-hydroxybutyric acid and its ester by distillation under reduced pressure or the like, whereby 3-hydroxy having a higher optical activity with respect to the raw material mixture. Butyric acid or its ester can be obtained in good yield.

【0019】かくして得られる光学活性の高められた3
−ヒドロキシ酪酸またはそのエステルは、例えば生分解
性ポリマー(バイオプラスチックス)の合成原料、光学
活性4−アセトキシ−β−ラクタムの出発原料、あるい
は抗生物質等の医薬原料等として広く活用することがで
きる。
The thus obtained optically enhanced 3
-Hydroxybutyric acid or its ester can be widely used, for example, as a synthetic raw material for biodegradable polymers (bioplastics), a starting raw material for optically active 4-acetoxy-β-lactam, or a pharmaceutical raw material such as antibiotics. .

【0020】以下、実施例を挙げて本発明の構成および
作用効果をより具体的に説明するが、本発明はもとより
下記実施例によって制限を受けるものではなく、前・後
記の趣旨に適合し得る範囲で適当に変更して実施するこ
とはいずれも本発明の技術的範囲に包含される。
Hereinafter, the constitution and effects of the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples and can be adapted to the gist of the preceding and the following. Any appropriate modification within the scope is included in the technical scope of the present invention.

【0021】[0021]

【実施例】【Example】

実施例1(水媒体中での反応) 表1に示す加水分解酵素を10mgを、0.1モルのリ
ン酸緩衝液(pH7.0、それ以外の場合は表1に記
載)5mリットルに溶解し、(R、S)−3−ヒドロキ
シ酪酸のメチルエステル25.1mg(24μリット
ル)を加え、30℃で振とうしながら24時間反応を行
なった後、冷却して反応を停止させ、遠心分離して上澄
み液中の(R)−3−ヒドロキシ酪酸と(S)−3−ヒ
ドロキシ酪酸を定量した。光学活性な3−ヒドロキシ酪
酸の定量は、所定量の上澄み液にL−アラニルナフチル
アミドとDCCを加え、室温で1時間反応させた後、シ
リカ順相カラムを装填した高速液体クロマトグラフィー
によって行なった。
Example 1 (Reaction in aqueous medium) 10 mg of the hydrolase shown in Table 1 was dissolved in 5 ml of 0.1 mol of phosphate buffer solution (pH 7.0, otherwise, described in Table 1). Then, 25.1 mg (24 μl) of methyl ester of (R, S) -3-hydroxybutyric acid was added, and the reaction was carried out for 24 hours while shaking at 30 ° C., followed by cooling to stop the reaction and centrifugation. Then, (R) -3-hydroxybutyric acid and (S) -3-hydroxybutyric acid in the supernatant were quantified. The quantitative determination of optically active 3-hydroxybutyric acid was performed by adding L-alanylnaphthylamide and DCC to a predetermined amount of the supernatant and allowing the mixture to react at room temperature for 1 hour, followed by high performance liquid chromatography loaded with a silica normal phase column. It was

【0022】実施例2(水制限系の反応) 表1に記載した加水分解酵素1.02mgを蒸留水76
μリットルに溶解し、(R,S)−3−ヒドロキシ酪酸
のメチルエステル1040mg(996μリットル)を
加え、30℃で振とうしながら24時間反応を行なった
後、冷却して反応を停止させ、遠心分離して上澄み液中
の(R)−3−ヒドロキシ酪酸と(S)−3−ヒドロキ
シ酪酸を上記実施例1と同様にして定量した。
Example 2 (Reaction of Water Restriction System) 1.02 mg of the hydrolase described in Table 1 was added to distilled water 76
It was dissolved in .mu.l, 1040 mg (996 .mu.l) of methyl ester of (R, S) -3-hydroxybutyric acid was added, and the reaction was carried out for 24 hours while shaking at 30.degree. C., followed by cooling to stop the reaction. After centrifugation, (R) -3-hydroxybutyric acid and (S) -3-hydroxybutyric acid in the supernatant were quantified in the same manner as in Example 1 above.

【0023】実施例3(有機溶媒中の反応) 表1に記載した加水分解酵素3.0mgを蒸留水15.
2μリットルに溶解し、混合有機溶媒(n−ヘキサン/
ジオキサン=7/4)5.0mリットルを添加した。そ
れに(R,S)−3−ヒドロキシ酪酸のメチルエステル
104mg(10.3μリットル)を加え、30℃で振
とうしながら24時間反応を行なった後、冷却して反応
を停止させ、遠心分離して上澄み液中の(R)−3−ヒ
ドロキシ酪酸と(S)−3−ヒドロキシ酪酸を上記実施
例1と同様にして定量した。
Example 3 (Reaction in organic solvent) 3.0 mg of the hydrolase described in Table 1 was added to distilled water 15.
Dissolve in 2 μl, and mix organic solvent (n-hexane /
5.0 ml of dioxane = 7/4) was added. 104 mg (10.3 μl) of methyl ester of (R, S) -3-hydroxybutyric acid was added thereto, and the reaction was carried out for 24 hours while shaking at 30 ° C., followed by cooling to stop the reaction and centrifugation. Then, (R) -3-hydroxybutyric acid and (S) -3-hydroxybutyric acid in the supernatant were quantified in the same manner as in Example 1 above.

【0024】上記実施例1〜3の結果を表1〜3に示
す。尚表1に示した水媒体中での反応において、反応溶
液のpHは、0.1モルのりん酸緩衝液を用いて、As
pergillus oryzae、Aspergil
lus nigerとRhizopus delemo
rはpH3、Bacillus subtilis(1)
とPseudomonus sp.はpH8、Baci
llus subtilis(2) はpH10とし、その
他はpH7とした。
The results of Examples 1 to 3 are shown in Tables 1 to 3. In addition, in the reaction in the aqueous medium shown in Table 1, the pH of the reaction solution was adjusted to As
pergillus oryzae, Aspergill
lus niger and Rhizopus delemo
r is pH 3, Bacillus subtilis (1)
And Pseudomonus sp. PH8, Baci
The llus subtilis (2) had a pH of 10, and the others had a pH of 7.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】表1〜3からも明らかである様に、加水分
解酵素の種類に応じて最適溶剤の種類は異なり、また溶
剤の種類によっては光学活性あるいは光学選択性も異な
るが、加水分解酵素の種類に応じて最適の溶剤を選択す
ることにより、(R)体及び(S)体からなる3−ヒド
ロキシ酪酸エステル混合物のうち(R)体もしくは
(S)体を選択的に加水分解することができ、それによ
り、原料混合物の(R)/(S)比率とは異なった
(R)/(S)比率の3−ヒドロキシ酪酸を得ることが
できる。
As is clear from Tables 1 to 3, the type of optimum solvent varies depending on the type of hydrolase, and the optical activity or optical selectivity also varies depending on the type of solvent. By selecting the optimum solvent according to the type, it is possible to selectively hydrolyze the (R) body or the (S) body of the 3-hydroxybutyric acid ester mixture consisting of the (R) body and the (S) body. This makes it possible to obtain 3-hydroxybutyric acid having an (R) / (S) ratio different from the (R) / (S) ratio of the raw material mixture.

【0029】また、このように原料混合物中の(R)体
と(S)体の一方が選択的に加水分解されるということ
は、未加水分解物として残存する3−ヒドロキシ酪酸エ
ステルの(R)/(S)比率が原料混合物の(R)/
(S)比率とは異なったものになることを意味してお
り、それにより光学活性のより高められた3−ヒドロキ
シ酪酸エステルを得ことも可能となる。
In addition, the fact that one of the (R) form and the (S) form in the raw material mixture is selectively hydrolyzed in this way means that the (R) of the 3-hydroxybutyric acid ester remaining as an unhydrolyzed product is (R). ) / (S) ratio is (R) / of the raw material mixture
It means that the ratio is different from the (S) ratio, which makes it possible to obtain a 3-hydroxybutyric acid ester having higher optical activity.

【0030】[0030]

【発明の効果】本発明は以上の様に構成されており、生
分解性ポリマーや医薬などの原料として有用な光学活性
を有する3−ヒドロキシ酪酸及びそのエステルを、
(R,S)−3−ヒドロキシ酪酸エステルを出発原料と
する酵素反応によって効率よく製造し得ることになっ
た。
EFFECTS OF THE INVENTION The present invention is constituted as described above, and provides optically active 3-hydroxybutyric acid and its ester, which are useful as raw materials for biodegradable polymers and pharmaceuticals.
It has become possible to efficiently produce by an enzymatic reaction using (R, S) -3-hydroxybutyrate as a starting material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12P 41/00 C12R 1:06) (C12P 41/00 C12R 1:72) (C12P 41/00 C12R 1:845) (C12P 41/00 C12R 1:125) (C12P 41/00 C12R 1:38) (C12P 41/00 C12R 1:785) (C12P 41/00 C12R 1:91) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location (C12P 41/00 C12R 1:06) (C12P 41/00 C12R 1:72) (C12P 41/00 C12R 1: 845) (C12P 41/00 C12R 1: 125) (C12P 41/00 C12R 1:38) (C12P 41/00 C12R 1: 785) (C12P 41/00 C12R 1:91)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (R)−3−ヒドロキシ酪酸エステルと
(S)−3−ヒドロキシ酪酸エステルとの混合物を原料
とし、これに加水分解酵素を作用させることにより、原
料混合物の(R)/(S)比率とは異なった(R)/
(S)比率の3−ヒドロキシ酪酸を得ることを特徴とす
る3−ヒドロキシ酪酸の製法。
1. A mixture of (R) -3-hydroxybutyric acid ester and (S) -3-hydroxybutyric acid ester is used as a raw material, and a hydrolase is allowed to act on the mixture to give (R) / (of the raw material mixture. S) different from (R) /
A method for producing 3-hydroxybutyric acid, characterized in that (S) ratio of 3-hydroxybutyric acid is obtained.
【請求項2】 (R)−3−ヒドロキシ酪酸エステルと
(S)−3−ヒドロキシ酪酸エステルとの混合物を原料
とし、これに加水分解酵素を作用させることにより、原
料混合物の(R)/(S)比率とは異なった(R)/
(S)比率の3−ヒドロキシ酪酸エステルを得ることを
特徴とする3−ヒドロキシ酪酸の製法。
2. A mixture of (R) -3-hydroxybutyric acid ester and (S) -3-hydroxybutyric acid ester is used as a raw material, and a hydrolase is allowed to act on the mixture to give (R) / (of the raw material mixture. S) different from (R) /
A method for producing 3-hydroxybutyric acid, characterized in that a (S) ratio of 3-hydroxybutyric acid ester is obtained.
【請求項3】 酵素反応を、制限された量の水の存在下
で反応を行なう請求項1または2に記載の製法。
3. The process according to claim 1, wherein the enzymatic reaction is carried out in the presence of a limited amount of water.
【請求項4】 酵素反応を、有機溶媒中で行なう請求項
3に記載の製法。
4. The method according to claim 3, wherein the enzymatic reaction is carried out in an organic solvent.
【請求項5】 加水分解酵素が、Candida属、A
spergillus属、Rhizopus属、Rhi
zomucor属、Mucor属、Arthrobac
ter属、Bacillus属、Pseudomonu
s属に属する菌群から選択される1種の菌もしくはブタ
膵臓由来の加水分解酵素である請求項1〜4のいずれか
に記載の製法。
5. The hydrolase is Candida genus, A
spergillus, Rhizopus, Rhi
genus zomucor, genus Mucor, Arthrobac
ter, Bacillus, Pseudomonu
The method according to any one of claims 1 to 4, which is a hydrolase derived from a bacterium belonging to the genus s or a porcine pancreas.
JP26016292A 1992-09-29 1992-09-29 Production of 3-hydroxybutyric acid and its ester Pending JPH06113885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26016292A JPH06113885A (en) 1992-09-29 1992-09-29 Production of 3-hydroxybutyric acid and its ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26016292A JPH06113885A (en) 1992-09-29 1992-09-29 Production of 3-hydroxybutyric acid and its ester

Publications (1)

Publication Number Publication Date
JPH06113885A true JPH06113885A (en) 1994-04-26

Family

ID=17344184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26016292A Pending JPH06113885A (en) 1992-09-29 1992-09-29 Production of 3-hydroxybutyric acid and its ester

Country Status (1)

Country Link
JP (1) JPH06113885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040881A (en) * 1996-07-17 2000-03-21 Canon Kk Projection type display apparatus with color optimized anti-reflection films
JPWO2006038698A1 (en) * 2004-10-08 2008-05-15 宇部興産株式会社 Process for producing optically active (S or R) -β-amino acid and optically active (R or S) -β-amino acid ester, and β-amino acid 2-alkoxyethyl ester and optically active (S or R) -β-amino acid 2 -Alkoxyethyl ester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040881A (en) * 1996-07-17 2000-03-21 Canon Kk Projection type display apparatus with color optimized anti-reflection films
JPWO2006038698A1 (en) * 2004-10-08 2008-05-15 宇部興産株式会社 Process for producing optically active (S or R) -β-amino acid and optically active (R or S) -β-amino acid ester, and β-amino acid 2-alkoxyethyl ester and optically active (S or R) -β-amino acid 2 -Alkoxyethyl ester
JP4893308B2 (en) * 2004-10-08 2012-03-07 宇部興産株式会社 Process for producing optically active (S or R) -β-amino acid and optically active (R or S) -β-amino acid ester, and β-amino acid 2-alkoxyethyl ester and optically active (S or R) -β-amino acid 2 -Alkoxyethyl ester

Similar Documents

Publication Publication Date Title
JPH04248993A (en) Method for preparation of optically pure (s)- alpha-((tertiary-butylsulfonyl) methyl) hydrocinnamic acid
Johri et al. Purification and characterisation of an ester hydrolase from a strain of Arthrobacter species: its application in asymmetrisation of 2-benzyl-1, 3-propanediol acylates
JPS62272984A (en) Production of l-(-)-carnitine chloride by biotechnology
JPH06113885A (en) Production of 3-hydroxybutyric acid and its ester
US6121025A (en) Process for producing optically active 3-quinuclidinol derivatives
US5492830A (en) Enzymatic resolution of α-tertiary carboxylic acid esters
JPH1175889A (en) Production and purification of optically active alpha-trifluoromethyllactic acid and its enantiomer ester
JPH1033191A (en) Optically active 3-n-substituted aminoisobutyric acid compounds and their salts and their production
JP3708589B2 (en) Process for producing optically active 2-alkoxycyclohexanol derivative
JPWO2013094499A1 (en) Method for producing optically active α-substituted-β-amino acid
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JPS6012992A (en) Production of optically active carboxylic acid
JPH10337197A (en) Production of optically active 3-hydroxytetrahydrofuran
JPH04261141A (en) Production of itaconic acid 1-monoester
JPH10276792A (en) Production of hydroxycarboxylic acid and its amide
JPS63137687A (en) Production of optically active beta-monoalkyl malate or optically active isoserine
EP1433857A1 (en) Process for producing monomer
JPS6094091A (en) Production of optically active carboxylic acid ester
JPH0648989B2 (en) Process for producing optically active 4-hydroxy-2-cyclopentenone
JPH06237788A (en) Production of acetylene alcohol compounds
JPH01247100A (en) Production of optically active carboxylic acid derivative
JP2003000295A (en) Method for producing optically active 2-hydroxymethyl-3- arylpropionic acid and antipode ester thereof
JP2000004893A (en) Production of terminal reactive polyester
JPH01171497A (en) Optical resolution of racemic alcohol
JPH1180103A (en) Beta-carbamoylisobutyric acids and their production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010828