[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0586098B2 - - Google Patents

Info

Publication number
JPH0586098B2
JPH0586098B2 JP58059228A JP5922883A JPH0586098B2 JP H0586098 B2 JPH0586098 B2 JP H0586098B2 JP 58059228 A JP58059228 A JP 58059228A JP 5922883 A JP5922883 A JP 5922883A JP H0586098 B2 JPH0586098 B2 JP H0586098B2
Authority
JP
Japan
Prior art keywords
signal
frequency
carrier wave
wave
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58059228A
Other languages
Japanese (ja)
Other versions
JPS59201564A (en
Inventor
Susumu Sasaki
Hiroshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58059228A priority Critical patent/JPS59201564A/en
Priority to US06/594,987 priority patent/US4606048A/en
Priority to EP84302355A priority patent/EP0122127B1/en
Priority to DE8484302355T priority patent/DE3485098D1/en
Publication of JPS59201564A publication Critical patent/JPS59201564A/en
Publication of JPH0586098B2 publication Critical patent/JPH0586098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は無線通信方式に関する。[Detailed description of the invention] Technical field of invention The present invention relates to a wireless communication system.

技術の背景 送信系より無線によつてデータを送信し、受信
系においてそのデータを復調し再生するという無
線通信システムにおいては、搬送波に対し、デー
タに基づくデイジタル変調が加えられる。このデ
イジタル変調としては従来より種々の方式が実用
に供されている。この中で本発明は特に多値直交
振幅変調方式(QAM:Quadrature Amplitude
Modulation)について言及する。QAM方式の無
線通信システムは、送信すべきデータの搬送波
に、位相成分および振幅成分について変調を加
え、模式的に、データに対応する多数の変調点を
平面上に配置して送信するというものである。こ
のため、一度に多量のデータを送信でき無線伝送
路の伝送容量を大幅に増大することができる。
Background of the Technology In a wireless communication system in which data is transmitted wirelessly from a transmitting system and the data is demodulated and reproduced in a receiving system, digital modulation based on the data is applied to a carrier wave. As this digital modulation, various methods have been put into practical use. Among these, the present invention particularly focuses on multilevel quadrature amplitude modulation (QAM).
Modulation). A QAM wireless communication system modulates the phase and amplitude components of a carrier wave for data to be transmitted, and schematically arranges a large number of modulation points corresponding to the data on a plane and transmits the data. be. Therefore, a large amount of data can be transmitted at once, and the transmission capacity of the wireless transmission path can be significantly increased.

従来技術と課題 QAM方式においては多数の変調点が形成され
るが(前述)、その変調点の数は16値、32値、64
値、128値等に及ぶ。この場合における受信系で
の大事な機能の1つとして、同期検波用の基準搬
送波の再生がある。この再生搬送波は原データの
復調に用いられる。通常は、多値QAM方式の中
で16値QAM方式が主に採用されているが、この
場合の基準搬送波の再生には、一般に4相位相変
調(PSK:Phase Shift Keying)方式で用いら
れているのと同様の手法が用いられている。すな
わち、搬送波再生回路に位相選択制御機能を持た
せたいわゆる逓倍方式(2逓倍、4逓倍等)が良
く知られている。
Conventional technology and issues A large number of modulation points are formed in the QAM method (as described above), and the number of modulation points can be 16, 32, or 64.
values, ranging from 128 values, etc. One of the important functions of the receiving system in this case is regeneration of a reference carrier wave for coherent detection. This recovered carrier wave is used to demodulate the original data. Normally, the 16-value QAM method is mainly used among the multi-value QAM methods, but in this case, the reference carrier wave is regenerated using a four-phase phase keying (PSK) method. A similar method is used. That is, so-called multiplication methods (2 multiplication, 4 multiplication, etc.) in which a carrier wave regeneration circuit is provided with a phase selection control function are well known.

上記の様な従来の搬送波再生回路を用いる場
合、16値ともなると再生搬送波のジツタの抑圧等
の問題が顕著になる。ましてや、32値、64値、
128値となると、この種の搬送波再生回路では実
用的な同期検波用の基準搬送波の再生は殆ど不可
能となる。ここに、従来と異なる新規な方式によ
る無線通信システムを実現し、32値以上の多値直
交変調にも十分適用可能なQAM無線通信システ
ムの実用化が望まれる。
When using the conventional carrier wave recovery circuit as described above, problems such as suppression of jitter in the recovered carrier wave become noticeable when the number of values becomes 16. Moreover, 32 values, 64 values,
When the value becomes 128, it becomes almost impossible for this type of carrier wave recovery circuit to recover a reference carrier wave for practical synchronous detection. Therefore, it is desirable to realize a wireless communication system using a new method different from the conventional one, and to put into practical use a QAM wireless communication system that can be fully applied to multi-value orthogonal modulation of 32 or more values.

発明の目的 上記の実情に鑑み本発明は32値以上の多値
QAMであつても十分実用に供し得る無線通信方
式を提案することを目的とするものである。
Purpose of the Invention In view of the above-mentioned circumstances, the present invention provides multi-valued
The purpose of this study is to propose a wireless communication system that can be put to practical use even if it is QAM.

発明の構成 上記目的を達成するために本発明は、送信系に
おいて周波数0を有する搬送波を、所定のクロツ
ク周波数CLを有するデイジタル信号で変調した
変調波を受信系に送信し、該受信系で該変調波を
受信し且つこれより前記搬送波を抽出して、抽出
された該搬送波を用いて前記デイジタル信号を再
生する無線通信システムにおいて、前記送信系に
おいて、前記変調波の信号スペクトラム上に、前
記周波数0と前記クロツク周波数CLの1/N(Nは 2以上の整数)の和に相当する周波数(0
1/N・CL)およびその差に相当する周波数(0− 1/N・CL)をそれぞれ有する第1の搬送波再生用 信号および第2の搬送波再生用信号を挿入して前
記変調波となし、前記受信系では前記第1の搬送
波再生用信号(周波数が0+1/N)CL・および前 記第2の搬送波再生用信号(周波数が0−1/N・CL )を変調器に加えて前記周波数0の搬送波お
よび前記クロツク周波数CLの信号を抽出し、前
記デイジタル信号の再生を行うことを特徴とする
ものである。
Structure of the Invention In order to achieve the above object, the present invention transmits a modulated wave obtained by modulating a carrier wave having a frequency of 0 with a digital signal having a predetermined clock frequency CL to a receiving system. In a wireless communication system that receives a modulated wave, extracts the carrier wave therefrom, and reproduces the digital signal using the extracted carrier wave, in the transmission system, the frequency is set on the signal spectrum of the modulated wave. 0 and 1/N (N is an integer of 2 or more) of the clock frequency CL ( 0 +
1/N・CL ) and a first carrier wave regeneration signal and a second carrier wave regeneration signal having a frequency ( 0 − 1/N・CL ) corresponding to the difference thereof, respectively, to form the modulated wave; In the receiving system, the first carrier wave regeneration signal (frequency is 0 + 1/N) CL and the second carrier wave recovery signal (frequency is 0 - 1/N CL ) are applied to a modulator to obtain the frequency The present invention is characterized in that the carrier wave of 0 and the signal of the clock frequency CL are extracted and the digital signal is reproduced.

発明の実施例 第1図は送信系より送信される変調波の一般的
な信号スペクトラムを示す図である。本図におい
て横軸は周波数であり縦軸は電力Wである。前
述したように多値の変調波では搬送波の抽出が困
難となる。そこで、送信系で予め搬送波再生用信
号を変調波内に挿入しておき、受信系での搬送波
抽出を楽にしデイジタル信号の再生を簡単にしよ
うということが既に行われている。このような搬
送波再生用信号は通常信号スペクトラムの零点に
挿入される。図では周波数(0CL)又は(0
CL)の零点である。ここに0は送信系におけ
る搬送波の周波数、CLは該搬送波を変調する前
記デイジタル信号のクロツク周波数である。図で
は周波数(0CL)の零点に搬送波再生用信号
Crを挿入した状態を示している。このように零点
に搬送波再生用信号Crを挿入すれば、データ信号
に対し何らノイズあるいは干渉を与えるものでな
く、又、信号Cr自身もデータ信号から干渉を受け
ることがなく、いわゆるS/Nが良好となる。な
お、上記零点がいわゆるナイキストレートをもつ
て周期的に現われることは周知である。
Embodiments of the Invention FIG. 1 is a diagram showing a general signal spectrum of a modulated wave transmitted from a transmission system. In this figure, the horizontal axis is frequency and the vertical axis is power W. As mentioned above, it is difficult to extract the carrier wave with multilevel modulated waves. Therefore, attempts have already been made to insert a carrier wave regeneration signal into a modulated wave in advance in the transmission system to facilitate carrier wave extraction in the reception system and to simplify the reproduction of digital signals. Such a carrier recovery signal is usually inserted at the zero point of the signal spectrum. In the figure, the frequency ( 0 + CL ) or ( 0
CL ) is the zero point. Here, 0 is the frequency of the carrier wave in the transmission system, and CL is the clock frequency of the digital signal that modulates the carrier wave. In the figure, the carrier wave regeneration signal is placed at the zero point of frequency ( 0 + CL ).
The state with C r inserted is shown. By inserting the carrier wave regeneration signal C r at the zero point in this way, it does not give any noise or interference to the data signal, and the signal C r itself does not receive interference from the data signal, so it is a so-called S/ N becomes good. It is well known that the above zero points appear periodically with a so-called Nyquist rate.

ところが、上記零点、すなわちナイキストレー
トで現われる零点に搬送波再生用信号Crを挿入す
ることは商用通信システムとしては不向きであ
る。というのは、電波法等により信号スペクトラ
ムに制限が加えられており、十分な電力をもつて
該搬送波再生用信号Crを受信系に送信できないか
らである。
However, inserting the carrier wave regeneration signal C r at the above zero point, that is, the zero point appearing in the Nyquist rate, is not suitable for a commercial communication system. This is because the signal spectrum is restricted by the Radio Law, etc., and the carrier regeneration signal C r cannot be transmitted to the receiving system with sufficient power.

第2図は第1図の送信信号に帯域制限が加えら
れる場合の信号スペクトラムを示す図である。本
図において、ハツチングされた部分は前記電波法
等により帯域制限が加えられた部分を示す。この
ような帯域制限を受けた結果、送信すべき搬送波
再生用信号Crはマスクされ消滅してしまう。
FIG. 2 is a diagram showing a signal spectrum when band limitation is applied to the transmission signal of FIG. 1. In this figure, hatched areas indicate areas to which band restrictions have been applied according to the Radio Law and the like. As a result of such band limitation, the carrier wave regeneration signal C r to be transmitted is masked and disappears.

そこで本発明はとにかく帯域制限内の信号成分
中に搬送波再生用信号Crを強制的に押し込んでし
まうこととする。このように信号成分中に搬送波
再生用信号Crを挿入することはS/Nの観点から
して本来不利であり、得策ではない。ところが多
値QAM方式においては、多少の信号劣化は許容
しても送信系での搬送波再生用信号の挿入および
受信系での搬送波再生に要するハードウエアが簡
素化されることの方が好ましく、本発明の方式に
よれば、その簡素化が図れるものである(後述)。
第3図は本発明を説明するための信号スペクトラ
ムを示す図である。本図において、Cr1が信号成
分中に強制的に挿入された第1の搬送波再生用信
号である。又、第2の搬送波再生用信号Cr2も同
時に挿入する。これら搬送波再生用信号Cr1およ
びCr2の周波数は原理的にはどこに選んでも良い
が、特に受信系でのハードウエアを簡素化すべく
(後述)、一定のルールでこれらの周波数を定め
る。すなわち、Cr1については(0+1/N・CL) (Nは2以上の整数)、Cr2については(0−1/N・CL )である。0は前述した搬送波の周波数、CL
も前述したクロツク周波数である。第3図ではN
=2の場合を例示している。
Therefore, in the present invention, the carrier wave regeneration signal C r is forcibly pushed into the signal component within the band limit. Inserting the carrier wave regeneration signal C r into the signal component in this way is inherently disadvantageous from the viewpoint of S/N and is not a good idea. However, in the multilevel QAM system, even if some signal degradation is allowed, it is preferable to simplify the hardware required for inserting a carrier wave recovery signal in the transmission system and for carrier wave recovery in the reception system, and this is According to the method of the invention, this can be simplified (described later).
FIG. 3 is a diagram showing a signal spectrum for explaining the present invention. In this figure, C r1 is the first carrier wave regeneration signal that is forcibly inserted into the signal component. Also, a second carrier wave reproduction signal C r2 is also inserted at the same time. The frequencies of these carrier wave regeneration signals C r1 and C r2 may be selected anywhere in principle, but these frequencies are determined according to certain rules, especially in order to simplify the hardware in the receiving system (described later). That is, for C r1 , it is ( 0 + 1/ N.CL ) (N is an integer of 2 or more), and for C r2 , it is ( 0 - 1/ N.CL ). 0 is the frequency of the carrier wave mentioned above, CL
is also the clock frequency mentioned above. In Figure 3, N
=2 is shown as an example.

第4図は本発明の方式を実現するための送信系
の構成例を示すブロツク図である。送信系S内に
おいて、45が前記1/N・CLを生成するための1/N 分周器である。今、N=2を例にとつているから
1/2分周器として働く。先ず送信すべきデイジタ
ル信号Dはデータ処理部41において処理されア
ナログ信号SAとなる。このデータ処理部41は
例えばシリアル/パラレル変換器、デイジタル/
アナログ変換器等からなる。このデータ処理のた
めのクロツク信号(周波数CL)はクロツク発生
器44より供給される。
FIG. 4 is a block diagram showing an example of the configuration of a transmission system for realizing the system of the present invention. In the transmission system S, 45 is a 1/N frequency divider for generating the 1/N· CL . Now, since we are taking N=2 as an example, it works as a 1/2 frequency divider. First, the digital signal D to be transmitted is processed in the data processing section 41 and becomes an analog signal S A. This data processing section 41 is, for example, a serial/parallel converter, a digital/
Consists of analog converters, etc. A clock signal (frequency CL ) for this data processing is supplied from a clock generator 44.

アナログ信号SAは変調器42に入力され、搬
送波(周波数0)を変調する。この搬送波は搬送
波発生器47より変調器42に与えられる。かく
して、変調器42からの出力はハイブリツド回路
43を経由して、受信系へ送信すべき変調波Sput
となる。さらにこれに第1および第2の搬送波再
生用信号Cr10+1/N・CL)およびCr20−1
/N・CL )を挿入する。クロツク発生器44からのク
ロツク信号(CL)は前記1/N分周器45により分 周信号(1/N・CL)となり、これを変調器46に おいて、搬送波発生器47からの搬送波(0)と
掛け合わせ、第1および第2の搬送波再生用信号
Cr1,Cr2(周波数が(0+1/N・CL)および(0
− 1/N))CL・)を得、これをハイブリツド回路4 3を介して信号スペクトラム上に挿入する。かく
して、Cr1とCr2を内包した変調波Sputが受信系へ
送信される。
The analog signal S A is input to the modulator 42 and modulates a carrier wave (frequency 0 ). This carrier wave is given to the modulator 42 from a carrier wave generator 47. In this way, the output from the modulator 42 passes through the hybrid circuit 43 and becomes the modulated wave S put to be transmitted to the receiving system.
becomes. Furthermore, first and second carrier wave regeneration signals C r1 ( 0 + 1/N・CL ) and C r2 ( 0 −1
/N・CL ). The clock signal ( CL ) from the clock generator 44 is converted into a frequency-divided signal (1/N・CL ) by the 1/N frequency divider 45, and this is converted into a carrier wave ( 0 ) by the modulator 46 from the carrier wave generator 47. and the first and second carrier wave regeneration signals
C r1 , C r2 (frequency is ( 0 + 1/N・CL ) and ( 0
−1/N)) CL・) is obtained and inserted onto the signal spectrum via the hybrid circuit 43. In this way, the modulated wave S put containing C r1 and C r2 is transmitted to the receiving system.

第5図は本発明の方式を実現するための受信系
の構成例を示すブロツク図である。受信系R内に
おいて第4図の変調波Sputは伝送路(図示せず)
を通して変調波Sioとして受信される。受信変調
波Sioは一方においてバンドパスフイルタ51に
印加されて周波数(0+1/N・CL)の第1の搬送 波再生用信号Cr1が抽出される。又、他方におい
てバンドパスフイルタ52に印加されて周波数
0−1/N・CL)の第2の搬送波再生用信号Cr2が 抽出される。これらCr1とCr2が変調器53に加え
られると、周波数20の信号と周波数2/N・CLの 信号とが得られ、これらをそれぞれバンドパスフ
イルタ54および56でそれぞれ選択的に抽出す
る。さらに1/2分周器57で周波数20の信号を1/
2分周して原搬送波(0)を再生し、2/N逓倍器5 5で周波数2/NCLの信号を2/N逓倍して原クロツ ク信号CLを再生する。この場合、NをN=2に
選んでいる本例では2/2逓倍となり、この2/N逓倍 器55は事実上不要であり受信系の簡素化に最も
有利である。またNを4以上の偶数(N=4,
6,8…)とすると、2/N逓倍器55の構成が簡 単になる。なおクロツク信号は原デイジタル信号
Dをデイジタルデータとして再生する上で必要な
信号となる。
FIG. 5 is a block diagram showing an example of the configuration of a receiving system for implementing the system of the present invention. In the receiving system R, the modulated wave S put in Fig. 4 is transmitted through a transmission path (not shown).
is received as a modulated wave S io . The received modulated wave S io is applied to a bandpass filter 51 on the one hand, and a first carrier recovery signal C r1 having a frequency ( 0 +1/N· CL ) is extracted. On the other hand, it is applied to the bandpass filter 52 to extract a second carrier wave regeneration signal C r2 having a frequency of ( 0 -1/N· CL ). When these C r1 and C r2 are applied to the modulator 53, a signal with a frequency of 20 and a signal with a frequency of 2/N· CL are obtained, which are selectively extracted by bandpass filters 54 and 56, respectively. . Furthermore, the frequency 20 signal is divided into 1/2 by the 1/2 frequency divider 57.
The frequency is divided by 2 to reproduce the original carrier wave ( 0 ), and the 2/N multiplier 55 multiplies the signal with the frequency 2/N CL by 2/N to reproduce the original clock signal CL. In this case, in this example where N is selected to be 2, the signal is multiplied by 2/2, and this 2/N multiplier 55 is virtually unnecessary and is most advantageous for simplifying the receiving system. Also, N is an even number of 4 or more (N=4,
6, 8...), the configuration of the 2/N multiplier 55 becomes simple. Note that the clock signal is a signal necessary for reproducing the original digital signal D as digital data.

一方、1/2分周器57からの搬送波(0)と受
信変調波Sioは共に検波器58に加えられて、同
期検波が行われるが、第3図に示したように搬送
波再生用信号Cr1,Cr2はもともと存在する情報成
分中に強制的に重畳されたものであるから時間軸
上で見ると、出力信号SBにはクロツク周波数をN
分周したオフセツトが含まれ最終的な復調データ
となつておらず、搬送波再生用信号Cr1,Cr2のオ
フセツト周波数(1/N・CL)をもつて変動してい る。この変動を相殺するために信号SBに対し周波
数1/NCLを持つた信号を差動的に加え合わせる。
On the other hand, the carrier wave ( 0 ) from the 1/2 frequency divider 57 and the received modulated wave S io are both applied to the detector 58 to perform synchronous detection, but as shown in FIG. Since C r1 and C r2 are forcibly superimposed on the originally existing information components, when viewed on the time axis, the output signal S B has a clock frequency of N
Since the frequency-divided offset is included, it is not the final demodulated data, and the carrier wave regeneration signals C r1 and C r2 fluctuate with an offset frequency (1/N· CL ). In order to cancel this fluctuation, a signal having a frequency of 1/N CL is differentially added to the signal S B.

このために、1/2分周器59からの周波数1/N・CL の信号を減算器60に印加し、信号SBとの差
分をとつた上で復調データSCを得る。
For this purpose, a signal with a frequency of 1/N· CL from the 1/2 frequency divider 59 is applied to a subtracter 60, and the difference with the signal S B is calculated to obtain demodulated data S C.

第6図は第4図の回路(送信系)の動作を明ら
かにするための信号スペクトラムを示す図であ
る。本図を参照すると、第4図におけるデータ処
理部41からのアナログ信号SAによつて、変調
器42にて、搬送波発生器47からの搬送波
0)を変調すると、変調器42からの出力の信
号スペクトラムは、第6図の(1)欄に示す如く、0
を中心とした帯域に現れる。なお、(1)欄の左側に
示すSAは上記アナログ信号SAの信号スペクトラ
ムである。次に、クロツク発生器44からのクロ
ツク信号(CL)と、これを1/N分周器45により 分周した分周信号(1/N・CL)と、この分周信号 (1/N・CL)と前記搬送波(0)とを変調器46 に掛け合わせて得た第1の搬送波再生用信号Cr1
0+1/N・CL)および第2の搬送波再生用信号 Cr20−1/N・CL)は、各々第6図の(2)欄に示
す 信号スペクトラムを有する。したがつて、第6図
の(1)欄における0を中心とした帯域の信号スペク
トラムと第6図の(2)欄におけるCr1およびCr2の信
号スペクトラムとを、第4図のハイブリツド回路
43にて合成すると、第6図の(3)欄に示す信号ス
ペクトラムが得られる。
FIG. 6 is a diagram showing a signal spectrum for clarifying the operation of the circuit (transmission system) shown in FIG. 4. Referring to this figure, when the carrier wave ( 0 ) from the carrier wave generator 47 is modulated in the modulator 42 by the analog signal S A from the data processing section 41 in FIG. 4, the output from the modulator 42 is The signal spectrum of 0 is as shown in column (1) of Figure 6.
Appears in a band centered on . Note that SA shown on the left side of column (1) is the signal spectrum of the analog signal SA . Next, the clock signal ( CL ) from the clock generator 44, the frequency-divided signal (1/N・CL) obtained by dividing this by the 1/N frequency divider 45, and the frequency-divided signal (1/N・CL ) from the clock signal (CL) from the clock generator 44, A first carrier wave regeneration signal C r1 obtained by multiplying the carrier wave ( 0 ) by the modulator 46
( 0 + 1/N· CL ) and the second carrier regeneration signal C r2 ( 0 −1/N· CL ) each have a signal spectrum shown in column (2) of FIG. Therefore, the signal spectrum of the band centered on 0 in column (1) of FIG. 6 and the signal spectrum of C r1 and C r2 in column (2) of FIG. When synthesized in , the signal spectrum shown in column (3) of FIG. 6 is obtained.

第7図は第5図の回路(受信系)の動作を明ら
かにするための信号スペクトラムである。本図を
参照すると、第5図におけるバンドパスフイルタ
51からの第1の搬送波再生用信号Cr10
1/N・CL)と、バンドパスフイルタ52からの第 2の搬送波再生用信号Cr20−1/N・CL)と、こ れらCr1およびCr2を変調器53で掛け合わせた
後、バンドパスフイルタ54で抽出して得た出力
(2/N・CL)およびバンドパスフイルタ56で抽 出して得た出力(20)は、各々第7図の(1)欄に
示す信号スペクトラムを有する。さらに、上記の
出力(2/N・CL)および出力(20)をそれぞれ 第5図の2/N逓倍器55および1/2分周器57を通 して得た出力(CL)および出力(0)と、上記
の出力(2/N・CL)を1/2分周器59にて分周し て得た出力(1/N・CL)は、各々第7図の(2)欄に 示す信号スペクトラムを有する。そして1/2分周
器57で得た再生搬送波(0)と、受信変調波
Sioと、このSioを検波器58において該再生搬送
波(0)で復調して得た出力信号SBは、各々第7
図の(3)欄に示す信号スペクトラムを有する。この
場合、受信変調波Sioはその帯域内にある搬送波
再生用信号Cr1,Cr2のオフセツト周波数(1/N・CL )をもつて変動している。
FIG. 7 is a signal spectrum for clarifying the operation of the circuit (receiving system) shown in FIG. 5. Referring to this figure, the first carrier wave regeneration signal C r1 ( 0 +
1/N・CL ), the second carrier wave regeneration signal C r2 ( 0 −1/N・CL ) from the bandpass filter 52, and these C r1 and C r2 are multiplied by the modulator 53, and then The output (2/N・CL ) extracted by the band-pass filter 54 and the output (2 0 ) extracted by the band-pass filter 56 each correspond to the signal spectrum shown in column (1) of FIG. have Furthermore, the output (CL) and output ( 0 ) obtained by passing the above output (2/N・CL ) and output (2 0 ) through the 2 /N multiplier 55 and 1/2 frequency divider 57 , respectively, in FIG. and the output (1/N・CL ) obtained by dividing the above output (2/N・CL ) by the 1/2 frequency divider 59 are the signals shown in column (2) of FIG. It has a spectrum. Then, the recovered carrier wave ( 0 ) obtained by the 1/2 frequency divider 57 and the received modulated wave
S io and the output signal S B obtained by demodulating this S io with the recovered carrier wave ( 0 ) in the detector 58 are respectively
It has a signal spectrum shown in column (3) of the figure. In this case, the received modulated wave S io fluctuates with the offset frequency (1/N· CL ) of the carrier recovery signals C r1 and C r2 within the band.

第7図の(3)欄はこれらオフセツト周波数成分の
信号スペクトラムをCr1およびCr2として示してい
る。これを相殺するのが第5図の減算器60であ
る。
Column (3) in FIG. 7 shows the signal spectra of these offset frequency components as C r1 and C r2 . The subtracter 60 shown in FIG. 5 cancels this out.

第8図は第5図の減算器60の動作を明らかに
するための波形図である。受信変調波Sioは、上
述のようにCr1およびCr2のオフセツト周波数成分
を含むため、第5図の検波器58からの出力信号
SBは、本来第8図の(1)欄の実線SBおよびSB′で示
す如くなめらかな“1”“0”パターンで変化す
べきところ、実際には点線の出力信号SB″と実線
の出力信号SBをつなぎ合わせたような歪んだ出力
信号が復調されてしまう。これは、オフセツト周
波数(1/N・CL)の成分をもつた信号のレベルが 周期的に出力信号SB′のレベルを、例えばレベル
Δaだけシフトして出力信号SB″に変化させてしま
うからである。そこで、上記オフセツト周波数
(1/N・CL)の成分をもつた信号を、第5図の1/2 分周器59で再生し、第8図の(2)欄に示すよう
に、同じく1/N・CLの周波数で変化する信号を得 る。この(2)欄の信号は第8図の(1)欄に示す点線の
出力信号SB″と同期しているから、この(2)欄の信
号のレベルを上記のレベルΔaとほぼ等しくなる
ように調整した後、減算器60にて差動的に同図
(1)欄の信号(SB+SB″)と加え合わせる。これに
より、第8図の(1)欄において点線で示す出力信号
SB″は実線で示す出力信号SB′に補正され、歪みの
ない出力信号(SB+SB′)が得られる。これが第
5図の復調データSCとなる。
FIG. 8 is a waveform diagram for clarifying the operation of the subtracter 60 in FIG. 5. Since the received modulated wave S io includes the offset frequency components of C r1 and C r2 as described above, the output signal from the detector 58 in FIG.
S B should originally change in a smooth “1” and “0” pattern as shown by the solid lines S B and S B ′ in column (1) of Fig. 8, but in reality, the output signal S B ″ is the dotted line. A distorted output signal that looks like the output signal S B of the solid line is connected is demodulated. This is because the level of the signal with the component of the offset frequency (1/N・CL ) periodically changes from the output signal S B This is because the level of the output signal S B '' is shifted by, for example, the level Δa and changed to the output signal S B ″. Therefore, the signal having the component of the offset frequency (1/N・CL ) is reproduced by the 1/2 frequency divider 59 in FIG. 5, and as shown in column (2) of FIG. Obtain a signal that changes at a frequency of /N・CL . Since the signal in column (2) is synchronized with the dotted output signal S B '' shown in column (1) in Figure 8, the level of the signal in column (2) is almost equal to the level Δa above. After adjusting as shown in the figure, the subtracter 60 differentially adjusts
Add it to the signal in column (1) (S B +S B ″). As a result, the output signal shown by the dotted line in column (1) in Figure 8
S B '' is corrected to the output signal S B ' shown by the solid line, and a distortion-free output signal (S B +S B ') is obtained. This becomes the demodulated data S C in FIG. 5.

発明の効果 以上説明したように本発明によれば送信系にお
ける搬送波再生用信号の挿入と、受信系における
搬送波の再生に要するハードウエアが大幅に簡素
化され、多値QAM方式の通信システムに応用し
てその効果は極めて大である。
Effects of the Invention As explained above, according to the present invention, the hardware required for inserting a carrier wave regeneration signal in the transmitting system and regenerating the carrier wave in the receiving system is greatly simplified, and it can be applied to multilevel QAM communication systems. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は送信系より送信される変調波の一般的
な信号スペクトラムを示す図、第2図は第1図の
信号スペクトラムに帯域制限が加えられる場合を
示す図、第3図は本発明を説明するための信号ス
ペクトラムを示す図、第4図は本発明の方式を実
現するための送信系の構成例を示すブロツク図、
第5図は本発明の方式を実現するための受信系の
構成例を示すブロツク図、第6図は第4図の回路
の動作を明らかにするための信号スペクトラムを
示す図、第7図は第5図の回路の動作を明らかに
するための信号スペクトラムを示す図、第8図は
第5図の減算器の動作を明らかにするための波形
図である。 42,46……変調器、44……クロツク発生
器、45……1/N分周器、47……搬送波発生器、 51,52,54,56……バンドパスフイル
タ、53……変調器、55……N/2逓倍器、57, 59……分周器、58……検波器、60……減算
器、D……デイジタル信号、Sput……変調波、Sio
……受信変調波、SC……復調データ、CL……ク
ロツク信号、Cr1,Cr2……第1および第2の搬送
波再生用信号、S……送信系、R……受信系。
Fig. 1 is a diagram showing a general signal spectrum of a modulated wave transmitted from a transmission system, Fig. 2 is a diagram showing a case where band limitation is added to the signal spectrum of Fig. 1, and Fig. 3 is a diagram showing the case where the signal spectrum of the present invention is FIG. 4 is a diagram showing a signal spectrum for explanation; FIG. 4 is a block diagram showing an example of the configuration of a transmission system for realizing the method of the present invention;
FIG. 5 is a block diagram showing an example of the configuration of a receiving system for realizing the method of the present invention, FIG. 6 is a diagram showing a signal spectrum to clarify the operation of the circuit in FIG. 4, and FIG. FIG. 5 is a diagram showing a signal spectrum to clarify the operation of the circuit in FIG. 5, and FIG. 8 is a waveform diagram to clarify the operation of the subtracter in FIG. 42, 46...Modulator, 44...Clock generator, 45...1/N frequency divider, 47...Carrier wave generator, 51, 52, 54, 56...Band pass filter, 53...Modulator , 55... N/2 multiplier, 57, 59... Frequency divider, 58... Detector, 60... Subtractor, D... Digital signal, S put ... Modulating wave, S io
... Received modulated wave, SC ... demodulated data, CL ... clock signal, C r1 , C r2 ... first and second carrier wave regeneration signals, S ... transmission system, R ... reception system.

Claims (1)

【特許請求の範囲】 1 送信系において周波数0を有する搬送波を、
所定のクロツク周波数CLを有するデイジタル信
号で位相変調した変調波を受信系に送信し、該受
信系で該変調波を受信し且つこれより前記搬送波
を抽出して、抽出された該搬送波を用いて前記デ
イジタル信号を再生する無線通信システムにおい
て、 前記送信系において、前記変調波の信号スペク
トラム上に、前記周波数0と前記クロツク周波数
CLの1/N(Nは2以上の整数)の和に相当する周 波数(0+1/N・CL)およびその差に相当する周 波数(0−1/N・CL)をそれぞれ有する第1の搬 送波再生用信号および第2の搬送波再生用信号を
さらに挿入して前記変調波となし、 前記受信系では前記第1の搬送波再生用信号
(周波数が0+1/N・CL)および前記第2の搬送 波再生用信号(周波数が0−1/N・CL)を変調器 に加えて前記周波数0の搬送波と、前記クロツク
周波数CLの信号と、周波数1/N・CLの信号とを それぞれ得、該搬送波により、受信した前記変調
波を検波器で検波したのち前記周波数1/N・CLの 信号とその検波出力との差分をとつて復調データ
となし、該復調データから前記クロツク周波数
CLの信号によつて前記デイジタル信号の再生を
行うことを特徴とする無線通信方式。 2 前記送信系において、前記クロツク周波数
CLの信号を生成するクロツク発生器からの出力
を1/N分周して周波数1/N・CLの信号を得、前記 周波数0の搬送波を生成する搬送波発生器からの
出力と前記周波数1/N・CLの信号とを変調器に加 えて周波数0+1/N・CLおよび周波数0−1/N
CL の前記第1および第2の搬送波再生用信号を
それぞれ得、これらを前記デイジタル信号で位相
変調した前記変調波に挿入する特許請求の範囲第
1項記載の無線通信方式。 3 前記整数NがN=2のとき、前記受信系にお
いて受信した前記変調波より前記第1および第2
の搬送波再生用信号をそれぞれ抽出して周波数
20の第1の信号とクロツク周波数CLの第2の信
号とを得、該第1の信号をさらに1/2分周器に印
加して周波数0の前記搬送波を得、又、前記第2
の信号を1/2分周器に印加して周波数1/2・CLの 第3の信号を得、該搬送波により、受信した前記
変調波を検波したのち前記第3の信号とその検波
出力との差分をとつて前記復調データとなす特許
請求の範囲第2項記載の無線通信方式。 4 前記整数NがN=4以上の偶数のとき、前記
受信系において受信した前記変調波より前記第1
および第2の搬送波再生用信号をそれぞれ抽出し
て周波数20の第1の信号と周波数2/N・CLの第 2の信号とを得、これら第1および第2の信号を
それぞれを1/2分周器およびN/2逓倍器に印加して 周波数0の前記搬送波および周波数CLのクロツ
ク信号を得、又、該搬送波により、受信した前記
変調波を検波器で検波したのち前記第3の信号と
その検波出力との差分をとつて前記復調データと
なす特許請求の範囲第2項記載の無線通信方式。
[Claims] 1. In the transmission system, a carrier wave having a frequency of 0 ,
A modulated wave phase-modulated with a digital signal having a predetermined clock frequency CL is transmitted to a receiving system, the receiving system receives the modulated wave, extracts the carrier wave from this, and uses the extracted carrier wave. In the wireless communication system for reproducing the digital signal, in the transmission system, the frequency 0 and the clock frequency are included on the signal spectrum of the modulated wave.
A first carrier wave having a frequency ( 0 + 1/N・CL ) corresponding to the sum of 1/N of CL (N is an integer of 2 or more) and a frequency ( 0 −1/N・CL ) corresponding to the difference thereof. A reproduction signal and a second carrier reproduction signal are further inserted to form the modulated wave, and the receiving system receives the first carrier reproduction signal (frequency is 0 + 1/N・CL ) and the second carrier wave. A reproduction signal (with a frequency of 0 - 1/N・CL ) is applied to a modulator to obtain a carrier wave with a frequency of 0 , a signal with a clock frequency CL , and a signal with a frequency of 1/N・CL . After the received modulated wave is detected by a wave detector, the difference between the signal of the frequency 1/N・CL and its detection output is taken as demodulated data, and the clock frequency is determined from the demodulated data.
A wireless communication system characterized in that the digital signal is reproduced using a CL signal. 2 In the transmission system, the clock frequency
The output from the clock generator that generates the CL signal is divided by 1/N to obtain a signal with the frequency 1/N・CL , and the output from the carrier wave generator that generates the carrier wave with the frequency 0 and the frequency 1/N are divided by 1/N. Add the N・CL signal to the modulator to obtain the frequency 0 +1/N・CL and the frequency 0 −1/N.
- The wireless communication system according to claim 1, wherein the first and second carrier wave regeneration signals of CL are respectively obtained and inserted into the modulated wave phase-modulated with the digital signal. 3 When the integer N is N=2, the first and second modulated waves received in the receiving system are
Extract each carrier wave regeneration signal and calculate the frequency.
20 and a second signal with a clock frequency CL , the first signal is further applied to a 1/2 divider to obtain the carrier wave with a frequency of 0 , and the second signal with a clock frequency CL is obtained.
is applied to a 1/2 frequency divider to obtain a third signal with a frequency of 1/2・CL , and after detecting the received modulated wave using the carrier wave, the third signal and its detection output are 3. The wireless communication system according to claim 2, wherein the demodulated data is obtained by calculating the difference between the two. 4 When the integer N is an even number of N=4 or more, the first modulated wave received in the receiving system
and a second carrier wave regeneration signal to obtain a first signal with a frequency of 20 and a second signal with a frequency of 2/N・CL , and convert these first and second signals into 1/ 2 frequency divider and N/2 multiplier to obtain the carrier wave of frequency 0 and the clock signal of frequency CL , and after the modulated wave received by the carrier wave is detected by a wave detector, the third 3. The wireless communication system according to claim 2, wherein the demodulated data is obtained by calculating the difference between the signal and its detected output.
JP58059228A 1983-04-06 1983-04-06 Radio communication system Granted JPS59201564A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58059228A JPS59201564A (en) 1983-04-06 1983-04-06 Radio communication system
US06/594,987 US4606048A (en) 1983-04-06 1984-03-29 Radio communication system
EP84302355A EP0122127B1 (en) 1983-04-06 1984-04-06 Radio communication system
DE8484302355T DE3485098D1 (en) 1983-04-06 1984-04-06 RADIO COMMUNICATION SYSTEM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059228A JPS59201564A (en) 1983-04-06 1983-04-06 Radio communication system

Publications (2)

Publication Number Publication Date
JPS59201564A JPS59201564A (en) 1984-11-15
JPH0586098B2 true JPH0586098B2 (en) 1993-12-09

Family

ID=13107305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059228A Granted JPS59201564A (en) 1983-04-06 1983-04-06 Radio communication system

Country Status (1)

Country Link
JP (1) JPS59201564A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852408A (en) * 1971-11-04 1973-07-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852408A (en) * 1971-11-04 1973-07-23

Also Published As

Publication number Publication date
JPS59201564A (en) 1984-11-15

Similar Documents

Publication Publication Date Title
JP3478508B2 (en) Wireless communication device
FI80175B (en) DIGITALT RADIOKOMMUNIKATIONSSYSTEM.
EP0186884A2 (en) Spread spectrum communication system
US4660193A (en) Digital modulation method for standard broadcast FM subcarrier
KR890002727B1 (en) A receiver unit in a radio communication system
CA1217233A (en) Qam with dc bias in one channel
US4606048A (en) Radio communication system
JPH0542863B2 (en)
EP0206203B1 (en) Recording and reproducing apparatus using a modulator/demodulator for Offset Quadrature Differential Phase-Shift Keying
EP0293991A1 (en) Receiver for a phase-shift keyed carrier signal
US4250456A (en) Device for demodulating PSK-FM double modulated carrier signals
JPH0586098B2 (en)
US3971999A (en) Coherent phase demodulator for phase shift keyed suppressed carrier signals
JPH0586097B2 (en)
US5061999A (en) Multiplex signal processing apparatus
JPH0724409B2 (en) Key level control circuit for 4-phase PSK demodulator
US5189564A (en) Magnetic recording/reproducing method and apparatus
JPH0474905B2 (en)
JPH0142528B2 (en)
JP2545882B2 (en) Data playback device
JPS6330049A (en) Msk demodulation circuit
KR950003667B1 (en) Minimum shift keying modulator and demodulator using bfsk demodulating method
JP2543802B2 (en) Voice signal injection type carrier synchronizer
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JPS62277828A (en) Optical transmission equipment