[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0579601B2 - - Google Patents

Info

Publication number
JPH0579601B2
JPH0579601B2 JP61308558A JP30855886A JPH0579601B2 JP H0579601 B2 JPH0579601 B2 JP H0579601B2 JP 61308558 A JP61308558 A JP 61308558A JP 30855886 A JP30855886 A JP 30855886A JP H0579601 B2 JPH0579601 B2 JP H0579601B2
Authority
JP
Japan
Prior art keywords
oxygen
gas
methanol
inert gas
catalytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61308558A
Other languages
Japanese (ja)
Other versions
JPS63162509A (en
Inventor
Masahiro Kawano
Koichi Fuje
Tsutomu Toida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP61308558A priority Critical patent/JPS63162509A/en
Publication of JPS63162509A publication Critical patent/JPS63162509A/en
Publication of JPH0579601B2 publication Critical patent/JPH0579601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Catalysts (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は不活性ガス中の酸素を除去する方法に
関し、詳しくは不活性ガスにメタノールを添加す
ることによつて、酸素を低温で二酸化炭素等に変
換して吸着除去する不活性ガス中の酸素を除去す
る方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for removing oxygen from an inert gas. This invention relates to a method for removing oxygen in an inert gas by converting it into a gas and removing it by adsorption.

[従来の技術] 従来、不活性ガス中に混入している酸素を除去
する方法として、精留して分離する方法がある
が、不活性ガスと酸素の沸点が非常に近接してい
るので精留塔が大型化するという欠点があつた。
[Prior Art] Conventionally, a method for removing oxygen mixed in inert gas is to separate it by rectification, but since the boiling points of inert gas and oxygen are very close to each other, refinement is difficult. The drawback was that the tower became larger.

また、酸素を含有する不活性ガス中に、メタン
ガス等の炭化水素を添加して触媒層で酸化反応さ
せた後、吸着剤によつて一酸化炭素(CO)、二酸
化炭素(CO2)、水(H2O)などの酸化反応生成
物および過剰の炭化水素を除去して精製する方法
が、特開昭61−40807号公報に開示されている。
In addition, hydrocarbons such as methane gas are added to an inert gas containing oxygen, and after an oxidation reaction occurs in the catalyst layer, carbon monoxide (CO), carbon dioxide (CO 2 ), and water are removed by an adsorbent. A method for purification by removing oxidation reaction products such as (H 2 O) and excess hydrocarbons is disclosed in JP-A-61-40807.

しかしながら、炭化水素ガスと酸素との反応
は、触媒を用いても600℃程度にならないと完全
に反応は終了しない。従つて、僅かの不純物除去
のために大量のガスを高温にしなければならず、
他方、吸着は低温であるほど効率がよいので、高
温のガスを常温まで冷却しなければならないとい
う問題がある。また、炭化水素には、不純物とし
て硫黄化合物等が混在する可能性が多いので接触
酸化触媒に悪影響を与える可能性もある。
However, even if a catalyst is used, the reaction between hydrocarbon gas and oxygen does not complete until the temperature reaches about 600°C. Therefore, it is necessary to heat a large amount of gas to a high temperature in order to remove a small amount of impurities.
On the other hand, since adsorption is more efficient at lower temperatures, there is a problem in that high-temperature gas must be cooled to room temperature. In addition, hydrocarbons are likely to contain impurities such as sulfur compounds, which may have an adverse effect on the catalytic oxidation catalyst.

[発明が解決しようとする課題] 本発明は、上記従来技術の課題に鑑みてなされ
たもので、不活性ガス中の酸素を低温で簡便に吸
着分離して除去する方法を提供することを目的と
する。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a method for easily adsorbing and separating oxygen in an inert gas at low temperatures to remove it. shall be.

[課題を解決するための手段および作用] 本発明者らは、上記目的を達成するために鋭意
検討した結果、触媒の存在下で、メタノールを添
加して低温で接触酸化反応を起させることによ
り、高純度の不活性ガスが得られることを見い出
し本発明に到達した。
[Means and effects for solving the problem] As a result of intensive studies to achieve the above object, the inventors of the present invention found that by adding methanol and causing a catalytic oxidation reaction at a low temperature in the presence of a catalyst, They discovered that a highly pure inert gas could be obtained and arrived at the present invention.

すなわち本発明は、不活性ガス中に混入してい
る酸素を、メタノールを添加して接触酸化反応を
させ、一酸化炭素および/または二酸化炭素等に
変換して吸着除去することを特徴とする不活性ガ
ス中の酸素を除去する方法にある。
That is, the present invention is characterized in that oxygen mixed in an inert gas is adsorbed and removed by adding methanol to cause a catalytic oxidation reaction and converting it into carbon monoxide and/or carbon dioxide. It is a method of removing oxygen from active gas.

本発明に用いられる不活性ガスとは、アルゴン
ガス、ヘリウムガス、窒素ガス等が挙げられる
が、特にアルゴンガスが好適に用いられる。不活
性ガスは、例えば排ガス中から精製されるが、こ
の精製においては不活性ガス中に含まれる水素等
の可燃成分を酸素により燃焼除去する。この燃焼
除去に際し、不活性ガス中に多量の残留酸素が混
入することとなる。また、不活性ガスの使用時
に、空気中の酸素が混入することも少なくない。
Examples of the inert gas used in the present invention include argon gas, helium gas, nitrogen gas, etc., and argon gas is particularly preferably used. The inert gas is purified, for example, from exhaust gas, and in this purification, combustible components such as hydrogen contained in the inert gas are removed by combustion with oxygen. During this combustion removal, a large amount of residual oxygen will be mixed into the inert gas. Furthermore, when using an inert gas, oxygen from the air is often mixed in.

本発明においては、上述のように、これら不活
性ガス中の残留酸素を除去するのに、メタノール
を添加して接触酸化反応を生起させ、一酸化炭素
および/または二酸化炭素に変換させる。なお、
この場合にはH2Oも生成する。
In the present invention, as described above, in order to remove residual oxygen from these inert gases, methanol is added to cause a catalytic oxidation reaction and convert it into carbon monoxide and/or carbon dioxide. In addition,
In this case, H 2 O is also produced.

この接触反応に用いられる接触酸化触媒として
は、パラジウム系触媒および白金系触媒等が用い
られる。
As the catalytic oxidation catalyst used in this catalytic reaction, a palladium-based catalyst, a platinum-based catalyst, etc. are used.

この接触反応は、常温〜200℃で行なわれ、メ
タン等の炭化水素を用いた場合と比較して低温で
反応が行なわれ、しかもメタノールには、メタン
等の炭化水素のように硫黄化合物等の不純物が含
有されることがないので、触媒に悪影響を与える
ことがない。
This catalytic reaction is carried out at room temperature to 200°C, and the reaction is carried out at a lower temperature than when hydrocarbons such as methane are used. Since no impurities are contained, the catalyst will not be adversely affected.

この不活性ガス中へのメタノールの好適な添加
量としては、メタノールの酸素に対するモル比で
1/1.5以上であることが好ましい。
A suitable amount of methanol to be added to this inert gas is preferably a molar ratio of methanol to oxygen of 1/1.5 or more.

これらメタノールの添加、混合方法としては、
不活性ガス中に一度に全量を加えてもよいが、不
活性ガス中にメタノールを微量しか注入しないの
で、不活性ガスの一部に、メタノールを加えた
後、残余不活性ガスを加えて混合してもよく、こ
のように2段階に添加、混合するのみならず、3
段階以上に分けて添加、混合してもよい。
The methanol addition and mixing method is as follows:
You can add the entire amount to the inert gas at once, but since only a small amount of methanol is injected into the inert gas, add methanol to a portion of the inert gas, then add the remaining inert gas and mix. In addition to adding and mixing in two stages like this, it is also possible to add and mix in three stages.
It may be added and mixed in stages or more.

このようなメタノールの接触酸化反応によつて
得られた一酸化炭素および/または二酸化炭素と
H2Oは、活性炭、ゼオライト等の吸着塔(層)
で除去され、不活性ガスは精製される。また、過
剰のメタノールも吸着塔で併せて吸着される。
Carbon monoxide and/or carbon dioxide obtained by such a catalytic oxidation reaction of methanol and
H2O is adsorbed using activated carbon, zeolite, etc. adsorption tower (layer)
The inert gas is purified. In addition, excess methanol is also adsorbed in the adsorption tower.

なお、不活性ガス中に酸素含有量が多く、温度
上昇が大きい時は、吸着塔との間に冷却器を設け
ることが好ましい。この際、H2Oは凝縮水とし
て分離除去されるので、吸着塔の負担を軽減する
ことができる。
Note that when the inert gas has a high oxygen content and the temperature rise is large, it is preferable to provide a cooler between the inert gas and the adsorption tower. At this time, since H 2 O is separated and removed as condensed water, the load on the adsorption tower can be reduced.

[実施例] 以下、実施例および比較例に基づいて本発明を
さらに具体的に説明する。
[Examples] Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples.

実施例 1 アルミナ(Al2O3)100g、活性炭150g、合成ゼ
オライト(モレキユラーシーブ5A)70gを充填し
た吸着塔に高純度アルゴンガスを流し、圧力を5
Kg/cm2・Gに保持した。
Example 1 High-purity argon gas was flowed through an adsorption tower filled with 100 g of alumina (Al 2 O 3 ), 150 g of activated carbon, and 70 g of synthetic zeolite (Molecular Sieve 5A), and the pressure was reduced to 5.
Kg/cm 2 ·G was maintained.

次に、酸素を200ppm含有するアルゴンガスを
用意し、このアルゴンガス200Nl/hrに対してメ
タノール0.1g/hrを添加して混合した後、アルミ
ナにパラジウム0.5重量%担持した触媒60gを充填
した常温の接触酸化塔に流し、これを高純度アル
ゴンガスと切り替えて吸着塔へ供給し、出口ガス
の酸素分析をしたところ40時間経過しても酸素は
検出されなかつた。なお、ここでいうNl/hrと
は、0℃、1気圧の条件での1時間当りのガス
(アルゴンガス)の流量(l)である。また、接
触酸化塔出口ガスをガスクマトグラフイで分析し
たところ、酸素、一酸化炭素は検出されず、二酸
化炭素が130ppm検出された。アルゴンガス中の
酸素の量を考慮すると残余のアルゴンガス中の酸
素は、H2Oとなつて除去されたものと推測した。
Next, prepare argon gas containing 200 ppm of oxygen, add and mix 0.1 g/hr of methanol to 200 Nl/hr of this argon gas, and then add 60 g of a catalyst with 0.5% by weight of palladium supported on alumina. When the gas was passed through a catalytic oxidation tower, the gas was switched to high-purity argon gas and supplied to an adsorption tower, and the outlet gas was analyzed for oxygen, no oxygen was detected even after 40 hours had passed. Note that Nl/hr here refers to the flow rate (l) of gas (argon gas) per hour under conditions of 0° C. and 1 atm. Furthermore, when the gas at the outlet of the catalytic oxidation tower was analyzed by gas chromatography, no oxygen or carbon monoxide was detected, but 130 ppm of carbon dioxide was detected. Considering the amount of oxygen in the argon gas, it was assumed that the remaining oxygen in the argon gas was converted into H 2 O and removed.

比較例 1 実施例1と同様の状態に保持されている吸着塔
に、接触酸化塔を通さずに実施例1と全く同様
の、酸素を200ppm含有するアルゴンガスを用意
し、高純度アルゴンガスに切り替え、このアルゴ
ンガスを200Nl/hrで流し、吸着塔の出口ガスの
酸素分析を行なつたところ14秒後に酸素が
200ppm検出された。
Comparative Example 1 Argon gas containing 200 ppm of oxygen, which is exactly the same as in Example 1, was prepared in an adsorption tower maintained in the same state as in Example 1 without passing through the catalytic oxidation tower, and then converted into high-purity argon gas. When the switch was switched and this argon gas was flowed at 200Nl/hr, oxygen analysis of the outlet gas of the adsorption tower was performed, and after 14 seconds, oxygen was detected.
200ppm detected.

比較例 2 メタノール0.1g/hrに代えてノルマルヘキサン
(n−C6H14)0.2g/hrを用いた以外は、実施例
1と同様に行ない、出口ガスについて酸素分析を
したところ14秒後に酸素が200ppm検出された。
Comparative Example 2 The same procedure as Example 1 was carried out except that 0.2 g/hr of normal hexane (n-C 6 H 14 ) was used instead of 0.1 g/hr of methanol, and oxygen analysis of the outlet gas revealed that after 14 seconds. Oxygen was detected at 200ppm.

比較例 3 接触酸化塔を600℃に加熱した他は、比較例2
と同様に実験したところ、吸着塔出口ガス中の酸
素は40時間経過しても検出されなかつた。接触酸
化塔出口ガスを分析したところ酸素は検出され
ず、二酸化炭素が120ppm検出された(残りの酸
素はH2Oとなつていた)。
Comparative Example 3 Comparative Example 2 except that the catalytic oxidation tower was heated to 600°C
When an experiment was conducted in the same manner as above, oxygen in the gas at the outlet of the adsorption tower was not detected even after 40 hours had passed. When the gas at the outlet of the catalytic oxidation tower was analyzed, no oxygen was detected, but 120 ppm of carbon dioxide was detected (the remaining oxygen was in the form of H 2 O).

[発明の効果] 以上説明したように、本発明においては、下記
に示す効果を奏する。
[Effects of the Invention] As explained above, the present invention has the following effects.

不活性ガスと酸素とを吸着剤で分離するのは
困難であるが、本発明によれば不活性ガス中の
酸素は一酸化炭素および/または二酸化炭素と
H2Oになつているので吸着分離が容易となる。
It is difficult to separate inert gas and oxygen using adsorbents, but according to the present invention, oxygen in inert gas is separated from carbon monoxide and/or carbon dioxide.
Since it is H 2 O, adsorption separation becomes easy.

炭化水素ガスを用いて酸素を一酸化炭素およ
び/または二酸化炭素とH2Oにする場合に比
べて、低温で反応できるので反応前の予熱や吸
着前の過度の冷却が不要になる。また、メタノ
ールには、硫黄化合物等が含有されていないの
で、接触酸化触媒に悪影響を与えることがな
い。
Compared to converting oxygen into carbon monoxide and/or carbon dioxide and H 2 O using hydrocarbon gas, the reaction can be performed at a lower temperature, eliminating the need for preheating before the reaction or excessive cooling before adsorption. Furthermore, since methanol does not contain sulfur compounds or the like, it does not have an adverse effect on the catalytic oxidation catalyst.

従つて、本発明の方法は、不活性ガス中の酸素
の除去方法として好適である。
Therefore, the method of the present invention is suitable as a method for removing oxygen from an inert gas.

Claims (1)

【特許請求の範囲】 1 不活性ガス中に混入している酸素を、メタノ
ールを添加して接触酸化反応をさせ、一酸化炭素
および/または二酸化炭素に変換して吸着除去す
ることを特徴とする不活性ガス中の酸素を除去す
る方法。 2 前記酸素とメタノールの接触酸化反応が、常
温〜200℃で行なわれる特許請求の範囲第1項に
記載の方法。 3 前記酸素とメタノールの接触反応が、パラジ
ウム系触媒または白金系触媒の存在下で行なわれ
る特許請求の範囲第1項または第2項に記載の方
法。 4 前記メタノールの添加量がメタノールの酸素
に対するモル比で1/1.5以上である特許請求の
範囲第1項、第2項または第3項に記載の方法。
[Claims] 1. A method characterized by adding methanol to cause a catalytic oxidation reaction of oxygen mixed in an inert gas, converting it into carbon monoxide and/or carbon dioxide, and removing it by adsorption. A method for removing oxygen from inert gases. 2. The method according to claim 1, wherein the catalytic oxidation reaction of oxygen and methanol is carried out at room temperature to 200°C. 3. The method according to claim 1 or 2, wherein the catalytic reaction between oxygen and methanol is carried out in the presence of a palladium-based catalyst or a platinum-based catalyst. 4. The method according to claim 1, 2, or 3, wherein the amount of methanol added is 1/1.5 or more in molar ratio of methanol to oxygen.
JP61308558A 1986-12-26 1986-12-26 Removing of oxygen from innert gas Granted JPS63162509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61308558A JPS63162509A (en) 1986-12-26 1986-12-26 Removing of oxygen from innert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61308558A JPS63162509A (en) 1986-12-26 1986-12-26 Removing of oxygen from innert gas

Publications (2)

Publication Number Publication Date
JPS63162509A JPS63162509A (en) 1988-07-06
JPH0579601B2 true JPH0579601B2 (en) 1993-11-04

Family

ID=17982476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308558A Granted JPS63162509A (en) 1986-12-26 1986-12-26 Removing of oxygen from innert gas

Country Status (1)

Country Link
JP (1) JPS63162509A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116915A (en) * 1991-10-30 1993-05-14 Mitsui Eng & Shipbuild Co Ltd Production of gaseous nitrogen
CN1069550C (en) * 1995-03-07 2001-08-15 中国科学院山西煤炭化学研究所 Deoxidation method for inert gas
JP5470011B2 (en) * 2009-11-27 2014-04-16 株式会社ブリヂストン Inert gas production method and tire production method
JP5403685B2 (en) * 2010-02-25 2014-01-29 住友精化株式会社 Argon gas purification method and purification apparatus
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon

Also Published As

Publication number Publication date
JPS63162509A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
KR960002190B1 (en) Process for the purification of the inert gases
KR0172121B1 (en) Apparatus for low temperature purification of gases
US6838066B2 (en) Process for recovery, purification, and recycle of argon
JP5566815B2 (en) Gas purification method and gas purification apparatus
EP0454531B1 (en) Process and apparatus for the preparation of ultra-pure nitrogen
US5348592A (en) Method of producing nitrogen-hydrogen atmospheres for metals processing
JPH04227017A (en) Manufactur of carbon dioxide including recovery of nitrogen and argon by-product
KR20070028264A (en) Process for gas purification
WO2010047942A2 (en) Helium recovery process
JP2764178B2 (en) Method for producing high-purity hydrogen by catalytic reforming of methanol
JPH0313161B2 (en)
EP0603767B1 (en) Deoxygenation of non-cryogenically produced nitrogen with a hydrocarbon
JP2640513B2 (en) Inert gas purification equipment
US6589493B2 (en) Gas purification-treating agents and gas purifying apparatuses
JPH06234511A (en) Method and apparatus for purification using compression heat
JPH0579601B2 (en)
US4859435A (en) Deoxygenation of inert gas streams with methanol
JP2001046827A (en) Method for removing water, carbon dioxide and carbon contained in gas stream
JP2000211904A (en) Purification of gas
JP2645137B2 (en) Equipment for purifying raw material air for nitrogen production equipment
US20240226798A1 (en) Treatment of biogas by pressure swing adsorption
WO2024145328A1 (en) Treatment of biogas by pressure swing adsorption
JP2848557B2 (en) Hydrogen purification method
US5993760A (en) Bulk nitrogen purification process that requires no hydrogen in the regeneration
JPS58201893A (en) Preliminary purification of coke oven gas