JPH0568325B2 - - Google Patents
Info
- Publication number
- JPH0568325B2 JPH0568325B2 JP22136184A JP22136184A JPH0568325B2 JP H0568325 B2 JPH0568325 B2 JP H0568325B2 JP 22136184 A JP22136184 A JP 22136184A JP 22136184 A JP22136184 A JP 22136184A JP H0568325 B2 JPH0568325 B2 JP H0568325B2
- Authority
- JP
- Japan
- Prior art keywords
- synthetic resin
- pellets
- master
- fluidity
- pellet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000008188 pellet Substances 0.000 claims description 52
- 229920003002 synthetic resin Polymers 0.000 claims description 38
- 239000000057 synthetic resin Substances 0.000 claims description 38
- 239000012778 molding material Substances 0.000 claims description 13
- 239000011231 conductive filler Substances 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000012765 fibrous filler Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- -1 phosphate ester Chemical class 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B9/14—Making granules characterised by structure or composition fibre-reinforced
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Non-Insulated Conductors (AREA)
Description
[発明の技術分野]
本発明は、導電性充填材の分散性がよく、サイ
クルタイムを短縮できる導電性成形材料に関す
る。
[発明の技術的背景とその問題点]
近年、外部の妨害電波から電子回路を保護し、
かつ発振回路から発生する不要な電波を外部に漏
洩するのを防止するために電子機器の筐体を電磁
波シールド材料により形成することが要求されて
いる。このような電磁波シールド材料としては、
金属や導電性合成樹脂性が挙げられるが、前者の
金属は優れた電磁波シールド効果を有する反面、
重い、高価である、加工性が悪い等の欠点がある
ため、後者の導電性合成樹脂の使用が主流となり
つつある。後者を用いて高いシールド効果を得る
ためには、樹脂中の導電性充填材が長繊維状のま
ま形成されることが必要である。この方法とし
て、長繊維状の導電性充填材を束ねた表面に合成
樹脂層を被覆形成一体化しペレツト状に切断しマ
スターペレツト化する方法が最もよく、われわれ
は先にこれを提案した(特願昭58−124734号)。
この方法は、従来の合成樹脂と導電性充填材を練
り込む方法において、導電性充填材の長さが2〜
3mmとなつてしまうのに対し、長さが5〜10mmの
長繊維状の導電性充填材を樹脂中に分散成形する
ことができる利点がある。しかし、マスターペレ
ツト化する方法は、射出成形における計量時のス
クリユー背圧を15〜25Kg/cm2(ゲージ)に高めて
やらないと、マスターペレツト中の導電性繊維の
束が分散しないため成形サイクルアツプとなる欠
点がある。また計量が最大射出量の40%を超える
とシリンダー内で混練される時間が短く、導電性
充填材の束が分散しないまま成形されるため、ゲ
ートが詰まつたり、成形品の機械的強度が低下し
たり、外観が不均一になる欠点がある。
[発明の目的]
本発明の目的は、上記の欠点を解消するために
なされたもので、導電性充填材の分散性に優れ、
低いスクリユー背圧で成形でき、サイクルタイム
を短縮でき、成形品の機械的強度が低下せず、外
観を均一にすることができる導電性成形材料を提
供しようとするものである。
[発明の概要]
本発明は、上記の目的を達成すべく鋭意研究を
重ねた結果、マスターペレツトの合成樹脂の流動
性を高めることによつて、前記の目的が達成され
ることを見いだし、本発明に至つたものである。
即ち、本発明は、長繊維状の導電性充填材を束
ねた表面に合成樹脂層を被覆形成一体化し、ペレ
ツト状に切断してなるマスターペレツトと、合成
樹脂からなり、上記マスターペレツトとペレツト
状態で混合されるナチユラルペレツトとを主成分
とし、マスターペレツトの合成樹脂とナチユラル
ペレツトの合成樹脂とが同一で、かつ、マスター
ペレツトの合成樹脂の流動性をナチユラルペレツ
トの合成樹脂の流動性より大きくしたことを特徴
とする導電性成形材料である。なお、本発明でい
うナチユラルペレツトとは、導電性充填材を一体
化しない合成樹脂のペレツトなる意味で用いてい
る。
本発明に用いる長繊維状の導電性充填材として
は、銅、鉄、ステンレス、ニツケル、アルミニウ
ム、ニツケルもしくはこれらの合金等の金属繊
維、又は表面に金属層を有する無機繊維等が挙げ
られ、これらは単独又は2種以上混合して使用す
ることができる。繊維は細い程よく、また100〜
50000本程度の束として使用する。
本発明に用いる合成樹脂としては、ポリスチレ
ン樹脂、ABS樹脂、ポリカーボネート樹脂、変
性PPO樹脂、PBT樹脂等が挙げられ、これらは、
単独又は2種以上混合して使用される。使用され
る合成樹脂で重要なことは第一にマスターペレツ
トの合成樹脂とナチユラルペレツトの合成樹脂と
が同一であることが必要である。これは合成樹脂
を同一にして充填材の分散性を高めるためであ
る。第二にマスターペレツトの合成樹脂の流動性
がナチユラルペレツトの合成樹脂の流動性より大
きいことである。合成樹脂の流動性を高めるため
には、分子量を低くしたり、滑剤(例えばリン酸
エステル)を添加したり、ABS樹脂ではASを増
加して同一の合成樹脂の流動性を高めることがで
きる。また合成樹脂メーカーを異にする同一樹脂
で流動性の異なるものを選択してもよくその方法
は問わず、流動性が異なる同一の樹脂であればよ
い。流動性を高めると衝撃強度が低下したり、熱
変形温度が低下するので、マスターペレツトに用
いる流動性の高い樹脂量を40重量%以下にするこ
とが必要である。流動性の高い樹脂量が40重量%
を超えると成形品の機械的強度が低下し、またマ
スターペレツトの生産性を高めることができな
い。本発明における流動性とは、スパイラルフロ
ーテストにおける流動長Lを厚さtで除したL/
tを目安とする。ナチユラルペレツトの合成樹脂
の流動性L/t=bに対してマスターペレツトの
合成樹脂の流動性L/t=aの比がa/b=1.1
〜1.3であることが必要である。この比が1.1未満
および1.3を超えると分散性が均一にならず、ま
た成形品の機械的強度が損われたり、サイクルア
ツプとなり好ましくない。
次に図面を用いて、本発明の導電性成形材料を
更に説明する。第1図は、本発明に用いるマスタ
ーペレツトの断面図で長繊維状充填材1の束ねた
表面に合成樹脂層2が形成されている。これを適
当な大きさに切断して、マスターペレツトとして
いる。第2図はマスターペレツト3の斜視図であ
る。製造されるマスターペレツトは通常その断面
が円形であるが必ずしも円形である必要がなく、
偏平でもよく特に形状に制限されない。マスター
ペレツトの製造方法を第3図を用いて説明すれ
ば、束ねた長繊維状充填材10を押出機11のダ
イス12を通し、束ねた長繊維状充填材10を合
成樹脂で被覆形成13し、更に切断14してマス
ターペレツト15とする。この製造工程は、バツ
チ式で行うことできるが連続的に行うことが経済
的に有利である。
本発明の導電性成形材料はマスターペレツトと
ナチユラルペレツトとを主成分とするが、必要に
応じて他の成分を加えることもできる。そしてこ
の導電性成形材料は、電磁波シールドを必要とす
る電子機器等のハウジング等として使用される。
[発明の実施例]
次に本発明の実施例について説明する。
実施例 1〜2
第1表に示した組成により直径50μmの銅繊維
300本を束ね表面に合成樹脂層を被覆形成一体化
し、5mmの長さに切断したマスターペレツトとペ
レツト状の合成樹脂からなるナチユラルペレツト
とを混合して導電性成形材料を製造した。この成
形材料を用いて成形品を成形し、充填材が完全に
分散するスクリユー背圧、樹脂温度、サイクルタ
イムを測定した。その結果を第1表に示した。
比較例
第1表に示した組成により実施例と同様にして
成形材料を製造し、それを用いて成形品を成形し
た。そして実施例と同様にして特性を測定したの
でその結果を第1表に示した。
[Technical Field of the Invention] The present invention relates to a conductive molding material that has good dispersibility of conductive filler and can shorten cycle time. [Technical background of the invention and its problems] In recent years, electronic circuits have been protected from external interference radio waves,
In addition, in order to prevent unnecessary radio waves generated from the oscillation circuit from leaking to the outside, it is required that the housing of the electronic device be formed of an electromagnetic shielding material. Such electromagnetic shielding materials include:
Examples include metals and conductive synthetic resins, but while the former metals have excellent electromagnetic shielding effects,
Due to drawbacks such as being heavy, expensive, and poor processability, the latter type of conductive synthetic resin is becoming mainstream. In order to obtain a high shielding effect using the latter, it is necessary that the conductive filler in the resin be formed in the form of long fibers. The best method for this is to form a synthetic resin layer on the surface of a bundle of conductive fillers in the form of long fibers, and then cut the material into pellets to form master pellets. (Gan Sho 58-124734).
This method differs from the conventional method of kneading synthetic resin and conductive filler in that the length of the conductive filler is 2 to 2.
3 mm, but there is an advantage that a long fiber-like conductive filler with a length of 5 to 10 mm can be dispersed and molded in the resin. However, in the method of forming master pellets, the conductive fiber bundles in the master pellets cannot be dispersed unless the screw back pressure is increased to 15 to 25 kg/cm 2 (gauge) during metering during injection molding. It has the disadvantage of increasing the molding cycle. Additionally, if the metering amount exceeds 40% of the maximum injection amount, the kneading time in the cylinder will be short and the conductive filler bundle will be molded without being dispersed, which may clog the gate or reduce the mechanical strength of the molded product. There are drawbacks such as deterioration and uneven appearance. [Object of the invention] The object of the present invention has been made to eliminate the above-mentioned drawbacks, and has an excellent dispersibility of the conductive filler.
The object of the present invention is to provide a conductive molding material that can be molded with low screw back pressure, shorten cycle time, and provide a uniform appearance without reducing the mechanical strength of the molded product. [Summary of the Invention] As a result of intensive research to achieve the above object, the present invention has found that the above object can be achieved by increasing the fluidity of the synthetic resin of the master pellet. This led to the present invention. That is, the present invention comprises a master pellet formed by integrally forming a synthetic resin layer on the surface of a bundle of conductive fillers in the form of long fibers and cutting the pellet into pellets, and a synthetic resin. The synthetic resin of the master pellet is the same as the synthetic resin of the natural pellet, and the fluidity of the synthetic resin of the master pellet is the same as that of the natural pellet. This is an electrically conductive molding material characterized by having greater fluidity than that of resin. Note that the term "natural pellets" as used in the present invention is used to mean pellets of synthetic resin that are not integrated with a conductive filler. Examples of the long fiber conductive filler used in the present invention include metal fibers such as copper, iron, stainless steel, nickel, aluminum, nickel, or alloys thereof, or inorganic fibers having a metal layer on the surface. These can be used alone or in a mixture of two or more. The thinner the fibers, the better, and the finer the fibers, the better.
Used as a bundle of about 50,000 pieces. Examples of the synthetic resin used in the present invention include polystyrene resin, ABS resin, polycarbonate resin, modified PPO resin, PBT resin, etc.
They may be used alone or in a mixture of two or more. The important thing about the synthetic resins used is that the synthetic resin of the master pellets and the synthetic resin of the natural pellets must be the same. This is to improve the dispersibility of the filler by using the same synthetic resin. Second, the fluidity of the synthetic resin in the master pellets is greater than that in the natural pellets. In order to increase the fluidity of a synthetic resin, the fluidity of the same synthetic resin can be increased by lowering the molecular weight, adding a lubricant (for example, phosphate ester), or increasing the AS in the case of ABS resin. Furthermore, the same resins made by different synthetic resin manufacturers but with different fluidities may be selected, and the method is not limited, as long as the same resins have different fluidities. Since increasing the fluidity lowers the impact strength and heat distortion temperature, it is necessary to keep the amount of highly fluid resin used in the master pellets at 40% by weight or less. Highly fluid resin content is 40% by weight
If it exceeds this, the mechanical strength of the molded product will decrease, and the productivity of master pellets cannot be improved. Fluidity in the present invention is calculated by dividing the flow length L by the thickness t in a spiral flow test.
Use t as a guide. The ratio of the fluidity L/t=a of the synthetic resin of the master pellet to the fluidity L/t=b of the synthetic resin of the natural pellets is a/b=1.1
~1.3 is required. If this ratio is less than 1.1 or more than 1.3, the dispersibility will not be uniform, and the mechanical strength of the molded product will be impaired, and cycle-up will be increased, which is undesirable. Next, the conductive molding material of the present invention will be further explained using the drawings. FIG. 1 is a sectional view of a master pellet used in the present invention, in which a synthetic resin layer 2 is formed on the surface of a bundle of long fiber fillers 1. This is cut into appropriate sizes and used as master pellets. FIG. 2 is a perspective view of the master pellet 3. The master pellets produced usually have a circular cross section, but they do not necessarily have to be circular.
It may be flat and is not particularly limited in shape. To explain the method for manufacturing master pellets using FIG. 3, the bundled long fibrous filler 10 is passed through a die 12 of an extruder 11, and the bundled long fibrous filler 10 is coated with a synthetic resin 13. Then, the pellets are further cut 14 to form master pellets 15. Although this manufacturing process can be carried out in batches, it is economically advantageous to carry it out continuously. The conductive molding material of the present invention mainly consists of master pellets and natural pellets, but other components can be added as necessary. This conductive molding material is used as housings for electronic devices that require electromagnetic shielding. [Embodiments of the Invention] Next, embodiments of the present invention will be described. Examples 1-2 Copper fibers with a diameter of 50 μm according to the composition shown in Table 1
A conductive molding material was produced by bundling 300 pellets and integrally covering the surface with a synthetic resin layer, and mixing master pellets cut into 5 mm lengths with natural pellets made of pellet-shaped synthetic resin. A molded article was molded using this molding material, and the screw back pressure at which the filler was completely dispersed, resin temperature, and cycle time were measured. The results are shown in Table 1. Comparative Example A molding material was produced in the same manner as in the example with the composition shown in Table 1, and a molded article was molded using it. The characteristics were measured in the same manner as in the examples, and the results are shown in Table 1.
【表】【table】
【表】
[発明の効果]
以上説明したように本発明の導電性成形材料
は、マスターペレツトの合成樹脂の流動性をナチ
ユラルペレツトの合成樹脂の流動性より高くした
ことによつて導電性充填材が均一に分散し、低温
かつ低いスクリユー背圧で成形でき、サイクルタ
イムを短縮することができ、しかも電磁波シール
ド効果の優れたものである。この成形材料を使用
すれば機械的強度が劣化しない、外観均一な優れ
た成形品を製造することができる。[Table] [Effects of the Invention] As explained above, the conductive molding material of the present invention has improved conductivity by making the fluidity of the synthetic resin of the master pellets higher than that of the synthetic resin of the natural pellets. The filler is uniformly dispersed, it can be molded at low temperatures and low screw back pressure, it can shorten cycle time, and it has an excellent electromagnetic shielding effect. By using this molding material, it is possible to produce an excellent molded product with uniform appearance and no deterioration in mechanical strength.
第1図は本発明に使用するマスターペレツトの
拡大断面図、第2図はマスターペレツトの拡大斜
視図、第3図はマスターペレツトの製造方法を示
す図である。
1,10……長繊維状充填材、2……合成樹脂
層、3,15……マスターペレツト、11……押
出機、12……ダイス、13……合成樹脂被覆、
14……切断。
FIG. 1 is an enlarged sectional view of a master pellet used in the present invention, FIG. 2 is an enlarged perspective view of the master pellet, and FIG. 3 is a diagram showing a method for manufacturing the master pellet. DESCRIPTION OF SYMBOLS 1, 10... Long fibrous filler, 2... Synthetic resin layer, 3, 15... Master pellet, 11... Extruder, 12... Dice, 13... Synthetic resin coating,
14...Disconnection.
Claims (1)
樹脂層を被覆形成一体化し、ペレツト状に切断し
てなるマスターペレツトと、合成樹脂からなり、
上記マスターペレツトとペレツト状態で混合され
るナチユラルペレツトとを主成分とし、マスター
ペレツトの合成樹脂とナチユラルペレツトの合成
樹脂とが同一で、かつ、マスターペレツトの合成
樹脂の流動性をナチユラルペレツトの合成樹脂の
流動性より大きくしたことを特徴とする導電性成
形材料。 2 マスターペレツトの合成樹脂の流動性aとナ
チユラルペレツトの合成樹脂の流動性bとの比
(a/b)が1.1〜1.3の範囲内であることを特徴
とする特許請求の範囲第1項記載の導電性成形材
料。[Scope of Claims] 1. Consisting of a master pellet formed by integrally forming a synthetic resin layer on the surface of a bundle of conductive fillers in the form of long fibers and cutting the pellet into pellets, and a synthetic resin,
The above-mentioned master pellets and natural pellets mixed in pellet form are the main components, and the synthetic resin of the master pellets and the synthetic resin of the natural pellets are the same, and the fluidity of the synthetic resin of the master pellets is the same. A conductive molding material characterized by having greater fluidity than natural pellet synthetic resin. 2. Claim 1, characterized in that the ratio (a/b) of the fluidity a of the synthetic resin of the master pellets to the fluidity b of the synthetic resin of the natural pellets is within the range of 1.1 to 1.3. Conductive molding material as described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22136184A JPS61100415A (en) | 1984-10-23 | 1984-10-23 | Electrically-conductive molding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22136184A JPS61100415A (en) | 1984-10-23 | 1984-10-23 | Electrically-conductive molding material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61100415A JPS61100415A (en) | 1986-05-19 |
JPH0568325B2 true JPH0568325B2 (en) | 1993-09-28 |
Family
ID=16765584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22136184A Granted JPS61100415A (en) | 1984-10-23 | 1984-10-23 | Electrically-conductive molding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61100415A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195518A1 (en) * | 2023-03-23 | 2024-09-26 | 富士フイルム株式会社 | Pellet mixture, radio wave absorber, radio wave absorbing article, and method for manufacturing radio wave absorber |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0757489B2 (en) * | 1987-12-04 | 1995-06-21 | 株式会社日立製作所 | Method for producing conductive fiber composite resin |
-
1984
- 1984-10-23 JP JP22136184A patent/JPS61100415A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024195518A1 (en) * | 2023-03-23 | 2024-09-26 | 富士フイルム株式会社 | Pellet mixture, radio wave absorber, radio wave absorbing article, and method for manufacturing radio wave absorber |
Also Published As
Publication number | Publication date |
---|---|
JPS61100415A (en) | 1986-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4816184A (en) | Electrically conductive material for molding | |
JPS59189142A (en) | Electrically conductive thermoplastic resin composition | |
JPH0228621B2 (en) | ||
US5137782A (en) | Granular composite containing metal fibers and plastic articles made therefrom | |
JPH0568325B2 (en) | ||
JPH0419644B2 (en) | ||
EP0304435B1 (en) | Electrically conductive material for molding | |
JPH03138808A (en) | Electrically conductive resin component material and its moldings | |
US5746956A (en) | Process and apparatus for manufacturing aluminum laminally filled plastic pellets for shielding electromagnetic interference | |
JPS5922710A (en) | Manufacture of electroconductive molding material | |
JPS60162604A (en) | Manufacture of conductive pellet | |
JPS60134500A (en) | Electromagnetic wave shielding material | |
JPS63297459A (en) | Electrically conductive polymer blend | |
JPH0319862B2 (en) | ||
JPS61296067A (en) | Electrically-conductive resin composition | |
JPH027977B2 (en) | ||
JPS5923595A (en) | Electromagnetic shielding material | |
JP2633920B2 (en) | Molding resin composition having conductivity and electromagnetic wave shielding structure | |
JPS6286053A (en) | Electrically conductive resin composition | |
JPS59207947A (en) | Thermoplastic resin composition containing metal fiber and its preparation | |
JPH03145006A (en) | Conductive resin composition | |
JPS61106654A (en) | Electrically conductive resin composition | |
JPS6126666A (en) | Electromagnetic wave shielding composition | |
JPS60105106A (en) | Conductive molding material | |
JPH05267882A (en) | Material for molding electromagnetic shield |