JPH05267882A - Material for molding electromagnetic shield - Google Patents
Material for molding electromagnetic shieldInfo
- Publication number
- JPH05267882A JPH05267882A JP6373392A JP6373392A JPH05267882A JP H05267882 A JPH05267882 A JP H05267882A JP 6373392 A JP6373392 A JP 6373392A JP 6373392 A JP6373392 A JP 6373392A JP H05267882 A JPH05267882 A JP H05267882A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- fiber
- iron
- shielding effect
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電磁シールドに優れた
プラスチック筺体を成形できる電磁シールド成形用材料
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic shield molding material capable of molding a plastic casing having an excellent electromagnetic shield.
【0002】[0002]
【従来の技術】近年プラスチック筺体の電磁波ノイズに
対する無防備状態を改善すべく、筺体に導電性を付与す
る技術が多数開示されている。例えば金属フレーク,パ
ウダ,メタライズドガラス,カーボンブラック,カーボ
ンファイバなどの導電体をプラスチック材料に混合する
方法、最近は金属繊維束に樹脂被覆してペレット状に切
断したものをマスターペレットとしてベース樹脂ペレッ
トと共に筺体を射出成形する方法が主流となった。例え
ばステンレス繊維マスターペレットを混合した成形用樹
脂ペレット,銅繊維マスターペレットを混合した成形用
樹脂ペレット或るいは低融点合金を含有する金属繊維マ
スターペレットなどが主流となっており、かつこれらが
電磁シールド樹脂として市販されている。2. Description of the Related Art In recent years, many techniques have been disclosed for imparting electroconductivity to a plastic housing in order to improve its defense against electromagnetic noise. For example, a method of mixing conductors such as metal flakes, powder, metallized glass, carbon black, and carbon fiber into a plastic material, and recently, metal fiber bundles coated with resin and cut into pellets are used as master pellets together with base resin pellets. The method of injection molding the housing has become mainstream. For example, molding resin pellets mixed with stainless fiber master pellets, molding resin pellets mixed with copper fiber master pellets, or metal fiber master pellets containing a low melting point alloy are mainly used, and these are electromagnetic shields. It is commercially available as a resin.
【0003】これらの電磁シールド樹脂は、例えばアド
バンテスト法と呼ばれる電界シールド測定,磁界シール
ド測定で20〜80dBと非常に大きなシールド効果が
得られるとされている。It is said that these electromagnetic shield resins can obtain a very large shield effect of 20 to 80 dB in an electric field shield measurement and a magnetic field shield measurement called the Advantest method.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、これら
市販のシールド材を種々評価したところ、近接界のシー
ルド効果は確かに優れているが、遠方界のシールド効果
が劣り、例えばいずれも20dB以下となってしまうこ
とが判明した。However, various evaluations of these commercially available shield materials have revealed that the shielding effect in the near field is certainly excellent, but the shielding effect in the far field is inferior. For example, both are 20 dB or less. It turns out that it will be.
【0005】そこで、本発明の目的は、前記した従来技
術の欠点を解消し、近接界,遠方界共に優れたシールド
性能を有する電磁シールド成形用材料を提供することに
あるTherefore, an object of the present invention is to solve the above-mentioned drawbacks of the prior art and provide an electromagnetic shield molding material having excellent shielding performance in both near field and far field.
【0006】。[0006]
【課題を解決するための手段】上記目的を達成するため
に本発明は、成形材料中に、断面平角形状を有する換算
直径30〜100μmの銅,黄銅などの銅合金,鉄,鉄
合金繊維のいずれか一種又は複数種と直径20μm以下
の銅,銅合金,鉄,ステンレスなどの鉄合金繊維のいず
れか一種又は複数種を包有するようにしたものである。In order to achieve the above object, the present invention provides a molding material which comprises a copper alloy having a rectangular cross-section and a reduced diameter of 30 to 100 μm, a copper alloy such as brass, iron, and an iron alloy fiber. Any one or a plurality of types and an iron alloy fiber such as copper, a copper alloy, iron, and stainless steel having a diameter of 20 μm or less is included.
【0007】平角断面を有する黄銅繊維,銅,銅合金,
鉄及び鉄合金などの繊維は、例えば平成元年度精密工学
会春季大会学術講演論文集に記載された柳沢らのコイル
切削法により得ることができる。すなわちマンドレルに
薄い黄銅などの金属シートを多重に巻き付け、その巻付
けコイル体の端部から順次切削工具で切削することで平
角断面を有する銅繊維の束を得ることができる。Brass fibers having a rectangular cross section, copper, copper alloys,
Fibers such as iron and iron alloys can be obtained by, for example, the coil cutting method of Yanagisawa et al. That is, a bundle of copper fibers having a rectangular cross section can be obtained by winding a thin metal sheet of brass or the like on the mandrel in multiple layers and sequentially cutting from the ends of the wound coil body with a cutting tool.
【0008】ステンレスなどの金属繊維は広く市販され
ている引き抜き加工法によって得られる断面円形の極細
繊維を用いる。円形状断面とするのは加工時の繊維切断
を防止するためである。また断面円形の銅,銅合金,
鉄,鉄合金繊維は引抜き加工或いは繰返ダイを通過させ
て延伸することで得ることができる。As the metal fiber such as stainless steel, an ultrafine fiber having a circular cross section obtained by a drawing method which is widely commercially available is used. The circular cross section is provided to prevent fiber cutting during processing. In addition, copper with a circular cross section, copper alloy,
The iron and iron alloy fibers can be obtained by drawing or drawing by passing through a repeating die.
【0009】平角断面の場合、繊維同志の接触面積が広
くなり、導電性付与に有利である。しかし20μm以下
の細断面では強度が劣り円形状丸断面とする必要があ
る。In the case of a rectangular cross section, the contact area between fibers becomes large, which is advantageous for imparting conductivity. However, the thin cross section of 20 μm or less is inferior in strength and it is necessary to make a circular cross section.
【0010】平角断面黄銅繊維,銅,銅合金,鉄,鉄合
金繊維は、丸換算直径(断面積等価の円直径)で30〜
100μmとする必要がある。30μm以下では周波数
100MHz以下のシールド効果が不足し、100μm
以上では周波数に関わりなく十分なシールド効果を得る
ことが難しくなる。すなわち黄銅繊維を多量混和しなけ
ればならない。結果として樹脂の機械的特性を損なう。
好ましくは40〜60μmである。The flat cross-section brass fiber, copper, copper alloy, iron, iron alloy fiber has a diameter of 30 to 30 in terms of circle (circular diameter equivalent to cross-sectional area).
It must be 100 μm. If the thickness is 30 μm or less, the shielding effect of frequency 100 MHz or less is insufficient,
With the above, it becomes difficult to obtain a sufficient shield effect regardless of the frequency. That is, a large amount of brass fibers must be mixed. As a result, the mechanical properties of the resin are impaired.
It is preferably 40 to 60 μm.
【0011】ステンレス繊維、丸断面の銅,銅合金,
鉄,鉄合金繊維は、直径20μm以下、好ましくは16
〜8μmである。6μm以下は実質的に製造が難しく従
って8〜20μmがよい。また直径が20μm以上で
は、200MHz以上のシールド効果が不足する。Stainless steel fiber, copper of round cross section, copper alloy,
Iron or iron alloy fiber has a diameter of 20 μm or less, preferably 16 μm.
~ 8 μm. If it is 6 μm or less, it is practically difficult to manufacture, so that 8 to 20 μm is preferable. If the diameter is 20 μm or more, the shielding effect at 200 MHz or more is insufficient.
【0012】[0012]
【作用】以上において、平角断面黄銅繊維,銅,銅合
金,鉄,鉄合金繊維は、遠方界シールド効果が良い、す
なわち低周波領域、特に100MHz以下で高いシール
ド効果を発揮するが、高周波領域では劣ること、またス
テンレス繊維,断面円形の銅,銅合金,鉄,鉄合金繊維
は低周波領域ではシールド効果が著しく低いが高周波領
域では非常に優れていることを見出だした。従って両者
を目的に応じて適切に併用することで広い周波数範囲で
遠方界のシールド効果を著しく高めることができる。ま
た黄銅繊維,銅,銅合金,鉄,鉄合金繊維は樹脂に対し
て10〜25wt%,ステンレス繊維,断面円形の銅,
銅合金,鉄,鉄合金繊維は1〜10wt%の範囲を目安
に用いる。In the above, the rectangular cross-section brass fiber, copper, copper alloy, iron, iron alloy fiber has a good far-field shielding effect, that is, it exhibits a high shielding effect in the low frequency region, particularly 100 MHz or less, but in the high frequency region. It was found that stainless fiber, copper with a circular cross section, copper alloy, iron, and iron alloy fiber were inferior in shielding effect in the low frequency region but were very excellent in the high frequency region. Therefore, by appropriately using both in accordance with the purpose, the far-field shielding effect can be remarkably enhanced in a wide frequency range. Also, brass fiber, copper, copper alloy, iron, iron alloy fiber is 10 to 25 wt% with respect to resin, stainless fiber, copper with a circular cross section,
Copper alloy, iron, and iron alloy fibers are used in the range of 1 to 10 wt% as a guide.
【0013】[0013]
【実施例】以下、本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below.
【0014】先ず実施例1〜4と比較例5〜8を表1に
示す。First, Table 1 shows Examples 1 to 4 and Comparative Examples 5 to 8.
【0015】[0015]
【表1】 [Table 1]
【0016】実施例1 コイル切削法で得た平角黄銅繊維(換算直径50μm)
束にポリスチレン樹脂(昭和電工社製エスブライト55
5)を押出被覆後、長さ7mmに切断しペレットとした。
一方直径8μm長さ7mmのステンレス繊維束(微量のポ
リビニルアルコール樹脂で集束)ペレットを準備した。Example 1 Rectangular brass fibers obtained by the coil cutting method (converted diameter 50 μm)
Polystyrene resin in a bundle (Sbright 55 manufactured by Showa Denko KK
After 5) was extrusion coated, it was cut into pellets with a length of 7 mm.
On the other hand, pellets of stainless fiber bundles (focused with a slight amount of polyvinyl alcohol resin) having a diameter of 8 μm and a length of 7 mm were prepared.
【0017】これらペレットをポリスチレン樹脂ペレッ
トに混合し、黄銅繊維を12wt%,ステンレス繊維を
5wt%含ませた。ペレット同志をよく混合し150t
射出成形機により240℃で金型に射出し、厚さ2mmで
150×50mmの板状試料を作成した。試料表面の繊維
は均一に分散していた。These pellets were mixed with polystyrene resin pellets to contain 12 wt% brass fiber and 5 wt% stainless fiber. 150t with well mixed pellets
It was injected into a mold at 240 ° C. by an injection molding machine to prepare a plate-like sample having a thickness of 2 mm and a size of 150 × 50 mm. The fibers on the surface of the sample were uniformly dispersed.
【0018】この試料をアドバンテスト社,TR173
02シールド材評価器及びヒューレットパッカード社の
ネットワークアナライザを用いて10〜1000MHz
のシールド効果を測定した。上記評価器は2つのTEM
セルからなり、セル内のインピーダンスが377Ωとな
るようにセットされているため、一般に普及しているT
R17301評価器の近接界測定と異なり、遠方界のシ
ールド効果を評価できる。測定結果を図1に示す。This sample was tested by Advantest, TR173.
02 Shield material evaluator and Hewlett-Packard network analyzer 10-1000MHz
The shield effect of was measured. The evaluator has two TEMs.
It consists of a cell and is set so that the impedance inside the cell is 377Ω.
Unlike the near-field measurement of the R17301 evaluator, the far-field shield effect can be evaluated. The measurement result is shown in FIG.
【0019】図1より10〜1000MHzで20dB
以上の良好なシールド効果を与えることが分った。また
射出成形性も良好であった。From FIG. 1, 20 dB at 10 to 1000 MHz
It was found that the above good shielding effect is given. The injection moldability was also good.
【0020】実施例2〜4 実施例1と同様にして表1に示した直径の繊維を長さ7
mmのペレットとして混合し射出成形シートを作成した。
遠方界シールド効果を同様の方法で、10,50,10
0,300,1000MHzの各周波数で評価し、これ
を同じく表1に示した。Examples 2 to 4 In the same manner as in Example 1, fibers having the diameters shown in Table 1 had a length of 7
The mixture was mixed as a pellet of mm to prepare an injection-molded sheet.
Far field shield effect in the same way 10,50,10
Evaluations were made at frequencies of 0, 300, and 1000 MHz, which are also shown in Table 1.
【0021】いずれの試料も20dB以上の高いシール
ド効果を与える。射出成形性も良好であった。All the samples give a high shielding effect of 20 dB or more. The injection moldability was also good.
【0022】比較例5 実施例1と同様の黄銅繊維単独で混和量を20wt%と
大巾に増やして成形シートを作成した。シールド効果は
低周波領域は比較的良好であるが300,100MHz
の高周波域では大きく劣ることが判る。Comparative Example 5 A molded sheet was prepared in the same manner as in Example 1, except that the brass fiber alone was used to greatly increase the amount of admixture to 20 wt%. The shield effect is relatively good in the low frequency region, but 300,100MHz
It turns out that it is greatly inferior in the high frequency range.
【0023】比較例6 ステンレス繊維単独で12wt%混和した場合である。
成形時の樹脂粘度が高く、更に混和量を増やすと成形が
困難であることが予想される。Comparative Example 6 This is a case where 12 wt% of stainless fiber was mixed alone.
The resin viscosity at the time of molding is high, and it is expected that molding will be difficult if the mixing amount is further increased.
【0024】シールド効果は100MHzの低周波領域
が著しく劣る。The shielding effect is remarkably inferior in the low frequency region of 100 MHz.
【0025】比較例7 繊維の直径が本発明の範囲を外れる場合である。実施例
1と同様の混和量及び組成としてもシールド効果は大き
く劣っていることが判る。Comparative Example 7 This is a case where the diameter of the fiber is out of the range of the present invention. It can be seen that the shielding effect is greatly inferior even with the same amount and composition as in Example 1.
【0026】比較例8 断面円形の銅繊維(直径50μm)を用い、ステンレス
繊維と併用した場合である。やはりシールド効果は本発
明より大きく劣ることが判る。Comparative Example 8 This is a case where copper fibers having a circular cross section (diameter of 50 μm) were used together with stainless fibers. It can be seen that the shield effect is still far inferior to that of the present invention.
【0027】次に実施例9〜14と比較例15〜20を
表2に示す。Table 2 shows Examples 9 to 14 and Comparative Examples 15 to 20.
【0028】[0028]
【表2】 [Table 2]
【0029】実施例9 コイル切削法で得た平角銅繊維(換算直径45μm)束
にポリスチレン樹脂(昭和電工社製エスブライト55
5)を押出被覆後、長さ7mmに切断しペレットとした。
一方直径16μm長さ7mmの引抜法により製作したステ
ンレス繊維束を同様に製作しペレットとした。これをポ
リスチレン樹脂ペレットと合せて、平角銅繊維を15w
t%,ステンレス繊維を4wt%となるように混合し、
150t射出成形機により240℃の温度で金型に射出
成形し、厚さ2mmで150×50mmの板状試料を作成し
た。Example 9 A rectangular copper fiber (converted diameter 45 μm) bundle obtained by a coil cutting method was added to a polystyrene resin (Sbright 55 manufactured by Showa Denko KK).
After 5) was extrusion coated, it was cut into pellets with a length of 7 mm.
On the other hand, a stainless fiber bundle having a diameter of 16 μm and a length of 7 mm produced by a drawing method was similarly produced to obtain pellets. Combine this with polystyrene resin pellets and use flat rectangular copper fiber for 15w
t%, stainless fiber is mixed to be 4 wt%,
A 150 t injection molding machine was used to perform injection molding into a mold at a temperature of 240 ° C. to prepare a plate-like sample having a thickness of 2 mm and a size of 150 × 50 mm.
【0030】この試料をアドバンテスト社,遠方界シー
ルド材評価器TR17302及びヒューレットパッカー
ド社のネットワークアナライザを用いて10〜1000
MHzで評価した。測定結果を図2に示す。This sample was used for 10 to 1000 by using a far field shield material evaluator TR17302 and a Hewlett Packard network analyzer.
It was evaluated in MHz. The measurement results are shown in FIG.
【0031】図2より10〜1000MHzで20dB
以上の良好なシールド効果を与えることが分った。また
射出成形性も良好であった。From FIG. 2, 20 dB at 10 to 1000 MHz
It was found that the above good shielding effect is given. The injection moldability was also good.
【0032】実施例10 平角金属繊維を平角ステンレス繊維(SUS-304 )とした
以外は実施例9と同様にして板状試料を製作し、シール
ド効果を測定した。遠方界シールド効果は10,50,
100,300,1000MHzの各周波数で評価し
た。表2より十分なシールド効果を示していると共に射
出成形性も良好であった。Example 10 A plate-shaped sample was manufactured in the same manner as in Example 9 except that the rectangular metal fiber was changed to rectangular stainless fiber (SUS-304), and the shield effect was measured. Far field shield effect is 10,50,
The evaluation was performed at each frequency of 100, 300 and 1000 MHz. From Table 2, a sufficient shielding effect was shown and the injection moldability was also good.
【0033】実施例11〜14 表2に示した、換算直径80μmの平角銅繊維と16μ
mの丸形ステンレス繊維(実施例11),換算直径35
μmの平角銅繊維と16μmの丸形ステンレス繊維(実
施例12),換算直径80μmの平角銅繊維と16μm
の丸形銅繊維(実施例13),換算直径60μmの平角
ステンレス繊維と丸形銅繊維(実施例14)を所定量混
合して板状試料を射出成形した。いずれも良好な遠方界
シールド効果を示した。Examples 11 to 14 As shown in Table 2, a rectangular copper fiber having a converted diameter of 80 μm and 16 μm
m round stainless fiber (Example 11), converted diameter 35
Flat copper fibers of 16 μm and round stainless steel fibers of 16 μm (Example 12), flat copper fibers of reduced diameter 80 μm and 16 μm
The round-shaped copper fiber (Example 13), the rectangular stainless fiber having a reduced diameter of 60 μm and the round-shaped copper fiber (Example 14) were mixed in a predetermined amount, and a plate sample was injection-molded. All showed good far-field shielding effects.
【0034】比較例15 換算直径が120μms大きい平角銅繊維を用いた場
合、表2に示す通り全周波数域でシールド効果が低い。Comparative Example 15 When a rectangular copper fiber having a converted diameter of 120 μms is used, the shielding effect is low in the entire frequency range as shown in Table 2.
【0035】比較例16 丸形ステンレス繊維が25μmの場合、高周波域のシー
ルド効果が大きく不足する。Comparative Example 16 When the round stainless fiber has a thickness of 25 μm, the shielding effect in the high frequency range is largely insufficient.
【0036】比較例17 平角銅繊維単独の場合、300,1000MHzで十分
なシールド効果が得られない。Comparative Example 17 When the rectangular copper fiber is used alone, a sufficient shielding effect cannot be obtained at 300 and 1000 MHz.
【0037】比較例18 丸形ステンレス繊維単独の場合、混和量として14wt
%は射出成形性の点で限度に近い。この場合においても
低周波数のシールド効果が不足する。Comparative Example 18 When round stainless steel fibers were used alone, the mixing amount was 14 wt.
% Is close to the limit in terms of injection moldability. Even in this case, the low frequency shield effect is insufficient.
【0038】比較例19 平角ステンレス繊維の換算直径が25μmの場合であ
り、丸形ステンレス繊維は16μm直径を用いた。混和
量の割に全周波数域でのシールド効果が不足している。
観察すると平角ステンレス繊維が切断されており、十分
な繊維同志の接触が得られなくなっていた。Comparative Example 19 The case where the converted diameter of the rectangular stainless fiber was 25 μm, and the diameter of the round stainless fiber was 16 μm. The shielding effect in the entire frequency range is insufficient for the amount of admixture.
Observation revealed that the rectangular stainless fibers had been cut, and sufficient contact between the fibers could not be obtained.
【0039】比較例20 50μmの丸形銅繊維と平角銅繊維を用いた試料であ
る。高周波域のシールド効果がほとんど得られない。Comparative Example 20 A sample using 50 μm round copper fibers and rectangular copper fibers. Almost no shielding effect in high frequencies.
【0040】[0040]
【発明の効果】以上要するに本発明によれば、遠方界の
電磁シールド特性に優れたプラスチック成形筐体を得る
ことができると共に近年の電磁ノイズトラブルが続出す
る状況において本発明の工業的価値は極めて大なるもの
である。In summary, according to the present invention, it is possible to obtain a plastic molded case having excellent electromagnetic shielding characteristics in the far field, and the industrial value of the present invention is extremely high in the situation where electromagnetic noise troubles continue in recent years. It is great.
【図1】本発明の実施例1において、周波数域における
電磁シールド特性を示す図である。FIG. 1 is a diagram showing an electromagnetic shield characteristic in a frequency range in Example 1 of the present invention.
【図2】本発明の実施例9において、周波数域における
電磁シールド特性を示す図である。FIG. 2 is a diagram showing an electromagnetic shield characteristic in a frequency range in Example 9 of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 秀樹 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 (72)発明者 小曽根 敏雄 東京都千代田区内神田3丁目11番7号 日 立アロイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideki Asano Inventor Hideki Asano 5-1-1 Hidakacho, Hitachi City, Ibaraki Hitachi Power Systems Co., Ltd. Power Systems Laboratory (72) Inventor Toshio Ozone 3-chome Uchikanda, Chiyoda-ku, Tokyo 11th-7th Nitto Alloy Co., Ltd.
Claims (1)
算直径30〜100μmの銅,黄銅などの銅合金,鉄,
鉄合金繊維のいずれか一種又は複数種と直径20μm以
下の銅,銅合金,鉄,ステンレスなどの鉄合金繊維のい
ずれか一種又は複数種を包有することを特徴とする電磁
シールド成形用材料。1. A molding material comprising copper having a rectangular cross section and a reduced diameter of 30 to 100 μm, a copper alloy such as brass, iron, etc.
An electromagnetic shield molding material comprising any one or more kinds of iron alloy fibers and any one or more kinds of iron alloy fibers such as copper, copper alloy, iron and stainless having a diameter of 20 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6373392A JPH05267882A (en) | 1992-03-19 | 1992-03-19 | Material for molding electromagnetic shield |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6373392A JPH05267882A (en) | 1992-03-19 | 1992-03-19 | Material for molding electromagnetic shield |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05267882A true JPH05267882A (en) | 1993-10-15 |
Family
ID=13237906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6373392A Pending JPH05267882A (en) | 1992-03-19 | 1992-03-19 | Material for molding electromagnetic shield |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05267882A (en) |
-
1992
- 1992-03-19 JP JP6373392A patent/JPH05267882A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4816184A (en) | Electrically conductive material for molding | |
US4474676A (en) | Electromagnetic interference shielding material | |
JP2956875B2 (en) | Molding material for electromagnetic shielding | |
EP0306671A1 (en) | Electroconductive resin composition for moulding, and shield moulded therefrom | |
JPH05267882A (en) | Material for molding electromagnetic shield | |
WO1988006342A1 (en) | Electrically conductive material for molding | |
JPH0419644B2 (en) | ||
JPS6213444A (en) | Electrically conductive resin composition | |
JPS61155457A (en) | Electromagnetic wave shielding composition | |
JPS59202697A (en) | Electromagnetic shielding material | |
JPH0757489B2 (en) | Method for producing conductive fiber composite resin | |
JPS62138537A (en) | Electrically-conductive thermoplastic resin composition | |
JPS60179204A (en) | Manufacture of chip for shielding electromagnetic wave composition | |
JPS63261899A (en) | Thermoplastic resin compound | |
JPS63297459A (en) | Electrically conductive polymer blend | |
JPS61100415A (en) | Electrically-conductive molding material | |
JPH0757844B2 (en) | Conductive resin composition | |
JPH05318467A (en) | Preparation of raw material pellet for molding of box for electromagnetic shielding | |
JPH11199707A (en) | Different diametral metal fibers-containing resin composition | |
JPH03268398A (en) | Pellet for electromagnetic shield molding and manufacture of enclosure of electromagnetic shield type | |
JP2633920B2 (en) | Molding resin composition having conductivity and electromagnetic wave shielding structure | |
JPS5923595A (en) | Electromagnetic shielding material | |
JPH1058446A (en) | Electrically-conductive fiber-containing molding material | |
JP2004027097A (en) | Thermoplastic resin composition | |
JPS60189295A (en) | Method of producing composition chip for shielding electromagnetic wave |