JPH056766A - Battery - Google Patents
BatteryInfo
- Publication number
- JPH056766A JPH056766A JP3130425A JP13042591A JPH056766A JP H056766 A JPH056766 A JP H056766A JP 3130425 A JP3130425 A JP 3130425A JP 13042591 A JP13042591 A JP 13042591A JP H056766 A JPH056766 A JP H056766A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- current collector
- battery
- negative electrode
- collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、平面状集電体の表面に
電極構成物質層が形成されている電極を具備する電池に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery provided with an electrode having an electrode-constituting material layer formed on the surface of a planar current collector.
【0002】[0002]
【発明の概要】本発明は、平面状集電体に電極構成物質
層が形成されている電極を具備する電池において、平面
状集電体の表面粗さを中心線平均粗さで0.15μm以
上でかつ3.0μm以下とすることによって、電池性能
を改善するようにしたものである。SUMMARY OF THE INVENTION The present invention relates to a battery provided with an electrode in which a layer of electrode constituent material is formed on a planar current collector, and the surface roughness of the planar current collector is 0.15 μm in terms of center line average roughness. The battery performance is improved by the above and 3.0 μm or less.
【0003】[0003]
【従来の技術】リチウムを負極活物質とし電解液に有機
溶媒を使用したいわゆる非水電解液電池は自己放電が少
ないこと、公称電圧が高いこと、保存性に極めて優れて
いること等の利点を有している。その代表例はリチウム
・二酸化マンガン電池であり、長時間にわたる信頼性の
高い電池が開発され時計やメモリーバックアップ用の電
源として広く使用されている。2. Description of the Related Art A so-called non-aqueous electrolyte battery using lithium as a negative electrode active material and an organic solvent as an electrolyte has advantages such as low self-discharge, high nominal voltage, and excellent storage stability. Have A typical example is a lithium manganese dioxide battery, which has been developed as a highly reliable battery for a long time and is widely used as a power source for clocks and memory backups.
【0004】ところが従来使用されている非水電解液電
池の多くは一次電池であるが、近年はビデオカメラや小
型オーディオ機器などの普及に伴いポータブル電源とし
て長期間便利に且つ経済的に繰返して使用できる二次電
池の需要が高まっており、非水電解質二次電池の開発、
商品化が進められている。However, most of the non-aqueous electrolyte batteries conventionally used are primary batteries, but in recent years, with the widespread use of video cameras, small audio equipment, etc., they have been repeatedly and conveniently used economically as portable power sources. The demand for rechargeable batteries that can be used is increasing, and the development of non-aqueous electrolyte secondary batteries,
Commercialization is in progress.
【0005】これまで非水電解質二次電池の正極及び負
極の電極構造に関していくつか提案されている。例え
ば、エキスパンドメタルを集電体とし、活物質とバイン
ダー粉末とを混合した合剤をプレス加工する方法は、電
極を薄くするのが難しくまた生産性が低い。Several proposals have been made so far regarding the electrode structure of the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery. For example, in the method of pressing the mixture containing the expanded metal as the current collector and the active material and the binder powder, it is difficult to thin the electrode and the productivity is low.
【0006】これに対して活物質とバインダー粉末とを
有機溶剤に分散したスラリーを集電体である帯状金属箔
に塗布し乾燥して得られる帯状電極を、帯状セパレータ
とともにロール状(渦巻状)に巻回することによって得
られる巻回電極体によれば、限られた空間内に大きな面
積の電極を収容できるから、軽量でかつ高容量の非水電
解質二次電池を得ることができる。なお、集電体として
用いられる金属箔は、通常、圧延されたままの状態で用
いられる。On the other hand, a strip-shaped electrode obtained by applying a slurry in which an active material and a binder powder are dispersed in an organic solvent to a strip-shaped metal foil as a current collector and drying the strip-shaped electrode together with a strip-shaped separator (spiral shape) According to the spirally wound electrode body obtained by winding the electrode, a large-area electrode can be accommodated in a limited space, so that a lightweight and high-capacity non-aqueous electrolyte secondary battery can be obtained. The metal foil used as the current collector is usually used as it is rolled.
【0007】[0007]
【発明が解決しようとする課題】ところが、上述のよう
な巻回電極体の作製工程などの電池組立工程において、
集電体である金属箔から活物質などから成る電極構成物
質が脱落することがあり、電池製造の生産性に悪影響を
及ぼしていた。However, in the battery assembling process such as the manufacturing process of the wound electrode body as described above,
The electrode constituent material such as an active material may fall off from the metal foil as the current collector, which adversely affects the productivity of battery production.
【0008】また、電池の使用中における充放電の繰返
しに伴って活物質(または活物質担持体)が膨張及び収
縮して集電体と電極構成物質層との間の密着性が低下す
ることによって、容量の劣化、サイクル特性の低下とい
ったような電池性能の低下が生じてしまうという欠点が
あった。Further, the active material (or active material carrier) expands and contracts with repeated charging and discharging during use of the battery, and the adhesion between the current collector and the electrode constituent material layer decreases. As a result, there is a drawback in that battery performance is deteriorated such as deterioration of capacity and deterioration of cycle characteristics.
【0009】本発明の目的は、電極において集電体と電
極構成物質層との間の密着性をよくして電池性能を改善
した電池を提供することである。An object of the present invention is to provide a battery in which the adhesion between the current collector and the electrode constituent material layer is improved in the electrode to improve the battery performance.
【0010】[0010]
【課題を解決するための手段】本発明は、上記目的を達
成するためには電極の集電体の表面が粗面化されている
ことが有効であるという本発明者による知見に基づいて
成されたものであって、平面状集電体の表面に電極構成
物質層が形成されている電極を具備する電池において、
上記電極構成物質層が形成される上記集電体の表面粗さ
は、中心線平均粗さで0.15μm以上、好ましくは
0.17μm以上でかつ3.0μm以下、好ましくは
0.60μm以下であることを特徴とする。The present invention is based on the finding by the present inventor that it is effective that the surface of the current collector of the electrode is roughened in order to achieve the above object. And a battery comprising an electrode in which an electrode constituent material layer is formed on the surface of a planar current collector,
The surface roughness of the current collector on which the electrode constituent material layer is formed is 0.15 μm or more, preferably 0.17 μm or more and 3.0 μm or less, preferably 0.60 μm or less in terms of center line average roughness. It is characterized by being.
【0011】上述のような表面粗さを有する平面状集電
体に電極構成物質層を備える電極と、平面状セパレータ
とを積層させてから、渦巻状に巻回することによって構
成される巻回電極体を具備する電池が好ましい。A winding formed by stacking an electrode having an electrode-constituting substance layer on a planar current collector having the above-described surface roughness and a planar separator, and then spirally winding. Batteries equipped with electrode bodies are preferred.
【0012】また、上記集電体の表面粗さは、上述の範
囲内で、用いる平面状集電体の厚さを考慮して決めるこ
とが好ましい。また、上述のような表面粗さを有する集
電体を、負極及び正極の両方或はいずれか一方に用いて
よい。The surface roughness of the current collector is preferably determined within the above-mentioned range in consideration of the thickness of the planar current collector to be used. Further, the current collector having the surface roughness as described above may be used for both the negative electrode and / or the positive electrode.
【0013】次に、表面粗さに関する定義を以下に説明
する。表面粗さはJIS規格B0601において、中心
線平均粗さ(Ra)、最大高さ(Rmax)、及び十点平均粗
さ(Rz)についてそれぞれ定義が規定されている。Next, the definition regarding the surface roughness will be described below. The surface roughness is defined in JIS B0601 with respect to the center line average roughness (Ra), the maximum height (Rmax), and the ten-point average roughness (Rz).
【0014】図6は中心線粗さ(Ra)の定義を説明する
ためのもので、凹凸のある表面の断面図である。図に示
すように、表面の凹凸(断面曲線)と直線とで囲まれる
面積がこの直線の両側で等しくなるように中心線を引
く。この中心線をx軸、縦方向をy軸として、断面曲線
をy=f(x)で表わす。このとき、FIG. 6 is for explaining the definition of the center line roughness (Ra), and is a cross-sectional view of an uneven surface. As shown in the figure, the center line is drawn so that the areas surrounded by the surface irregularities (cross-sectional curves) and the straight line are equal on both sides of this straight line. The cross section curve is represented by y = f (x) with the center line as the x-axis and the vertical direction as the y-axis. At this time,
【0015】[0015]
【数1】 [Equation 1]
【0016】の式から求められる値をマイクロメートル
(μm)単位で表わしたものを、中心線粗さ(Ra)と定
義する。The value obtained from the equation (1) in units of micrometers (μm) is defined as the center line roughness (Ra).
【0017】また、図7は最大高さ(Rmax)の定義を説
明するためのもので、凹凸のある表面の断面図である。
図に示すように、中心線に平行な2直線で断面曲線を挟
んだとき、この2直線の間隔を断面曲線のy方向に測定
し、この値をマイクロメートル単位で表わしたものを最
大高さ(Rmax)と定義する。FIG. 7 is a cross-sectional view of the uneven surface for explaining the definition of the maximum height (Rmax).
As shown in the figure, when a section curve is sandwiched by two straight lines parallel to the center line, the distance between these two straight lines is measured in the y direction of the section curve, and this value is expressed in micrometers. It is defined as (Rmax).
【0018】[0018]
【作用】平面状集電体の表面が適度に粗面化されている
から、集電体の表面と電極構成物質層との間の密着性が
向上する。Since the surface of the planar current collector is appropriately roughened, the adhesion between the surface of the current collector and the electrode constituent material layer is improved.
【0019】[0019]
【実施例】以下、本発明による実施例を図面を参照しな
がら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0020】実験例(表面の粗面化処理)
最初に、集電体として用いるTi(チタン)箔の表面を粗
面化した実験例を説明する。Experimental Example (Surface Roughening Treatment) First, an experimental example in which the surface of a Ti (titanium) foil used as a current collector is roughened will be described.
【0021】厚さ10μmのチタン箔を30重量%のH
2 SO4(硫酸)水溶液中に浸し、この硫酸水溶液を4
5℃に保持した。一定時間経過後に上述の硫酸水溶液か
らチタン箔を取り出して充分に水洗した後に、チタン箔
の表面粗さ(Ra及びRmax)を測定した。A titanium foil with a thickness of 10 μm was added with 30% by weight of H
Dip in 2 SO 4 (sulfuric acid) aqueous solution,
Hold at 5 ° C. After a certain period of time, the titanium foil was taken out of the sulfuric acid aqueous solution and thoroughly washed with water, and then the surface roughness (Ra and Rmax) of the titanium foil was measured.
【0022】また、チタン箔を硫酸水溶液に浸す粗面化
処理時間を変えてチタン箔の表面粗さをそれぞれ測定し
た。これらの測定結果を、硫酸水溶液による粗面化のた
めの酸処理時間と表面粗さ(Ra及びRmax)との関係とし
て図3に示す。図3に示すように、硫酸水溶液における
処理時間と共に中心線平均粗さ(Ra)及び最大高さ(Rm
ax)は共に大きくなる。Further, the surface roughness of the titanium foil was measured by changing the roughening treatment time of immersing the titanium foil in the sulfuric acid aqueous solution. The results of these measurements are shown in FIG. 3 as the relationship between the acid treatment time for surface roughening with an aqueous sulfuric acid solution and the surface roughness (Ra and Rmax). As shown in FIG. 3, the center line average roughness (Ra) and the maximum height (Rm
ax) grows together.
【0023】次に、中心線平均粗さ(Ra)と最大高さ
(Rmax)との関係を、厚さ100μmのチタン箔を同様
に粗面化することによって調べた。図4にこの結果を、
上述のチタン箔が10μmの場合と併せて示す。図か
ら、0≦Ra≦4.5μmの範囲で、
Rmax=8.3Ra (2)
の関係が得られた。Next, the relationship between the center line average roughness (Ra) and the maximum height (Rmax) was investigated by similarly roughening a titanium foil having a thickness of 100 μm. This result is shown in Figure 4.
This is also shown together with the case where the titanium foil is 10 μm thick. From the figure, the relation of Rmax = 8.3Ra (2) was obtained in the range of 0 ≦ Ra ≦ 4.5 μm.
【0024】なお、上記表面粗さの測定は、株式会社小
坂研究所の表面粗さ・輪郭形状測定機SEF−30D型
を用いて下記の測定条件で行った。
縦倍率 : 5000倍
横倍率 : 100倍
基準長さ : 2.50mm
カットオフ値: 0.8mm
送り速さ : 0.05mm/sThe surface roughness was measured under the following measurement conditions using a surface roughness / contour shape measuring instrument SEF-30D model of Kosaka Laboratory Ltd. Longitudinal magnification: 5000 times Lateral magnification: 100 times Standard length: 2.50 mm Cut-off value: 0.8 mm Feed rate: 0.05 mm / s
【0025】実施例1
実施例1では、上記実験例で得たチタン箔を集電体とし
て図1に示すような負極1を作製し、この負極1を用い
て図2に示すような非水電解質二次電池を作製した。ま
ず、負極1を次のように得た。上記実験例で厚さ10μ
mのチタン箔から得たRaが0.15μmの粗面化表面9
a、9bを有するチタン箔を図1に示すように負極集電
体9とした。Example 1 In Example 1, a negative electrode 1 as shown in FIG. 1 was prepared using the titanium foil obtained in the above experimental example as a current collector, and this negative electrode 1 was used to produce a non-aqueous solution as shown in FIG. An electrolyte secondary battery was produced. First, the negative electrode 1 was obtained as follows. 10μ thickness in the above experimental example
Ra of 0.15 μm Ra obtained from titanium foil of m
A titanium foil having a and 9b was used as a negative electrode current collector 9 as shown in FIG.
【0026】負極活物質担持体としての炭素材料である
ピッチコークス90重量部に結着剤としてのポリフッ化
ビニリデン(PVDF)10重量部を混合し、負極合剤
(負極構成物質)とした。この負極合剤を溶剤のN−メ
チルピロリドンに分散させてスラリー(ペースト状)に
した。90 parts by weight of pitch coke, which is a carbon material as a negative electrode active material support, was mixed with 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder to prepare a negative electrode mixture (negative electrode constituent material). This negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to form a slurry (paste form).
【0027】この負極合剤スラリーを、上述のRaが0.
15μmのチタン箔から成る負極集電体9の両面9a、
9bに均一に塗布し、乾燥させた。しかる後に、圧縮成
型し切断することによって、図1に示すように負極集電
体9の両面9a、9bに負極構成物質層1aをそれぞれ
備えた帯状負極1を得た。なお、この負極1の厚さは約
170μmであった。This negative electrode mixture slurry has a Ra of 0.
Both surfaces 9a of the negative electrode current collector 9 made of 15 μm titanium foil,
9b was evenly applied and dried. Thereafter, by compression molding and cutting, a strip-shaped negative electrode 1 having negative electrode constituent material layers 1a on both surfaces 9a and 9b of a negative electrode current collector 9 as shown in FIG. 1 was obtained. The negative electrode 1 had a thickness of about 170 μm.
【0028】次に、正極2を次のようにして得た。正極
活物質としてのLi Co O2 91重量部に導電剤として
のグラファイト6重量、結着剤としてのポリフッ化ビニ
リデン3重量部をそれぞれ混合し、正極合剤(正極構成
物質)とした。この正極合剤をN−メチルピロリドンに
分散させてスラリー(ペースト状)にした。正極集電体
10として厚さ20μmの帯状アルミニウム箔を用い、
この集電体10の両面に均一に正極合剤スラリーを塗布
し、乾燥させた後、圧縮成型し切断して帯状正極2を得
た。なお、この正極2の厚さは約180μmであった。Next, the positive electrode 2 was obtained as follows. 91 parts by weight of LiCoO 2 as a positive electrode active material was mixed with 6 parts by weight of graphite as a conductive agent and 3 parts by weight of polyvinylidene fluoride as a binder to prepare a positive electrode mixture (a positive electrode constituent material). This positive electrode mixture was dispersed in N-methylpyrrolidone to form a slurry (paste form). A band-shaped aluminum foil having a thickness of 20 μm is used as the positive electrode current collector 10,
The positive electrode mixture slurry was uniformly applied to both surfaces of the current collector 10, dried, and then compression molded and cut to obtain a strip positive electrode 2. The positive electrode 2 had a thickness of about 180 μm.
【0029】上述のような帯状負極1、帯状正極2及び
厚さ25μmの微多孔性ポリプロピレンフィルムより成
る一対の帯状セパレータ3a、3bを負極1、セパレー
タ3b、正極2、セパレータ3aの順に積層してから、
この積層体を渦巻状に多数回巻回することによって、図
2に示すような渦巻式の巻回電極体15を作製した。な
お、符号33は巻芯である。A pair of strip-shaped separators 3a and 3b made of the strip-shaped negative electrode 1, the strip-shaped positive electrode 2 and the microporous polypropylene film having a thickness of 25 μm as described above are laminated in this order on the negative electrode 1, the separator 3b, the positive electrode 2 and the separator 3a. From
The spirally wound electrode body 15 as shown in FIG. 2 was produced by spirally winding this laminated body many times. Reference numeral 33 is a winding core.
【0030】次いで、このような巻回電極体15を、図
2に示すように、ニッケルメッキを施した鉄製の電池缶
5内に収容した。Next, such a wound electrode body 15 was housed in a nickel-plated iron battery can 5 as shown in FIG.
【0031】この際、上記巻回電極体15の上下両面に
は絶縁板4a及び4bを夫々配設し、負極集電体9から
導出したニッケル製の負極リード11を電池缶5の底部
に溶接するとともに、正極集電体10から導出したアル
ミニウム製の正極リード12を金属製の安全弁34の突
起部34aに溶接した。At this time, insulating plates 4a and 4b are provided on the upper and lower surfaces of the wound electrode body 15, respectively, and a nickel negative electrode lead 11 led out from the negative electrode current collector 9 is welded to the bottom of the battery can 5. At the same time, the aluminum positive electrode lead 12 led out from the positive electrode current collector 10 was welded to the protruding portion 34 a of the metal safety valve 34.
【0032】この電池缶5内に、プロプレンカーボネー
トと1,2−ジメトキシエタンとの等容量混合溶媒中に
Li PF6を1モル/リットルの割合で溶解した非水電
解液を注入した。A non-aqueous electrolytic solution prepared by dissolving LiPF 6 at a rate of 1 mol / liter in a mixed solvent of equal volume of propylene carbonate and 1,2-dimethoxyethane was injected into the battery can 5.
【0033】この後、電池缶5、互いに外周が密着して
いる安全弁34及び金属製の電池蓋7のそれぞれを、表
面にアスファルトを塗布した絶縁封口ガスケット6を介
してかしめることによって、電池缶5を封口した。これ
により電池蓋7及び安全弁34を固定するとともに電池
缶5内の気密性を保持させた。また、このとき、ガスケ
ット6の図1における下端が絶縁板4aの外周面と当接
することによって、絶縁板4aが巻回電極体15の上面
側と密着する。以上のようにして、直径14mm、高さ4
2mmの円筒型非水電解質二次電池を作製した。この電池
を便宜上、電池Aとする。Thereafter, the battery can 5, the safety valve 34 and the metal battery cover 7 whose outer circumferences are in close contact with each other are caulked via the insulating sealing gasket 6 having asphalt applied to the surface thereof, whereby the battery can 5 was sealed. Thereby, the battery lid 7 and the safety valve 34 were fixed, and the airtightness inside the battery can 5 was maintained. At this time, the lower end of the gasket 6 in FIG. 1 contacts the outer peripheral surface of the insulating plate 4a, so that the insulating plate 4a comes into close contact with the upper surface side of the spirally wound electrode body 15. As described above, diameter 14mm, height 4
A 2 mm cylindrical non-aqueous electrolyte secondary battery was produced. This battery is referred to as battery A for convenience.
【0034】なお、上記円筒型非水電解質二次電池は、
二重の安全装置を構成するために、安全弁34、ストリ
ッパ36、これらの安全弁34とストリッパ36とを一
体にするための絶縁材料から成る中間嵌合体35を備え
ている。図示省略するが、安全弁34にはこの安全弁3
4が変形したときに開裂する開裂部が、電池蓋7には孔
が夫々設けられている。The above cylindrical non-aqueous electrolyte secondary battery is
To form a double safety device, a safety valve 34, a stripper 36, and an intermediate fitting body 35 made of an insulating material for integrating the safety valve 34 and the stripper 36 are provided. Although not shown, the safety valve 34 includes the safety valve 3
The battery lid 7 is provided with a cleaving portion that cleaves when the battery 4 is deformed, and holes are provided in the battery lid 7.
【0035】万一、電池内圧が何らかの原因で上昇した
場合、安全弁34がその突起部34aを中心にして図2
の上方へ変形することによって、正極リード12と突起
部34aとの接続が断たれて電池電流を遮断するよう
に、或は安全弁34の開裂部が開裂して電池内に発生し
たガスを排気するように夫々構成されている。In the unlikely event that the internal pressure of the battery rises for some reason, the safety valve 34 will center around the protrusion 34a of the safety valve 34 as shown in FIG.
By deforming upward, the connection between the positive electrode lead 12 and the protrusion 34a is cut off to interrupt the battery current, or the cleaving part of the safety valve 34 cleaves to exhaust the gas generated in the battery. Each is configured as follows.
【0036】実施例2、3、4、5及び6
実施例2〜6では、上述の実験例でそれぞれ得られたRa
が0.20、0.30、0.50、1.0及び3.0μ
mのチタン箔を負極集電体9としてそれぞれ用いた以外
は、実施例1と同様にして直径14mm、高さ42mmの円
筒型非水電解質二次電池B、C、D、E及びFをそれぞ
れ作製した。Examples 2, 3, 4, 5 and 6 In Examples 2 to 6, Ra obtained in each of the experimental examples described above was used.
Is 0.20, 0.30, 0.50, 1.0 and 3.0μ
Cylindrical non-aqueous electrolyte secondary batteries B, C, D, E and F each having a diameter of 14 mm and a height of 42 mm were prepared in the same manner as in Example 1 except that titanium foil of m was used as the negative electrode current collector 9. It was made.
【0037】また、本発明の効果を確認するための比較
例1、2として次のような電池をつくった。Further, the following batteries were prepared as Comparative Examples 1 and 2 for confirming the effects of the present invention.
【0038】比較例1
比較例1では、上述の実験例で得られたRaが5μmのチ
タン箔を負極集電体9に用いた以外は、実施例1と同様
にして直径14mm、高さ42mmの円筒型非水電解質二次
電池Gを作製した。Comparative Example 1 In Comparative Example 1, a diameter of 14 mm and a height of 42 mm were obtained in the same manner as in Example 1 except that the negative electrode current collector 9 was the titanium foil having Ra of 5 μm obtained in the above experimental example. Cylindrical non-aqueous electrolyte secondary battery G was manufactured.
【0039】比較例2
比較例2では、粗面化しないRaが0.10μmのチタン
箔を負極集電体9に用いた以外は、実施例1と同様にし
て直径14mm、高さ42mmの円筒型非水電解質二次電池
Hを作製した。Comparative Example 2 In Comparative Example 2, a cylinder having a diameter of 14 mm and a height of 42 mm was used in the same manner as in Example 1 except that a titanium foil having a surface roughness Ra of 0.10 μm was used for the negative electrode current collector 9. Type non-aqueous electrolyte secondary battery H was produced.
【0040】上述した八種類の電池A、B、C、D、
E、F、G及びHについて、上限電圧を4.1Vとして
360mAの定電流で2時間充電した後、18Ωの定抵
抗で終止電圧2.75Vまで放電する充放電サイクルを
それぞれ繰り返した。The above eight types of batteries A, B, C, D,
For E, F, G, and H, the upper limit voltage was 4.1 V, charging was performed at a constant current of 360 mA for 2 hours, and then a charging / discharging cycle of discharging to a final voltage of 2.75 V with a constant resistance of 18Ω was repeated.
【0041】各電池において、充放電サイクルの10回
目におけるエネルギ密度と100回目におけるエネルギ
密度との比をエネルギ密度保持率(%)とするIn each battery, the ratio of the energy density at the 10th charge / discharge cycle to the energy density at the 100th charge / discharge cycle is defined as the energy density retention rate (%).
【0042】このエネルギ密度保持率と負極集電体の表
面の中心線平均粗さ(Ra)との関係を図5に示す。な
お、図中の符号A〜Hは各電池を示し、またRaを示す横
軸は対数目盛である。FIG. 5 shows the relationship between the energy density retention rate and the center line average roughness (Ra) of the surface of the negative electrode current collector. The symbols A to H in the figure indicate the respective batteries, and the horizontal axis indicating Ra is a logarithmic scale.
【0043】図5から明かなように、Raが0.15μm
以上に粗面化した表面を有する負極集電体を用いた電池
A、B、C、D、E、F、Gは、粗面化しないRaが0.
10μmの表面を有する負極集電体を用いた比較例2の
電池Hよりもエネルギ密度保持率が高い。As is clear from FIG. 5, Ra is 0.15 μm
Batteries A, B, C, D, E, F, and G using the negative electrode current collector having the above-described roughened surface have Ra of 0.
The energy density retention rate is higher than that of the battery H of Comparative Example 2 using the negative electrode current collector having a surface of 10 μm.
【0044】中心線平均粗さ(Ra)が0.3μm(電池
C)前後で、エネルギ密度保持率は最も高く、Raが0.
3μmを超えると、徐々に低下していく。そして、Raが
5μm(電池G)では、エネルギ密度保持率はかなり低
下している。When the center line average roughness (Ra) is around 0.3 μm (Battery C), the energy density retention rate is the highest, and Ra is 0.
When it exceeds 3 μm, it gradually decreases. And, when Ra is 5 μm (battery G), the energy density retention rate is considerably lowered.
【0045】以上のことから、集電体の表面の中心線平
均粗さ(Ra)の好ましい範囲は、0.15μm≦Ra≦
3.0μmであり、0.17μm≦Ra≦0.60μmが
さらに好ましい。From the above, the preferable range of the center line average roughness (Ra) of the surface of the current collector is 0.15 μm ≦ Ra ≦
3.0 μm, and more preferably 0.17 μm ≦ Ra ≦ 0.60 μm.
【0046】以上のように、集電体が適度な粗面を有し
ていると、電極構成物質が集電体の表面に接触できる面
積は大きくなり、集電体の表面と電極構成物質層との間
の密着性がよくなるから、充放電を繰り返してもエネル
ギ密度などの電池性能は劣化しないと考えられる。As described above, when the current collector has an appropriately rough surface, the area where the electrode constituent substance can contact the surface of the current collector becomes large, and the surface of the current collector and the electrode constituent substance layer. It is considered that the battery performance such as energy density does not deteriorate even if charging and discharging are repeated because the adhesion between the battery and the battery improves.
【0047】なお、集電体の表面粗さは、上述の範囲内
で次の点に留意して決めることが望ましい。It is desirable that the surface roughness of the current collector is determined within the above-mentioned range while paying attention to the following points.
【0048】即ち、集電体の表面を粗面化することによ
って最大高さ(Rmax)が集電体の厚さt(粗面化する前
の厚さ)の1/2以上になると、集電体の表面に孔がで
きてしまう可能性が生じる。That is, when the maximum height (Rmax) becomes more than half the thickness t (thickness before roughening) of the current collector by roughening the surface of the current collector, There is a possibility that holes will be formed on the surface of the electric body.
【0049】集電体に孔があると、上述のような電極の
製造工程におけるスラリーの塗布時に問題が生じてしま
う。また、集電体の強度低下や電極構成物質の脱落とい
った問題も考えられる。従って、次の式(3)が成立す
る。
Rmax≦0.5t (3)If the current collector has holes, problems will occur during the application of the slurry in the above electrode manufacturing process. Further, problems such as a decrease in strength of the current collector and a dropout of the electrode constituent substance may be considered. Therefore, the following expression (3) is established. Rmax ≦ 0.5t (3)
【0050】ここで、集電体の厚さtは、電池の高容量
化及び軽量化のためできるだけ大面積の電極を限られた
空間内に収容しなければならないから、薄いことが望ま
しい。もし、電極の厚さが一定のままで集電体の厚さt
が厚くなると、集電体に設けられる活物質(或は活物質
担持体)量が減ることになるから、電池容量が低下して
しまう。Here, it is desirable that the thickness t of the current collector is thin because it is necessary to accommodate an electrode having a large area in a limited space in order to increase the capacity and weight of the battery. If the thickness of the electrode remains constant, the thickness t of the current collector
If the thickness is increased, the amount of active material (or active material-supporting material) provided on the current collector is reduced, so that the battery capacity is reduced.
【0051】上述の理由から、電池容量を確保するため
に上述のような巻回電極体15において集電体の厚さt
は50μm以下が望ましい。従って、上述の式(2)及
び(3)から
Ra≦3.0μm (4)
が得られる。For the above reason, in order to secure the battery capacity, the thickness t of the current collector in the wound electrode body 15 as described above is used.
Is preferably 50 μm or less. Therefore, Ra ≦ 3.0 μm (4) is obtained from the above equations (2) and (3).
【0052】但し、この式(4)の条件は、集電体の厚
さtによって変わるから、用いられる集電体に応じて決
めるのがよい。However, since the condition of this equation (4) changes depending on the thickness t of the current collector, it is preferable to determine it according to the current collector used.
【0053】実施例7
実施例7では、正極集電体として用いるアルミニウム箔
の表面を粗面化した実験例を説明する。Example 7 In Example 7, an experimental example in which the surface of the aluminum foil used as the positive electrode current collector is roughened will be described.
【0054】厚さ20μmのアルミニウム箔を充分にサ
ンドペーパーで研いた後20重量%の塩酸水溶液中に浸
し、一定時間経過後に上述の塩酸水溶液からアルミニウ
ム箔を取り出し充分に水洗しこのアルミニウム箔の表面
粗さを正極集電体に用い、厚さ10μmの銅箔を負極集
電体に用いた以外は実施例1と同様にして直径14mm
の円筒型非水二次電池Iを作製した。An aluminum foil having a thickness of 20 μm was sufficiently sanded and then dipped in a 20% by weight aqueous hydrochloric acid solution, and after a certain period of time, the aluminum foil was taken out from the aqueous hydrochloric acid solution and thoroughly washed with water to obtain the surface of the aluminum foil. A diameter of 14 mm was obtained in the same manner as in Example 1 except that the roughness was used for the positive electrode current collector and the copper foil having a thickness of 10 μm was used for the negative electrode current collector.
A cylindrical non-aqueous secondary battery I was manufactured.
【0055】実施例8
実施例7よりさらに長時間塩酸水溶液中に浸し、得られ
たRaが2.00μmのアルミニウム箔を正極集電体に
用いた以外は実施例7と同様にして直径14mm、高さ
42mmの円筒型非水二次電池Jを作製した。Example 8 A diameter of 14 mm was obtained in the same manner as in Example 7, except that the aluminum foil obtained by immersing in an aqueous hydrochloric acid solution for a longer time than in Example 7 and using the obtained aluminum foil having Ra of 2.00 μm was used as a positive electrode current collector. A cylindrical non-aqueous secondary battery J having a height of 42 mm was produced.
【0056】比較例3
比較例3では、粗面化しないRaが0.16μmのアル
ミニウム箔を正極集電体に用いた以外は実施例7と同様
にして直径14mm、高さ42mmの円筒型非水二次電
池Kを作製した。Comparative Example 3 In Comparative Example 3, a cylindrical non-shaped cylinder having a diameter of 14 mm and a height of 42 mm was prepared in the same manner as in Example 7 except that an aluminum foil having a surface roughness Ra of 0.16 μm was used for the positive electrode current collector. A water secondary battery K was produced.
【0057】上述した3種類の電池について、上限電圧
を4.1Vとして360mAの定電流で2時間充電した
後、18Ωの定抵抗で終始電圧2.75Vまで放電する
サイクルをそれぞれ繰り返した。With respect to the above-mentioned three types of batteries, the upper limit voltage was 4.1 V, the battery was charged with a constant current of 360 mA for 2 hours, and then the cycle of discharging to a voltage of 2.75 V with a constant resistance of 18 Ω was repeated.
【0058】I、J、Kの各電池において、充放電サイ
クルの10回目におけるエネルギ密度と100回目のエ
ネルギ密度の比(エネルギ密度保持率)を測定したとこ
ろ、それぞれ87%、93%、82%であった。このよ
うに、正極集電体を粗面化しても同じ効果がある。In each of the batteries I, J, and K, the ratio (energy density retention rate) of the energy density at the 10th time of the charge / discharge cycle and the energy density at the 100th time was measured, and they were 87%, 93%, and 82%, respectively. Met. Thus, the same effect can be obtained by roughening the surface of the positive electrode current collector.
【0059】以上説明したように本実施例の非水電解質
二次電池によれば、中心線平均粗さ(Ra)が0.15μ
m≦Ra≦3.00μmの範囲で表面を粗面化した金属
箔を集電体に用いることにより、充放電を繰り返しても
容量が劣化せず、かつ高容量の帯状電極を得ることがで
きる。As described above, according to the non-aqueous electrolyte secondary battery of this embodiment, the center line average roughness (Ra) is 0.15 μm.
By using a metal foil whose surface is roughened in the range of m ≦ Ra ≦ 3.00 μm for the current collector, the capacity does not deteriorate even after repeated charging / discharging, and a strip-shaped electrode having a high capacity can be obtained. .
【0060】粗面化処理の方法は酸処理、エッチッグ、
サンドブラシなどが用いられるがその方法は特に限定さ
れるものではない。なお、本実施例では負極集電体を粗
面化しているが、正極集電体を粗面化してもよく、同じ
効果がある。また、集電体の材質について、本実施例で
はチタンを用いたが、この他インコネル合金、銅、ニッ
ケル、ステンレス鋼などの金属箔も使用することができ
る。The method of surface roughening treatment is acid treatment, etching,
A sand brush or the like is used, but the method is not particularly limited. Although the negative electrode current collector is roughened in this example, the positive electrode current collector may be roughened, and the same effect can be obtained. Although titanium was used as the material of the current collector in this embodiment, other metal foils such as Inconel alloy, copper, nickel, and stainless steel can also be used.
【0061】また、正極活物質としてLi Co O2 を用
いたが、他に二酸化マンガン、五酸化バナジウム、硫化
鉄のような遷移金属の酸化物、カルコゲン化合物、さら
にはこれらの酸化物、カルコゲン化合物とリチウムとの
複合化合物(リチウム・コバルト複合酸化物、リチウム
・コバルト・ニッケル複合酸化物など)を用いることが
可能である。Although Li Co O 2 was used as the positive electrode active material, manganese dioxide, vanadium pentoxide, oxides of transition metals such as iron sulfide, chalcogen compounds, and further these oxides and chalcogen compounds were used. It is possible to use a composite compound of lithium and lithium (such as a lithium-cobalt composite oxide or a lithium-cobalt-nickel composite oxide).
【0062】また、負極材料は、リチウムイオンをドー
プしかつ脱ドープし得る材料であればよいが、中でもピ
ッチコークスのような炭素材料が好ましい。このような
炭素材料としては、石油系コークスや炭素系コークスな
どのコークス材料、有機高分子を望ましくは500℃以
上の非酸化性雰囲気中で焼成した有機高分子焼成体、ア
セチレンブラックなどのカーボンブラック類、グラファ
イト、ガラス状炭素、活性炭、炭素繊維、その他の有機
物熱分解炭素類などがある。The negative electrode material may be a material that can be doped with lithium ions and dedoped, but among them, a carbon material such as pitch coke is preferable. As such a carbon material, a coke material such as petroleum-based coke or carbon-based coke, an organic polymer fired body obtained by firing an organic polymer in a non-oxidizing atmosphere of preferably 500 ° C. or higher, and a carbon black such as acetylene black. , Graphite, glassy carbon, activated carbon, carbon fiber, and other organic pyrolysis carbons.
【0063】また、非水電解質としては、例えばリチウ
ム塩を電解質としこれを有機溶剤(非水溶媒)に溶解し
た非水電解液が使用できる。ここで有機溶剤としては特
に限定されるものではないが、例えばプロピレンカーボ
ネート、エチレンカーボネート、1,2−ジメキトシエ
タン、1,2−ジエキトシエタン、γ−ブチロラクト
ン、テトラヒドロフラン、1,3−ジオキソラン、4−
メチル−1,3−ジオキソラン、ジエチルエーテル、ス
ルホラン、メチルスルホラン、アセトニトリル、プロピ
オニトリルなどを単独でもしくは2種以上を混合して使
用できる。電解質も従来より公知のものがいずれも使用
可能であり、Li ClO4 、Li As F6 、Li P
F6 、Li BF4 、Li B(C6 H5 )4 、Li Cl 、
Li Br 、CH3 SO3 Li 、CF3 SO3 Li などが
ある。As the non-aqueous electrolyte, for example, a non-aqueous electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent (non-aqueous solvent) can be used. Here, the organic solvent is not particularly limited, but, for example, propylene carbonate, ethylene carbonate, 1,2-dimethyctoethane, 1,2-diectoethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-
Methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like can be used alone or in admixture of two or more. Any known electrolyte may be used as the electrolyte, and LiClO 4 , LiAsF 6 , LiP may be used.
F 6 , Li BF 4 , Li B (C 6 H 5 ) 4 , Li Cl,
Li Br, CH 3 SO 3 Li , CF 3 SO 3 Li and the like.
【0064】また、上記非水電解質は固体であってもよ
く、例えば高分子錯体固体電解質などがある。Further, the non-aqueous electrolyte may be solid, for example, polymer complex solid electrolyte.
【0065】[0065]
【発明の効果】本発明による電池によれば、電極におい
て平面状集電体を適度に粗面化しているから、平面状集
電体と電極構成物質層との間の密着性が良好となり、電
極の製造工程及び電池の使用中における集電体からの電
極構成物質の脱落及び剥離などを効果的に防止できるか
ら、電池製造の生産性向上、及び容量劣化の防止或はサ
イクル特性の向上などのような電池性能の改善を達成で
きる。EFFECTS OF THE INVENTION According to the battery of the present invention, since the planar current collector is appropriately roughened in the electrode, the adhesion between the planar current collector and the electrode constituent material layer becomes good, Since it is possible to effectively prevent the electrode constituent substances from falling off and peeling from the current collector during the electrode manufacturing process and during use of the battery, it is possible to improve the productivity of battery manufacturing and prevent capacity deterioration or improve cycle characteristics. It is possible to achieve the improvement of battery performance such as.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明による実施例の非水電解質二次電池に用
いた負極の斜視図である。FIG. 1 is a perspective view of a negative electrode used in a non-aqueous electrolyte secondary battery according to an example of the present invention.
【図2】図1に示す負極を用いた非水電解質二次電池の
概略的な縦断面を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a schematic vertical cross section of a non-aqueous electrolyte secondary battery using the negative electrode shown in FIG.
【図3】本実施例の実験例で得られた集電体としての金
属箔の表面粗さ(Ra及びRmax)と粗面化のための酸処理
時間との関係を示す図である。FIG. 3 is a diagram showing a relationship between surface roughness (Ra and Rmax) of a metal foil as a current collector obtained in an experimental example of this example and an acid treatment time for roughening.
【図4】本実施例の実験例で得られた中心線平均粗さ
(Ra)と最大高さ(Rmax)との関係を示す図である。FIG. 4 is a diagram showing the relationship between the center line average roughness (Ra) and the maximum height (Rmax) obtained in the experimental example of the present embodiment.
【図5】本実施例で得られた集電体の表面の中心線平均
粗さ(Ra)とエネルギ密度保持率との関係を示す図であ
る。FIG. 5 is a diagram showing the relationship between the center line average roughness (Ra) of the surface of the current collector obtained in this example and the energy density retention rate.
【図6】中心線平均粗さ(Ra)の定義を説明するための
断面図である。FIG. 6 is a cross-sectional view for explaining the definition of center line average roughness (Ra).
【図7】最大高さ(Rmax)の定義を説明するための断面
図である。FIG. 7 is a cross-sectional view for explaining the definition of maximum height (Rmax).
1 負極(電極) 1a 負極構成物質層(電極構成物質層) 2 正極(電極) 3a 帯状セパレータ(平面状セパレータ) 3b 帯状セパレータ 9 負極集電体(平面状集電体) 15 巻回電極体 1 Negative electrode (electrode) 1a Anode constituent material layer (electrode constituent material layer) 2 Positive electrode (electrode) 3a Strip separator (planar separator) 3b Strip separator 9 Negative electrode current collector (planar current collector) 15 winding electrode body
Claims (2)
成されている電極を具備する電池において、上記電極構
成物質層が形成される上記集電体の表面粗さは、中心線
平均粗さで0.15μm以上でかつ3.0μm以下であ
ることを特徴とする電池。1. A battery comprising an electrode in which an electrode-constituting material layer is formed on the surface of a planar current collector, wherein the current collector on which the electrode-constituting material layer is formed has a surface roughness of a center line. A battery having an average roughness of 0.15 μm or more and 3.0 μm or less.
電極構成物質層を備える電極と、平面状セパレータとを
積層させてから渦巻状に巻回することによって構成され
る巻回電極体を具備する電池。2. A winding formed by stacking an electrode having an electrode-constituting material layer on a current collector having the surface roughness according to claim 1 and a planar separator, and winding the laminate in a spiral shape. A battery including an electrode body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13042591A JP3182786B2 (en) | 1990-11-27 | 1991-05-02 | Battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-324971 | 1990-11-27 | ||
JP32497190 | 1990-11-27 | ||
JP13042591A JP3182786B2 (en) | 1990-11-27 | 1991-05-02 | Battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH056766A true JPH056766A (en) | 1993-01-14 |
JP3182786B2 JP3182786B2 (en) | 2001-07-03 |
Family
ID=26465564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13042591A Expired - Lifetime JP3182786B2 (en) | 1990-11-27 | 1991-05-02 | Battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3182786B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09306504A (en) * | 1996-05-08 | 1997-11-28 | Sony Corp | Nonaqueous electrolyte secondary battery |
US6228533B1 (en) | 1996-02-27 | 2001-05-08 | Atofina | Electrodes with improved adhesion between activator and collector and methods of making the same |
KR20030094847A (en) * | 2002-06-08 | 2003-12-18 | 삼성테크윈 주식회사 | Current collector for secondary battery |
JP2005135826A (en) * | 2003-10-31 | 2005-05-26 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
WO2005086260A1 (en) * | 2004-03-03 | 2005-09-15 | Sanyo Electric Co., Ltd | Nonaqueous electrolyte battery |
US7217475B2 (en) | 2002-10-10 | 2007-05-15 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
JP2008004562A (en) * | 2007-08-24 | 2008-01-10 | Ube Ind Ltd | Nonaqueous secondary battery |
JP2008108741A (en) * | 2007-12-07 | 2008-05-08 | Ube Ind Ltd | Nonaqueous secondary battery |
JP2009295599A (en) * | 2006-08-02 | 2009-12-17 | Sony Corp | Secondary battery |
JP2012230777A (en) * | 2011-04-25 | 2012-11-22 | Sumitomo Light Metal Ind Ltd | Aluminum foil for collector |
EP2800178A4 (en) * | 2012-04-16 | 2015-09-16 | Lg Chemical Ltd | Method for manufacturing electrode for lithium secondary battery and electrode manufactured by using same |
-
1991
- 1991-05-02 JP JP13042591A patent/JP3182786B2/en not_active Expired - Lifetime
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228533B1 (en) | 1996-02-27 | 2001-05-08 | Atofina | Electrodes with improved adhesion between activator and collector and methods of making the same |
JP3742144B2 (en) * | 1996-05-08 | 2006-02-01 | ソニー株式会社 | Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery |
JPH09306504A (en) * | 1996-05-08 | 1997-11-28 | Sony Corp | Nonaqueous electrolyte secondary battery |
KR20030094847A (en) * | 2002-06-08 | 2003-12-18 | 삼성테크윈 주식회사 | Current collector for secondary battery |
US7217475B2 (en) | 2002-10-10 | 2007-05-15 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
JP2005135826A (en) * | 2003-10-31 | 2005-05-26 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
EP1722427A4 (en) * | 2004-03-03 | 2010-03-03 | Sanyo Electric Co | Nonaqueous electrolyte battery |
WO2005086260A1 (en) * | 2004-03-03 | 2005-09-15 | Sanyo Electric Co., Ltd | Nonaqueous electrolyte battery |
EP1722427A1 (en) * | 2004-03-03 | 2006-11-15 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte battery |
US8715860B2 (en) | 2004-03-03 | 2014-05-06 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte battery |
JP2009295599A (en) * | 2006-08-02 | 2009-12-17 | Sony Corp | Secondary battery |
JP2008004562A (en) * | 2007-08-24 | 2008-01-10 | Ube Ind Ltd | Nonaqueous secondary battery |
JP2008108741A (en) * | 2007-12-07 | 2008-05-08 | Ube Ind Ltd | Nonaqueous secondary battery |
JP2012230777A (en) * | 2011-04-25 | 2012-11-22 | Sumitomo Light Metal Ind Ltd | Aluminum foil for collector |
EP2800178A4 (en) * | 2012-04-16 | 2015-09-16 | Lg Chemical Ltd | Method for manufacturing electrode for lithium secondary battery and electrode manufactured by using same |
US9780359B2 (en) | 2012-04-16 | 2017-10-03 | Lg Chem, Ltd. | Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3182786B2 (en) | 2001-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6800397B2 (en) | Non-aqueous electrolyte secondary battery and process for the preparation thereof | |
JPH09306504A (en) | Nonaqueous electrolyte secondary battery | |
JPH07220759A (en) | Nonaqueous electrolyte secondary battery | |
KR20140147029A (en) | Electric storage device and electric storage module | |
JPH08171917A (en) | Cell | |
JP3589021B2 (en) | Lithium ion secondary battery | |
JP2009259502A (en) | Nonaqueous electrolyte secondary battery | |
JP5884039B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3182786B2 (en) | Battery | |
JP3131976B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3143951B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3466631B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07153490A (en) | Battery | |
JPH06260168A (en) | Lithium secondary battery | |
JP2964833B2 (en) | Lithium secondary battery | |
JPH0256871A (en) | Nonaqueous electrolyte secondary battery | |
JP3219928B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3371908B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3309449B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3381070B2 (en) | Manufacturing method of laminated battery | |
JP3246553B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4827112B2 (en) | Flat non-aqueous electrolyte secondary battery | |
JP2002298803A (en) | Flat nonaqueous electrolyte secondary battery | |
JP2503541Y2 (en) | Non-aqueous electrolyte secondary battery | |
JP2506572Y2 (en) | Lithium ion secondary battery |