JP3246553B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3246553B2 JP3246553B2 JP29009899A JP29009899A JP3246553B2 JP 3246553 B2 JP3246553 B2 JP 3246553B2 JP 29009899 A JP29009899 A JP 29009899A JP 29009899 A JP29009899 A JP 29009899A JP 3246553 B2 JP3246553 B2 JP 3246553B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- layer
- negative electrode
- thickness
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、帯状の第1及び第
2の電極と帯状の第1及び第2のセパレータとが交互に
積層された状態で渦巻状に巻回されて成る巻回電極体を
具備しており、第1及び第2の電極におけるリチウムの
ドープ及び脱ドープによって充放電反応が行われる非水
電解質二次電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spirally wound electrode formed by spirally winding first and second strip-shaped electrodes and first and second strip-shaped separators alternately. TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery having a body and in which charge and discharge reactions are performed by doping and undoping of lithium in first and second electrodes.
【0002】[0002]
【従来の技術】近年のビデオカメラやヘッドフォンステ
レオ等の電子機器の高性能化、小型化には目ざましいも
のがあり、これらの電子機器の電源となる二次電池の重
負荷特性の改善や高容量化への要求も強まってきてい
る。二次電池としては、鉛二次電池やニッケルカドミウ
ム電池が従来から用いられている。2. Description of the Related Art In recent years, there has been a remarkable increase in performance and miniaturization of electronic devices such as video cameras and headphone stereos, and improvement of heavy load characteristics and high capacity of secondary batteries serving as power supplies for these electronic devices have been remarkable. The demand for conversion is also increasing. As a secondary battery, a lead secondary battery or a nickel cadmium battery has been conventionally used.
【0003】更に、最近はリチウム金属やリチウム合金
もしくはコークスや有機物焼成体等の炭素材のような、
リチウムイオンをドープ、脱ドープできる物質を負極材
料として用いた非水電解質二次電池の開発も活発に行わ
れている。このような非水電解質二次電池においては、
その重負荷特性の改良のために渦巻状の巻回電極体が用
いられている。この従来の巻回電極体について図4
(a)及び図4(b)を参照して説明する。Further, recently, carbon materials such as lithium metal, lithium alloy, coke, and fired organic materials have been used.
The development of non-aqueous electrolyte secondary batteries using a material capable of doping and undoping lithium ions as a negative electrode material has also been actively conducted. In such a non-aqueous electrolyte secondary battery,
A spirally wound electrode body is used to improve the heavy load characteristics. FIG. 4 shows this conventional wound electrode body.
This will be described with reference to FIG.
【0004】図4(a)は、帯状の負極1と帯状の第1
のセパレータ3a(図4(b)に示す)と帯状の正極2
と帯状の第2のセパレータ3b(図4(b)に示す)と
をこの順に積層した状態で負極1が最内周に位置するよ
うに渦巻状に多数回巻回することによって得られる巻回
電極体40の斜視図である。図4(b)は、上記巻回電
極体40の中心付近の横断面を示す一部拡大横断面図で
ある。FIG. 4A shows a strip-shaped negative electrode 1 and a strip-shaped first electrode.
4a (shown in FIG. 4B) and the strip-shaped positive electrode 2
And a second separator 3b (shown in FIG. 4 (b)) are stacked in this order, and the negative electrode 1 is spirally wound many times so that the negative electrode 1 is located at the innermost periphery. FIG. 3 is a perspective view of an electrode body 40. FIG. 4B is a partially enlarged cross-sectional view showing a cross section near the center of the wound electrode body 40.
【0005】図4(b)に示すように、巻回電極体40
における負極1は、負極集電体11及びこの集電体11
の内周面及び外周面に負極活物質を有する負極内周層1
2及び負極外周層13を夫々備えている。正極2は正極
集電体21及びこの集電体21の内周面及び外周面に正
極活物質を有する正極内周層22及び正極外周層23を
夫々備えている。[0005] As shown in FIG.
The negative electrode 1 in the above is a negative electrode current collector 11 and this current collector 11
Negative electrode inner peripheral layer 1 having a negative electrode active material on the inner and outer peripheral surfaces of
2 and a negative electrode outer peripheral layer 13. The positive electrode 2 includes a positive electrode current collector 21, and a positive electrode inner peripheral layer 22 and a positive electrode outer peripheral layer 23 each having a positive electrode active material on the inner and outer peripheral surfaces of the current collector 21.
【0006】負極外周層13と正極内周層22との間に
第1のセパレータ3aが介在し、負極内周層12と正極
外周層23との間に第2のセパレータ3bが介在してい
る。なお、負極集電体11及び正極集電体21には、厚
さの薄い帯状の金属箔が用いられている。また、負極内
周層12と負極外周層13との厚さはほぼ等しく、正極
内周層22と正極外周層23との厚さもほぼ等しい。ま
た、セパレータ3a、3bには所定の電解液が含浸され
ている。[0006] A first separator 3a is interposed between the negative electrode outer layer 13 and the positive electrode inner layer 22 and a second separator 3b is interposed between the negative electrode inner layer 12 and the positive electrode outer layer 23. . The negative electrode current collector 11 and the positive electrode current collector 21 are formed of a thin band-shaped metal foil. The thickness of the negative electrode inner peripheral layer 12 and the thickness of the negative electrode outer peripheral layer 13 are substantially equal, and the thickness of the positive electrode inner peripheral layer 22 and the positive electrode outer layer 23 are also substantially equal. The separators 3a and 3b are impregnated with a predetermined electrolytic solution.
【0007】以上のような巻回電極体40によれば、帯
状の負極1及び帯状の正極2は比較的大きな面積を有す
るから、二次電池に大きな電流を流しても単位面積当り
の電流は小さく、この二次電池を重負荷状態で使用する
ことが可能となる。また、巻回電極体において電極の厚
さを薄くすればするほど、面積のより大きい電極を巻回
することができるから、二次電池の重負荷特性はより良
好になる。電極集電体により薄い金属箔を用いるのが望
ましく、放電容量が損なわれない。According to the wound electrode body 40 as described above, since the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 have relatively large areas, even if a large current flows through the secondary battery, the current per unit area is small. This makes it possible to use this secondary battery under heavy load. Further, as the thickness of the electrode in the wound electrode body is reduced, an electrode having a larger area can be wound, so that the heavy load characteristics of the secondary battery become better. It is desirable to use a thin metal foil for the electrode current collector, and the discharge capacity is not impaired.
【0008】[0008]
【発明が解決しようとする課題】ところが、金属箔を電
極集電体に用いた上述のような巻回電極体を備える二次
電池は、充放電サイクルが繰返されると、電池容量が低
下してしまい易いという問題点を有していた。これは、
主に電池の充電時において、本来ならば電極表面に均一
に析出あるいはドーピングされるべき活物質が、充放電
が繰返されるうちに均一に析出あるいはドーピングされ
なくなり、電極表面に偏って異常に(例えばデンドライ
ト状に)析出してしまい、これによって電極が劣化して
しまうことに起因する。However, in a secondary battery having the above-mentioned wound electrode body using a metal foil as an electrode current collector, the battery capacity is reduced when the charge / discharge cycle is repeated. There was a problem that it was easy to end up. this is,
Mainly at the time of charging the battery, the active material that should be deposited or doped uniformly on the electrode surface is not uniformly deposited or doped during repeated charging and discharging, and is abnormally biased toward the electrode surface (eg, (In the form of dendrite), which results in deterioration of the electrode.
【0009】上述のような電極表面における活物質の異
常析出について、本発明者らは鋭意研究の結果、次のよ
うな知見を得た。これを図4(b)を参照しながら説明
する。図4(b)に示すように、負極1はその最内周
に、すなわち第1周目の負極14に負極外周層16、第
2周目の負極17に負極内周層18及び負極外周層19
を夫々備え、正極2はその第1周目の正極24に正極内
周層25及び正極外周層26を備えている。The present inventors have earnestly studied the abnormal deposition of the active material on the electrode surface as described above, and have obtained the following findings. This will be described with reference to FIG. As shown in FIG. 4B, the negative electrode 1 is provided on the innermost periphery thereof, that is, the negative electrode outer peripheral layer 16 is provided on the negative electrode 14 in the first cycle, the negative electrode inner peripheral layer 18 and the negative electrode outer layer is provided on the negative electrode 17 in the second cycle. 19
The positive electrode 2 includes a positive electrode inner peripheral layer 25 and a positive electrode outer peripheral layer 26 on the positive electrode 24 of the first cycle.
【0010】第1周目の負極外周層16と第1周目の正
極内周層25とが第1のセパレータ3aを介して対向
し、この間で充放電反応が行われる。また、第1周目の
正極外周層26と第2周目の負極内周層18とが第2の
セパレータ3bを介して対向し、この間で同様に充放電
反応が行われる。このようにして負極1と正極2との間
において充放電反応が行われるが、負極1と正極2は共
にそのほぼ中央に夫々集電体11及び21を有している
から、その内周層12(22)と外周層13(23)と
の間でイオンの移動はない。The first outer peripheral layer 16 of the negative electrode and the inner peripheral layer 25 of the first positive electrode are opposed to each other with the first separator 3a interposed therebetween, and a charging / discharging reaction takes place therebetween. Further, the positive electrode outer peripheral layer 26 of the first cycle and the negative electrode inner peripheral layer 18 of the second cycle face each other with the second separator 3b interposed therebetween, and the charge / discharge reaction is performed in the same manner. The charge / discharge reaction takes place between the negative electrode 1 and the positive electrode 2 in this manner. Since both the negative electrode 1 and the positive electrode 2 have the current collectors 11 and 21 at substantially the center thereof, respectively, There is no movement of ions between 12 (22) and outer layer 13 (23).
【0011】ここで、例えば第1周目の負極外周層16
と第2周目の負極内周層18とに着目すると、負極内周
層18は負極外周層16と比較して1周分外周に存在す
るため充放電反応に関する円周方向の長さが長くなり、
負極活物質がより多い。これに比べて第1周目の正極内
周層25と正極外周層26との間には活物質に関する差
はそれ程ない。従って、ほぼ同一の正極活物質を有する
正極内周層25と正極外周層26とに夫々対向する負極
外周層16と負極内周層18とにおける負極活物質は、
負極外周層16のほうが負極内周層18よりも少ない。Here, for example, the negative electrode outer peripheral layer 16 in the first cycle
When attention is paid to the negative electrode inner peripheral layer 18 in the second round, the negative electrode inner peripheral layer 18 is located on the outer circumference for one round as compared with the negative electrode outer peripheral layer 16, and thus has a longer circumferential length for the charge / discharge reaction. Become
More negative electrode active material. On the other hand, there is not much difference regarding the active material between the positive electrode inner peripheral layer 25 and the positive electrode outer peripheral layer 26 in the first round. Accordingly, the negative electrode active materials in the negative electrode outer peripheral layer 16 and the negative electrode inner peripheral layer 18 that face the positive electrode inner peripheral layer 25 and the positive electrode outer peripheral layer 26 having substantially the same positive electrode active material, respectively,
The negative electrode outer peripheral layer 16 is smaller than the negative electrode inner peripheral layer 18.
【0012】巻回電極体40を備えた二次電池において
一定量の充電が行われる場合、負極外周層16と負極内
周層18とにおいて同一量の充電が行われるが、負極活
物質がより少ない負極外周層16では充電に関する負荷
が重く、負極内周層18では負荷が相対的に軽くなる。
このことは、第2周目の負極17の外周層19と図示省
略した第3周目の負極の内周層との間においても同じで
あって、負極外周層19の負荷が相対的に重くなる。When a fixed amount of charge is performed in a secondary battery provided with the wound electrode body 40, the same amount of charge is performed in the negative electrode outer peripheral layer 16 and the negative electrode inner peripheral layer 18, but the negative electrode active material is The load related to charging is heavy in the small negative electrode outer peripheral layer 16, and the load is relatively light in the negative electrode inner peripheral layer 18.
This is the same between the outer peripheral layer 19 of the negative electrode 17 in the second cycle and the inner peripheral layer of the negative electrode in the third cycle not shown, and the load on the negative electrode outer layer 19 is relatively heavy. Become.
【0013】従って、図4(b)に示す巻回電極体40
では常に負極外周層13のほうが負極内周層12と比べ
て負荷が重くなるから、負極1において活物質の劣化、
電極表面における活物質の異常析出等が起り易くなるの
である。本発明の目的は、巻回電極体を具備する非水電
解質二次電池の充放電サイクルに伴う電池容量の低下を
防止することである。Therefore, the spirally wound electrode body 40 shown in FIG.
In this case, the load on the negative electrode outer layer 13 is always heavier than that on the negative electrode inner layer 12.
Abnormal deposition or the like of the active material on the electrode surface is likely to occur. An object of the present invention is to prevent a decrease in battery capacity due to a charge / discharge cycle of a nonaqueous electrolyte secondary battery including a wound electrode body.
【0014】[0014]
【課題を解決するための手段】本発明は、上記目的を達
成しようとする本発明者らの上述のような知見に基づい
て成されたものであって、リチウムのドープと脱ドープ
とが可能な第1及び第2の電極活物質を含む合剤層が帯
状の金属箔から成る集電体の両面に形成されている帯状
の第1及び第2の電極と、帯状の第1及び第2のセパレ
ータとが交互に積層された状態で渦巻状に巻回されるこ
とによって、上記第1の電極の上記合剤層である外周層
と上記第2の電極の上記合剤層である内周層との間に上
記第1のセパレータが介在し、上記第1の電極の上記合
剤層である内周層と上記第2の電極の上記合剤層である
外周層との間に上記第2のセパレータが介在している巻
回電極体を具備する非水電解質二次電池において、リチ
ウムのドープと脱ドープとが可能な活物質担持体として
炭素材が用いられている負極と、遷移金属とリチウムと
の複合化合物が上記電極活物質として用いられている正
極とが、上記第1及び第2の電極になっており、上記負
極の高さが上記正極の高さよりも高くかつ上記第1及び
第2のセパレータの高さよりも低く、上記第1又は第2
の電極の上記外周層と上記第2又は第1の電極の上記内
周層との間における各充放電反応が上記第1の電極活物
質と上記第2の電極活物質との間でほぼ均一に行われる
ように、少なくとも上記第1又は第2の電極のいずれか
一方の電極の上記外周層の厚さがこの電極の上記内周層
の厚さよりも厚いことによって、上記外周層における活
物質量が上記内周層における活物質量よりも多いことを
特徴とする。 SUMMARY OF THE INVENTION The present invention has been made on the basis of the above-mentioned knowledge of the present inventors to achieve the above-mentioned object, and it is possible to dope and undope lithium. First and second strip-shaped electrodes in which a mixture layer containing first and second electrode active materials is formed on both sides of a current collector made of strip-shaped metal foil; and first and second strip-shaped electrodes. Are spirally wound in a state where the separators are alternately stacked, so that an outer peripheral layer which is the mixture layer of the first electrode and an inner periphery which is the mixture layer of the second electrode. The first separator is interposed between the first electrode and the second electrode, and the first separator is interposed between the inner peripheral layer that is the mixture layer of the first electrode and the outer peripheral layer that is the mixture layer of the second electrode. in the nonaqueous electrolyte secondary battery 2 of the separator comprises a spirally wound electrode body is interposed, lithium
Active material carrier that can be doped and undoped
A negative electrode using a carbon material, a transition metal and lithium
Is used as the electrode active material.
The pole is the first and second electrodes, and the negative electrode is
The height of the pole is higher than the height of the positive electrode and the first and
Lower than the height of the second separator, the first or second
Each charge / discharge reaction between the outer peripheral layer of the first electrode and the inner peripheral layer of the second or first electrode is substantially uniform between the first electrode active material and the second electrode active material. The thickness of the outer peripheral layer of at least one of the first and second electrodes is greater than the thickness of the inner peripheral layer of the electrode, so that the active material in the outer peripheral layer The amount is larger than the amount of the active material in the inner peripheral layer .
【0015】上記巻回電極体において、第1又は第2の
電極の外周層はその外周に位置する第2又は第1の電極
の内周層と対向し、この第2又は第1の電極の外周層
は、上記外周層を備える第1又は第2の電極の1周分だ
け外周に位置する第1又は第2の電極の内周層と対向し
て各充放電反応が行われる。[0015] In the above Kimaki wound electrode body, the peripheral layer of the first or second electrode is opposed to the inner circumferential layer of the second or first electrode located on the outer periphery thereof, the second or the first electrode The charge / discharge reaction is performed in such a manner that the outer peripheral layer of the first layer faces the inner peripheral layer of the first or second electrode located on the outer periphery by one turn of the first or second electrode provided with the outer layer.
【0016】そして、上記各充放電反応において第1の
電極活物質と第2の電極活物質との間で反応が均一に行
われるように、少なくとも第1又は第2の電極のいずれ
か一方の電極の外周層における活物質量をこの電極の内
周層よりも多くしているから、電極の外周層における活
物質量は、この外周層を備える電極よりも1周分だけ外
周に位置するこの電極の内周層における活物質量と比べ
て少なくなりすぎることはなく、外周層の活物質におけ
る充電又は放電に関する負荷が軽減されて内周層程度に
なる。Then, at least one of the first and second electrodes so that the reaction between the first electrode active material and the second electrode active material is performed uniformly in each of the above-mentioned charge / discharge reactions. Since the amount of the active material in the outer layer of the electrode is larger than that in the inner layer of the electrode, the amount of the active material in the outer layer of the electrode is located on the outer circumference of the electrode provided with the outer layer by one turn. The amount of the active material in the inner peripheral layer of the electrode does not become too small, and the load on the charge or discharge of the active material in the outer peripheral layer is reduced to about the inner peripheral layer.
【0017】また、負極の高さが正極の高さよりも高い
ので、充放電の繰り返しによって負極から脱離するリチ
ウムのデンドライト発生が抑制されて、正極と負極との
内部短絡が防止される。しかも、負極の高さが第1及び
第2のセパレータの高さよりも低いので、充放電に伴っ
て負極が膨張しても負極が第1及び第2のセパレータを
越えて正極と接触することが抑制されて、正極と負極と
の内部短絡が防止される。 The height of the negative electrode is higher than the height of the positive electrode.
As a result, lithium that desorbs from the negative electrode due to repeated charging and discharging
Of the positive and negative electrodes is suppressed.
Internal short circuit is prevented. Moreover, the height of the negative electrode is
Because it is lower than the height of the second separator,
The negative electrode expands the first and second separators even if the negative electrode expands.
And contact with the positive electrode is suppressed.
Internal short circuit is prevented.
【0018】[0018]
【発明の実施の形態】以下、本発明による非水電解質二
次電池の一実施形態について図1〜図3(c)を参照し
ながら説明する。なお、図4(a)及び図4(b)に示
す巻回電極体と同一部分には、同一符号を付けて、その
説明を省略する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a non-aqueous electrolyte secondary battery according to the present invention will be described below with reference to FIGS. The same parts as those of the spirally wound electrode body shown in FIGS. 4A and 4B are denoted by the same reference numerals, and description thereof will be omitted.
【0019】実施形態 本実施形態は負極内周層と負極外周層との厚さを変えた
ものである。図1は、本実施形態の非水電解質二次電池
の概略的な縦断面を示すものであるが、この電池を以下
に述べるようにして作製した。まず、負極1は次のよう
にして作成した。粉砕したピッチコークスを負極活物質
担持体として用い、このピッチコークス90重量部及び
結着剤としてのポリフッ化ビニリデン10重量部を加
え、混合し、負極合剤とした。そしてこの負極合剤を溶
剤N−メチルピロリドンに分散させてスラリー(ぺ一ス
ト状)にした。Embodiment In this embodiment, the thicknesses of the inner peripheral layer and the outer peripheral layer of the negative electrode are changed. FIG. 1 shows a schematic longitudinal section of the non-aqueous electrolyte secondary battery of the present embodiment. This battery was manufactured as described below. First, the negative electrode 1 was prepared as follows. Using the crushed pitch coke as a negative electrode active material carrier, 90 parts by weight of this pitch coke and 10 parts by weight of polyvinylidene fluoride as a binder were added and mixed to obtain a negative electrode mixture. Then, this negative electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (a paste form).
【0020】次にこの負極合剤スラリーを、負極集電体
11としての厚さ10μmの帯状の銅箔の両面に一方の
面と他方の面とで塗布量を変えて塗布して、乾燥し、そ
の後ローラプレス機により圧縮成型し帯状の負極1を作
った。このとき、負極集電体11の一方の面側の負極合
剤厚さ(後述の図2(a)及び図3(a)に示す負極外
周層13の厚さt13に相当する)は84μm、他方の面
側の負極合剤厚さ(負極内周層12の厚さt12に相当す
る)は82μm、また負極1の幅は41.5mmであっ
た。Next, the negative electrode mixture slurry is applied to both sides of a 10 μm-thick strip-shaped copper foil as the negative electrode current collector 11 by changing the application amount on one side and the other side, and dried. Thereafter, compression molding was performed by a roller press machine to form a belt-shaped negative electrode 1. At this time, (corresponding to the thickness t 13 of the negative electrode outer peripheral layer 13 shown in below FIG. 2 (a) and FIG. 3 (a)) one surface side of the negative electrode mixture thickness of the negative electrode current collector 11 is 84μm , anode mixture the thickness of the other side (corresponding to the thickness t 12 in the negative electrode peripheral layer 12) is 82 .mu.m, the width of the negative electrode 1 was 41.5 mm.
【0021】次に、正極2は次のようにして作成した。
炭酸リチウム1モルと炭酸コバルト1モルを混合し、9
00℃の空気中で5時間焼成してLiCoO2 を得て、
これを正極活物質として用い、このLiCoO2 91重
量部に導電材としてグラファイト6重量部、結着剤とし
てポリフッ化ビニリデン(PVDF)3重量部を加え、
混合し、正極合剤とした。そしてこの正極合剤を溶剤N
一メチルピロリドンに分散させてスラリー(ぺ一スト
状)にした。Next, the positive electrode 2 was prepared as follows.
1 mol of lithium carbonate and 1 mol of cobalt carbonate are mixed, and 9
Calcined in air at 00 ° C. for 5 hours to obtain LiCoO 2 ,
Using this as a positive electrode active material, 6 parts by weight of graphite as a conductive material and 3 parts by weight of polyvinylidene fluoride (PVDF) as a binder were added to 91 parts by weight of LiCoO 2 ,
The mixture was mixed to form a positive electrode mixture. Then, this positive electrode mixture is mixed with a solvent N
The resultant was dispersed in monomethylpyrrolidone to form a slurry (a first paste).
【0022】次に、この正極合剤スラリーを、正極集電
体21としての厚さ20μmの帯状のアルミニウム箔の
両面に均一に塗布して、乾燥し、その後ローラープレス
機により圧縮成型し帯状の正極2を作った。このとき、
正極集電体21の一方の面側の正極合剤厚さ(後述の図
2(a)及び図3(a)に示す正極外周層23の厚さt
23に相当する)と他方の面側の正極合剤厚さ(正極内周
層22の厚さt22に相当する)とは等しく共に77μ
m、また正極2の幅は40.5mmであった。Next, this positive electrode material mixture slurry is
Of a 20 μm-thick strip-shaped aluminum foil as the body 21
Apply evenly on both sides, dry, then roller press
A belt-shaped positive electrode 2 was formed by compression molding using a machine. At this time,
The thickness of the positive electrode mixture on one surface of the positive electrode current collector 21 (see FIG.
2 (a) and the thickness t of the positive electrode outer peripheral layer 23 shown in FIG.
twenty three) And the thickness of the positive electrode mixture on the other side (the inner circumference of the positive electrode).
Thickness t of layer 22twenty two77μ)
m, and the width of the positive electrode 2 was 40.5 mm.
【0023】上記帯状の負極1、上記帯状の正極2及び
厚さ25μmの微孔性ポリプロピレンフィルムからなる
第1及び第2のセパレータ3a、3bを第2のセパレー
タ3b、正極2、第1のセパレータ3a、負極1の順序
で積層して図2(a)に示すような積層体31を得た。
この積層体31を負極1が最内周に位置するように積層
体31の長さ方向へ巻芯33上で渦巻状に多数回巻回す
ることによって、巻回電極体10を作成した。The strip-shaped negative electrode 1, the strip-shaped positive electrode 2, and the first and second separators 3a and 3b made of a microporous polypropylene film having a thickness of 25 μm are combined with a second separator 3b, a positive electrode 2, and a first separator. 3a and the negative electrode 1 were laminated in this order to obtain a laminate 31 as shown in FIG.
The wound electrode body 10 was formed by spirally winding the stacked body 31 a number of times on the winding core 33 in the length direction of the stacked body 31 so that the negative electrode 1 was positioned at the innermost periphery.
【0024】上記巻回電極体10の中心付近の横断面を
図3(a)に示す。図3(a)の巻回電極体10は、図
4(b)に示すものと、負極内周層12の厚さt12と負
極外周層13の厚さt13とが違うだけで、これ以外は同
様の構造である。なお、上記積層体31において正極2
の厚さ、負極1の厚さ及び第1、第2のセパレータ3
a、3bの厚さの和Tは400μmであった。また、上
記積層体31において負極1と正極2との積層の順序を
入れかえて、巻回電極体10において正極2が最内周に
位置してもよい。FIG. 3A shows a cross section near the center of the wound electrode body 10. Wound electrode body 10 in FIG. 3 (a), as shown in FIG. 4 (b), only different and the thickness t 13 of the thickness t 12 and the negative electrode outer peripheral layer 13 in the negative electrode peripheral layer 12, which Other than that, it has the same structure. It should be noted that the positive electrode 2
Thickness, the thickness of the negative electrode 1 and the first and second separators 3
The sum T of the thicknesses a and 3b was 400 μm. Further, the order of lamination of the negative electrode 1 and the positive electrode 2 in the laminate 31 may be changed, and the positive electrode 2 in the wound electrode body 10 may be located at the innermost circumference.
【0025】上述のようにして作った巻回電極体10
を、図1に示すように、ニッケルめっきを施した鉄製電
池缶5に収納した。そして正極2の集電を行うためにア
ルミニウム製の正極リード9を正極2に取り付け、これ
を正極2から導出して金属製の安全弁34の突起部34
aに溶接した。また負極1の集電を行うために、ニッケ
ル製の負極リード8を負極1に取り付け、これを負極1
から導出して、電池缶5に溶接した。この電池缶5の中
に、六フッ化リン酸リチウムを1モル/L溶解した炭酸
プロピレンと1,2−ジメトキシエタンとを混合して得
た非水電解液を注入した。The wound electrode body 10 produced as described above
Was stored in a nickel-plated iron battery can 5 as shown in FIG. Then, an aluminum positive electrode lead 9 is attached to the positive electrode 2 in order to collect the current of the positive electrode 2, and this is led out from the positive electrode 2 to be protruded from the metal safety valve 34.
a. In order to collect the current of the negative electrode 1, a negative electrode lead 8 made of nickel was attached to the negative electrode 1, and this was connected to the negative electrode 1.
And welded to the battery can 5. A non-aqueous electrolyte obtained by mixing propylene carbonate in which lithium hexafluorophosphate was dissolved at 1 mol / L and 1,2-dimethoxyethane was injected into the battery can 5.
【0026】次に、巻回電極体10の上下面に対向する
ように、電池缶5内に一対の絶縁板4a、4bを夫々配
設した。またこの電池缶5、互いにそれらの外周で密着
している安全弁34及び電池蓋7を絶縁封口ガスケット
6を介してかしめて、電池缶5を封口した。このとき、
ガスケット6の図1における下端側は絶縁板4aの外周
面と当接して、絶縁板4aが巻回電極体10の上面側と
密着する。以上のように、直径14mm、高さ50mm
の円筒型非水電解質二次電池を作製した。この電池を、
後掲の表1に示すように、便宜上、電池Aとする。Next, a pair of insulating plates 4a and 4b were disposed in the battery can 5 so as to face the upper and lower surfaces of the wound electrode body 10, respectively. The battery can 5, the safety valve 34 and the battery lid 7, which are in close contact with each other at their outer circumferences, were caulked via an insulating sealing gasket 6 to seal the battery can 5. At this time,
The lower end of the gasket 6 in FIG. 1 is in contact with the outer peripheral surface of the insulating plate 4a, and the insulating plate 4a is in close contact with the upper surface of the spirally wound electrode body 10. As mentioned above, diameter 14mm, height 50mm
Was manufactured. This battery
As shown in Table 1 below, a battery A is used for convenience.
【0027】なお、上記円筒型非水電解質二次電池は、
安全弁34、ストリッパ36、これらの安全弁34とス
トリッパ36とを一体にするための絶縁材料から成る中
間嵌合体35を備えている。図示省略するが、安全弁3
4にはこの安全弁34が変形したときに開裂する開裂部
が、電池蓋7には孔が夫々設けられている。万一、電池
内圧が何らかの原因で上昇した場合、安全弁34がその
突起部34aを中心にして図1の上方へ変形することに
よって、正極リード9と突起部34aとの接続が断たれ
て、電池電流を遮断するように、あるいは安全弁34の
開裂部が開裂して電池内に発生したガスを排気するよう
に夫々構成されている。The above cylindrical non-aqueous electrolyte secondary battery is
A safety valve 34, a stripper 36, and an intermediate fitting body 35 made of an insulating material for integrating the safety valve 34 and the stripper 36 are provided. Although not shown, the safety valve 3
4 is provided with a cleaving portion which is cleaved when the safety valve 34 is deformed, and a hole is provided in the battery cover 7. If the internal pressure of the battery rises for some reason, the safety valve 34 is deformed upward in FIG. 1 around the projection 34a, and the connection between the positive electrode lead 9 and the projection 34a is cut off. The configuration is such that the current is interrupted, or the gas generated in the battery due to the cleavage of the safety valve 34 is cleaved.
【0028】また、第1及び第2のセパレータ3a、3
bは、負極1及び正極2よりも長さ方向及び幅方向に若
干大きく、図1及び図2(a)に示すように負極1及び
正極2の夫々の端部からわずかにはみ出ている。The first and second separators 3a, 3a
b is slightly larger than the negative electrode 1 and the positive electrode 2 in the length direction and the width direction, and slightly protrudes from the respective ends of the negative electrode 1 and the positive electrode 2 as shown in FIGS.
【0029】また、上記非水電解質二次電池において、
負極1の活物質として、リチウム、リチウム合金、ある
いは活物質担持体としてポリアセチレンのような導電性
ポリマー、コークスのような炭素材などを用いることが
でき、これらはいずれもリチウムをドープし脱ドープし
得るものである。一方、正極2の活物質としては二酸化
マンガン、五酸化バナジウムのような遷移金属化合物
や、硫化鉄等の遷移金属カルコゲン化合物、さらには遷
移金属とリチウムとの複合化合物を用いることができ
る。In the above non-aqueous electrolyte secondary battery,
As an active material of the negative electrode 1, lithium, a lithium alloy, or a conductive polymer such as polyacetylene or a carbon material such as coke as an active material carrier can be used. What you get. On the other hand, as the active material of the positive electrode 2, a transition metal compound such as manganese dioxide and vanadium pentoxide, a transition metal chalcogen compound such as iron sulfide, and a composite compound of a transition metal and lithium can be used.
【0030】また、電解液としては、例えばリチウム塩
を電解質としこれを有機溶剤(非水溶媒)に溶解した非
水電解液が使用される。ここで有機溶剤としては、特に
限定されるものではないが、例えばプロピレンカーボネ
ート、エチレンカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキエタン、γ−ブチロラクトン、テ
トラヒドロフラン、1,3ジオキソラン、4−メチル−
1,3−ジオキシソラン、ジエチルエーテル、スルホラ
ン、メチルスルホラン、アセトニトリル、プロピオニト
リル等の単独もしくは2種以上の混合溶剤が使用でき
る。As the electrolyte, for example, a non-aqueous electrolyte obtained by dissolving a lithium salt as an electrolyte in an organic solvent (non-aqueous solvent) is used. Here, the organic solvent is not particularly limited. For example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3 dioxolan, and 4-methyl −
A single solvent or a mixed solvent of two or more such as 1,3-dioxysorane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like can be used.
【0031】電解質も従来より公知のものがいずれも使
用可能であり、LiClO4 、LiAsF6 、LiPF
6 、LiBF4 、LiB(C6 H5 )4 、LiCl、L
iBr、CH3 SO3 Li、CF3 SO3 Li等があ
る。また、非水電解質において、従来より公知の固体状
の電解質を用いることもできる。As the electrolyte, any of conventionally known electrolytes can be used, such as LiClO 4 , LiAsF 6 , and LiPF.
6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, L
iBr, CH 3 SO 3 Li, CF 3 SO 3 Li and the like. Further, as the non-aqueous electrolyte, a conventionally known solid electrolyte can also be used.
【0032】次に、負極1の負極内周層12の厚さt12
と負極外周層13の厚さt13との組合せを下記の表1に
示すように6通りに変えた以外は、上記電池Aと同様に
して円筒型非水電解質二次電池B、C、D、E、F、K
を作製した。なお、これらの二次電池A〜F、Kの電極
の厚さ(積層体31の厚さ)Tはすべて400μmであ
った。Next, the thickness t 12 of the negative electrode inner peripheral layer 12 of the negative electrode 1
And non-aqueous electrolyte secondary batteries B, C, and D in the same manner as Battery A, except that the combinations of the thickness of the negative electrode outer peripheral layer 13 and the thickness t 13 of the negative electrode outer layer 13 were changed to six as shown in Table 1 below. , E, F, K
Was prepared. Note that the thickness (thickness of the laminate 31) T of the electrodes of these secondary batteries A to F and K was all 400 μm.
【0033】次に、負極1の厚さを増やしかつ負極内周
層12の厚さt12と負極外周層13の厚さt13との組合
せを下記の表1に示すように5通りに変えるとともに、
正極内周層22の厚さt22を105μm、正極外周層2
3の厚さt23を99μmにした以外は、上記電池Aと同
様にして円筒型非水電解質二次電池G、H、I、M、N
を作製した。なお、これらの電池G、H、I、M、Nの
電極の厚さTはすべて500μmであった。Next, changing the combination of the thickness t 13 of the thickness t 12 and the negative electrode outer peripheral layer 13 to increase the thickness of the negative electrode 1 and Fukyokunai peripheral layer 12 in five kinds as shown in Table 1 below With
105μm thickness t 22 of the positive electrode peripheral layer 22, the positive electrode peripheral layer 2
Except that the third thickness t 23 in 99μm, said cell A and Similarly cylindrical non-aqueous electrolyte secondary batteries G, H, I, M, N
Was prepared. The thicknesses T of the electrodes of these batteries G, H, I, M, and N were all 500 μm.
【0034】比較形態1 下記の表1に示すように、本発明の効果を確認するため
の比較形態として、上記電池A及び電池Gにおいて負極
内周層12の厚さt12と負極外周層13の厚さt 13とを
等しくした以外は、電池A及び電池Gと全く同様の円筒
型非水電解質二次電池J、Lを夫々作製した。なお、電
池Jは従来と同様の構成である。Comparative Example 1 As shown in Table 1 below, the effect of the present invention was confirmed.
As a comparative example of the above, a negative electrode was used in the battery A and the battery G.
The thickness t of the inner peripheral layer 1212And the thickness t of the negative electrode outer peripheral layer 13 13And
Exactly the same cylinder as Battery A and Battery G except that they were equal
Type non-aqueous electrolyte secondary batteries J and L were produced. In addition,
Pond J has the same configuration as the conventional one.
【0035】[0035]
【表1】 [Table 1]
【0036】なお、上記表1におけるΔt1 、Δt2 及
びΔtは次のように定義される値である。 Δt1 ={(t13−t12)/t12}×100 (1) Δt2 ={(t23一t22)/t22}×100 (2) Δt =Δt1 +Δt2 (3)Note that Δt 1 , Δt 2 and Δt in Table 1 above are values defined as follows. Δt 1 = {(t 13 −t 12 ) / t 12 } × 100 (1) Δt 2 = {(t 23 −t 22 ) / t 22 } × 100 (2) Δt = Δt 1 + Δt 2 (3)
【0037】上記14種類の電池A〜Nについて、夫々
460mAの電流で上限電圧4.1Vとして2時間充電
し、続いて18Ωで、放電終止電圧2.75Vまで放電
させる充放電サイクルを行い容量保持率を調査した。第
1回日の放電容量、第200回目の放電容量及びこれら
の値から求めた容量保持率を表2に夫々示す。Each of the 14 types of batteries A to N was charged with a current of 460 mA at an upper limit voltage of 4.1 V for 2 hours, followed by a charge / discharge cycle of discharging at 18 Ω to a discharge end voltage of 2.75 V, thereby retaining capacity. The rates were investigated. Table 2 shows the discharge capacity on the first day, the 200th discharge capacity, and the capacity retention obtained from these values.
【0038】[0038]
【表2】 [Table 2]
【0039】表2に示すように電池A〜Iは容量保持率
が85%以上あり、良好な結果を示している。また比較
形態の電池Lは、負極1の内周層12と外周層13との
厚さが等しく、また正極2の内周層22の厚さt22のほ
うが外周層23の厚さt23よりも厚い構成であるから、
負極外周層13の負極活物質における充電に関する負荷
は一層重くなると考えられ、従来と同様の構成である比
較形態の電池Jよりも容量保持率が低い。As shown in Table 2, the batteries A to I have a capacity retention of 85% or more, showing good results. In the battery L of the comparative example, the thickness of the inner layer 12 of the negative electrode 1 is equal to the thickness of the outer layer 13, and the thickness t 22 of the inner layer 22 of the positive electrode 2 is greater than the thickness t 23 of the outer layer 23. Is also thick,
It is considered that the load related to charging of the negative electrode active material of the negative electrode outer peripheral layer 13 is further increased, and the capacity retention is lower than that of the battery J of the comparative embodiment having the same configuration as the conventional one.
【0040】上述の結果より、図3(a)に示す巻回電
極体10の場合、例えば負極1の1周目と2周目とに着
目すれば、負極外周層16と負極内周層18とにおける
活物質量はほぼ同一となり、外周層16の活物質におけ
る充電に関する負荷は図4(b)に示す従来の場合と比
べて軽減されて内周層18程度であると考えられる。従
って、負極1の表面にデンドライト状等の異常析出が生
じる恐れは極めて少ないから、容量低下は少ないと考え
られる。また、上述の結果は、電極の内周層と外周層と
の厚さに関する比についてある好ましい範囲があること
を示唆している。From the above results, in the case of the wound electrode body 10 shown in FIG. 3A, for example, focusing on the first and second turns of the negative electrode 1, the negative electrode outer layer 16 and the negative electrode inner layer 18 4A and 4B, the load on the outer layer 16 for charging the active material is reduced as compared with the conventional case shown in FIG. Therefore, the possibility that abnormal precipitation such as dendrite is generated on the surface of the negative electrode 1 is extremely small, and it is considered that the capacity decrease is small. The above results also suggest that there is a certain preferred range for the ratio of the thickness of the inner and outer layers of the electrode.
【0041】本発明者らのさらなる研究によれば、一方
の電極における内周層と外周層との厚さに関する比(上
記式(1)に示すΔt1 )と他方の電極における内周層
と外周層との厚さに関する比(上記式(2)に示すΔ
2 )との和であるΔtの好ましい範囲は、 2≦Δt≦0.055T (4) である。ここでTの単位はμmである。According to a further study by the present inventors, the ratio of the thickness of the inner layer to the outer layer in one electrode (Δt 1 shown in the above formula (1)) and the ratio of the inner layer to the The ratio with respect to the thickness of the outer peripheral layer (Δ
The preferred range of Δt, which is the sum of 2 ) and 2 ), is 2 ≦ Δt ≦ 0.055T (4). Here, the unit of T is μm.
【0042】また、Δtのより好ましい範囲は、 4≦Δt≦0.048T (5) である。そして、Δtのさらに好ましい範囲は、 6≦Δt≦0.040T (6) である。Further, a more preferable range of Δt is 4 ≦ Δt ≦ 0.048T (5). Further, a more preferable range of Δt is 6 ≦ Δt ≦ 0.040T (6).
【0043】なお、上記式(1)によって定義されるΔ
t1 は、巻回電極体において最内周に位置する一方の電
極に関する外周層と内周層との厚さに関する比であり、
上記式(2)によって定義されるΔt2 は、上記最内周
に位置しない他方の電極に関する外周層と内周層との厚
さに関する比である。上記一方の電極は正極、負極のい
ずれでもよい。Note that Δ defined by the above equation (1)
t 1 is a ratio related to the thickness of the outer layer and the inner layer with respect to one electrode located at the innermost periphery in the wound electrode body,
Δt 2 defined by the above equation (2) is a ratio related to the thickness of the outer peripheral layer and the inner peripheral layer with respect to the other electrode not located at the innermost circumference. The one electrode may be either a positive electrode or a negative electrode.
【0044】上記式(4)〜(6)から上記表1及び表
2における結果を考察すると、式(3)で定義されるΔ
tが少なくとも式(4)を満足すれば電池の容量保持率
は85%以上となることがわかり、Δtが式(5)さら
に(6)を満足するにつれて容量保持率はさらに上昇す
ることがわかる。以上のことから式(3)で定義される
Δtが少なくとも式(4)を満足するように、巻回電極
体において各電極における内周層と外周層との厚さを決
定することによって容量保持率のよい二次電池を得るこ
とができる。Considering the results in Tables 1 and 2 from the above equations (4) to (6), Δ
It can be seen that when t satisfies at least the expression (4), the capacity retention of the battery becomes 85% or more, and that the capacity retention further increases as Δt satisfies the expressions (5) and (6). . From the above, the capacitance holding is achieved by determining the thicknesses of the inner and outer layers of each electrode in the wound electrode body so that Δt defined by the equation (3) satisfies at least the equation (4). A highly efficient secondary battery can be obtained.
【0045】変形形態 図2(b)、図2(c)、図3(b)及び図3(c)に
本実施形態の二つの変形形態を示す。図2(b)に、図
2(a)に示す積層体31において、負極1の外周層1
2と内周層13との厚さを等しくし、正極2の外周層2
3の厚さt23を内周層22の厚さt22よりも厚くして構
成された積層体31aを示す。図3(b)に、このよう
な積層体31aを用いて実施形態と同様にして得られる
巻回電極体10aの中心付近の横断面を示す。Modifications FIGS. 2 (b), 2 (c), 3 (b) and 3 (c) show two modifications of the present embodiment. FIG. 2B shows the outer peripheral layer 1 of the negative electrode 1 in the laminate 31 shown in FIG.
The thickness of the outer layer 2 of the positive electrode 2 is made equal to the thickness of the inner layer 13.
3 of the thickness t 23 thicker than the thickness t 22 of the inner circumferential layer 22 shows a laminate 31a which is configured. FIG. 3B shows a cross section near the center of the wound electrode body 10a obtained in the same manner as in the embodiment using such a laminate 31a.
【0046】この巻回電極体10aによれば、負極1の
外周層12と内周層13との厚さは等しいが、正極2の
外周層23の厚さt23が内周層22の厚さt22よりも厚
いから、負極外周層13と対向する正極内周層22の正
極活物質がより少なくなりかつ負極外周層13のさらに
1周だけ外周に位置する負極内周層12と対向する正極
外周層23の正極活物質がより多くなる。従って、負極
外周層13の負極活物質における充電に関する負荷は、
この外周層13のさらに1周だけ外周に位置する負極内
周層12と比べて重すぎることはないから、上述と同様
の効果を得ることができる。According to the spirally wound electrode body 10 a, the outer peripheral layer 12 and the inner peripheral layer 13 of the negative electrode 1 have the same thickness, but the thickness t 23 of the outer peripheral layer 23 of the positive electrode 2 is equal to the thickness of the inner peripheral layer 22. since the thicker than t 22, to the positive electrode active material becomes less and facing the negative electrode in the peripheral layer 12 located further on the outer periphery only one round of the negative electrode outer peripheral layer 13 of the negative electrode outer peripheral layer 13 opposite to the positive electrode peripheral layer 22 The positive electrode active material of the positive electrode outer peripheral layer 23 increases. Therefore, the load related to charging the negative electrode active material of the negative electrode outer peripheral layer 13 is:
Since it is not too heavy as compared with the negative electrode inner peripheral layer 12 which is located one outer periphery of the outer peripheral layer 13, the same effect as described above can be obtained.
【0047】次に、図2(c)には、図2(a)に示す
積層体31において、負極1及び正極2ともに外周層を
内周層よりも厚くして構成された積層体31bを示す。
図3(c)に、このような積層体31bを用いて実施形
態と同様にして得られる巻回電極体10bの中心付近の
横断面を示す。この巻回電極体10bは、両電極におい
てそれらの外周層を内周層よりも厚く構成しているか
ら、上述と同様の効果を得ることができる。Next, FIG. 2 (c) shows a laminate 31b of the laminate 31 shown in FIG. 2 (a) in which the outer layer is thicker than the inner layer for both the negative electrode 1 and the positive electrode 2. Show.
FIG. 3C shows a cross section near the center of a spirally wound electrode body 10b obtained in the same manner as in the embodiment using such a laminate 31b. In the spirally wound electrode body 10b, the outer layer is formed thicker than the inner layer in both electrodes, so that the same effect as described above can be obtained.
【0048】参考形態 本参考形態は負極内周層と負極外周層とにおける負極活
物質担持体の含有率を変えたものである。本参考形態に
よる非水電解質二次電池は、図1に示すものと同様の構
成でありかつ実施形態における電池Aと同様にして作製
でき、以下に述べる点が異なるものである。Reference Embodiment In the present embodiment, the content of the negative electrode active material carrier in the negative electrode inner peripheral layer and the negative electrode outer peripheral layer is changed. The nonaqueous electrolyte secondary battery according to the present embodiment has the same configuration as that shown in FIG. 1 and can be manufactured in the same manner as the battery A in the embodiment, and differs in the following points.
【0049】負極1を作成するために、負極活物質担持
体としてのピッチコークス87重量部及び結着剤として
のPVDF13重量部を混合して第1の負極合剤のスラ
リーを得た。また、ピッチコークス85重量部及びPV
DF15重量部を混合して第2の負極合剤のスラリーを
得た。To prepare the negative electrode 1, 87 parts by weight of pitch coke as a negative electrode active material carrier and 13 parts by weight of PVDF as a binder were mixed to obtain a slurry of a first negative electrode mixture. Also, 85 parts by weight of pitch coke and PV
15 parts by weight of DF were mixed to obtain a slurry of the second negative electrode mixture.
【0050】負極集電体11の一方の面(図4(b)に
示す巻回電極体40にした際の負極外周層13に相当す
る側)に上記第1の負極合剤のスラリーを塗布した。そ
して、他方の面(巻回電極体40における負極内周層1
2に相当する側)に上記第2の負極合剤のスラリーを塗
布した。続いて実施形態と同様の工程をへて帯状の負極
1を得た。負極集電体11の両面において、両層の厚さ
t13とt12とは等しく80μmであった。また、この負
極1の幅は41.55mm、長さLは270mmであっ
た。The slurry of the first negative electrode mixture is applied to one surface of the negative electrode current collector 11 (the side corresponding to the negative electrode outer peripheral layer 13 in the case of the wound electrode body 40 shown in FIG. 4B). did. Then, the other surface (the negative electrode inner peripheral layer 1 in the wound electrode body 40)
2) was coated with the slurry of the second negative electrode mixture. Subsequently, a strip-shaped negative electrode 1 was obtained through the same steps as in the embodiment. In both sides of the negative electrode current collector 11 were equally 80μm and the thickness t 13 and t 12 of both layers. The width of the negative electrode 1 was 41.55 mm and the length L was 270 mm.
【0051】次に、正極2を実施形態と同様にして得
て、その正極集電体21の両面において、両層の厚さt
23とt22とは等しく80μmであった。また、この正極
2の幅は40.55mm、長さLは230mmであっ
た。上記負極1の外周層13側及び内周層12側におけ
る負極活物質担持体としてのピッチコークスの含有率
は、第1及び第2の負極合剤におけるピッチコークスの
混合比(配合比)が上述の通りであるから、夫々87重
量%及び85重量%である。Next, a positive electrode 2 is obtained in the same manner as in the embodiment, and the thickness t of both layers is formed on both surfaces of the positive electrode current collector 21.
23 and the t 22 was equally 80 [mu] m. The width of the positive electrode 2 was 40.55 mm, and the length L was 230 mm. The content ratio of the pitch coke as the negative electrode active material carrier on the outer peripheral layer 13 side and the inner peripheral layer 12 side of the negative electrode 1 is determined by the mixing ratio (mixing ratio) of the pitch coke in the first and second negative electrode mixtures. Therefore, they are 87% by weight and 85% by weight, respectively.
【0052】次に、上述の負極1及び正極2を図2
(a)に示すような順序で第1及び第2のセパレータ3
a、3bとともに積層して積層体を得てから、この積層
体から実施形態と同様にして巻回電極体40を得た。こ
の場合、両電極において内周層と外周層との厚さは夫々
等しいから、巻回電極体40の構造は、図4(b)に示
すものと実質的に同じである。上記巻回電極体40によ
って実施形態と同様にして得られた円筒型非水電解質二
次電池を、便宜上、電池B′とする。Next, the above-mentioned negative electrode 1 and positive electrode 2 are shown in FIG.
The first and second separators 3 in the order shown in FIG.
a and 3b were laminated to obtain a laminate, and a wound electrode body 40 was obtained from this laminate in the same manner as in the embodiment. In this case, since the thicknesses of the inner layer and the outer layer are the same in both electrodes, the structure of the wound electrode body 40 is substantially the same as that shown in FIG. 4B. The cylindrical non-aqueous electrolyte secondary battery obtained in the same manner as in the embodiment using the wound electrode body 40 is referred to as a battery B ′ for convenience.
【0053】また、上記第1及び第2の負極合剤におけ
るピッチコークスの配合比を変えることによって、負極
外周層13と負極内周層12とにおけるピッチコークス
の含有率を下記の表3に示すように3通りに変えた負極
1を用いた以外は、電池B′と同様にして得られた非水
電解質二次電池を、夫々電池C′、D′、E′とする。By changing the mixing ratio of pitch coke in the first and second negative electrode mixtures, the content of pitch coke in the negative electrode outer peripheral layer 13 and the negative electrode inner peripheral layer 12 is shown in Table 3 below. The non-aqueous electrolyte secondary batteries obtained in the same manner as the battery B 'except that the negative electrode 1 was changed in three ways as described above are referred to as batteries C', D ', and E', respectively.
【0054】また、上述の電池B′〜E′と同様にピッ
チコークスの含有率を4通りに変えるとともに負極外周
層13と負極内周層12との厚さを100μm及び80
μmにした以外は、電池B′と同様にして得られた非水
電解質二次電池を、下記の表3に示すように、夫々電池
G′、H′、I′、J′とする。この場合の電極巻回体
の構造は、図3(a)に示すものと実質的に同じであ
る。Similarly to the above-mentioned batteries B 'to E', the content of the pitch coke was changed in four ways, and the thickness of the negative electrode outer peripheral layer 13 and the negative electrode inner peripheral layer 12 was set to 100 μm and 80 μm.
The non-aqueous electrolyte secondary batteries obtained in the same manner as the battery B 'except that the thickness was set to μm are referred to as batteries G', H ', I', and J ', respectively, as shown in Table 3 below. The structure of the wound electrode body in this case is substantially the same as that shown in FIG.
【0055】比較形態2下記の表3に示すように、負極
外周層13と負極内周層12とにおけるピッチコークス
の含有率を等しく(85重量%)し、各々の厚さを電池
B′、電池G′と同様にした以外は、電池B′と同様に
して得られた非水電解質二次電池を比較形態として夫々
電池A′、F′とする。電池A′は従来と同様の構成で
ある。Comparative Example 2 As shown in Table 3 below, the content of pitch coke in the outer peripheral layer 13 of the negative electrode and the inner peripheral layer 12 of the negative electrode were made equal (85% by weight), and the respective thicknesses were changed to the batteries B ', The non-aqueous electrolyte secondary batteries obtained in the same manner as the battery B 'except for the battery G' are referred to as batteries A 'and F', respectively, as comparative examples. Battery A 'has the same configuration as the conventional one.
【0056】[0056]
【表3】 [Table 3]
【0057】上記10種類の電池について、夫々460
mAの電流で上限電圧4.1Vとして2時間充電し、続
いて18Ωで、放電終止電圧2.75Vまで放電させる
充放電サイクルを行い容量保持率を調査した。第1回目
の放電容量、第200回目の放電容量及びこれらの値か
ら求めた容量保持率を表4に夫々示す。For each of the above 10 types of batteries, 460
The battery was charged at a current of mA at an upper limit voltage of 4.1 V for 2 hours, followed by a charge / discharge cycle of discharging at 18Ω to a discharge end voltage of 2.75 V, and the capacity retention was examined. Table 4 shows the first discharge capacity, the 200th discharge capacity, and the capacity retention obtained from these values.
【0058】[0058]
【表4】 [Table 4]
【0059】上記表4に示すように電池B′、C′、
D′、H′、I′は容量保持率が85%以上あり、良好
な結果を示している。また、従来と同様の構成である比
較形態2の電池A′は最も低い容量保持率を示してい
る。電池F′はその負極外周層13の厚さが負極内周層
12よりも厚いから電池A′よりも高い容量保持率を示
すと考えられる。As shown in Table 4 above, the batteries B ', C',
D ', H', and I 'have a capacity retention of 85% or more, indicating good results. The battery A 'of Comparative Example 2 having the same configuration as the conventional one has the lowest capacity retention. It is considered that the battery F ′ exhibits a higher capacity retention than the battery A ′ because the thickness of the negative electrode outer peripheral layer 13 is thicker than the negative electrode inner peripheral layer 12.
【0060】上述の結果より、負極内周層12と負極外
周層13とにおける負極活物質担持体の含有率を外周層
13においてより高くすることによって、外周層13に
おける活物質量を内周層12よりも多くすることができ
るから、実施形態と同様の効果が得られる。なお、正極
2の外周層23における正極活物質の含有率を内周層2
2よりも高くすることによっても、同様の効果が得られ
る。また、両電極において外周層の活物質又は活物質担
持体の含有率を内周層よりも高くすることによっても、
同様の効果が得られる。From the above results, by increasing the content of the negative electrode active material carrier in the negative electrode inner peripheral layer 12 and the negative electrode outer layer 13 in the outer layer 13, the amount of active material in the outer layer 13 was reduced. Since the number can be set to more than 12, the same effect as that of the embodiment can be obtained. The content ratio of the positive electrode active material in the outer peripheral layer 23 of the positive electrode 2 was
The same effect can be obtained by setting it higher than 2. Also, by increasing the content of the active material or active material carrier in the outer layer in both electrodes than in the inner layer,
Similar effects can be obtained.
【0061】また、上述の結果は、電極の内周層と外周
層とにおける活物質又は活物質担持体の含有率比(Xa
/Xb )に関してある好ましい範囲があることを示唆し
ている。本発明者らのさらなる研究によれば、電極にお
ける外周層の活物質又は活物質担持体の含有率(Xa )
とこの電極における内周層の活物質又は活物質担持体の
含有率(Xb )との比(Xa /Xb )の好ましい範囲
は、 (L+40ta )/(L−40tb ) ≦(Xa /Xb ) ≦(L+120ta )/(L−120tb ) (7) である、ここでLは電極の長さ(mm)、ta は電極の
外周層の厚さ(mm)及びtb は同じ電極の内周層の厚
さ(mm)である。The above results indicate that the content ratio (X a ) of the active material or the active material carrier in the inner layer and the outer layer of the electrode.
/ X b ) suggests that there is some preferred range. According to a further study by the present inventors, the content (X a ) of the active material or the active material carrier in the outer peripheral layer in the electrode is determined.
A preferable range of the ratio of the content of active material or active material carrying member of the inner circumferential layer (X b) (X a / X b) is in the electrode, (L + 40t a) / (L-40t b) ≦ ( X is a / X b) ≦ (L + 120t a) / (L-120t b) (7), where L is the electrode length (mm), t a is the thickness of the peripheral layer of the electrode (mm) and t b is the thickness of the inner circumferential layer of the same electrode (mm).
【0062】また、Xa /Xb のより好ましい範囲は、 (L+40ta )/(L−40tb ) ≦(Xa /Xb ) ≦(L+80ta )/(L−80tb ) (8) である。なお、上記電極は負極、正極のいずれであって
もよい。A more preferable range of X a / X b is (L + 40 t a ) / (L−40 t b ) ≦ (X a / X b ) ≦ (L + 80 t a ) / (L−80 t b ) (8) It is. The electrode may be a negative electrode or a positive electrode.
【0063】上記式(7)及び(8)から上記表3及び
表4における結果を考察すると、電極の外周層と内周層
とにおける活物質又は活物質担持体の含有率比(Xa /
Xb )が、少なくとも式(7)を満足すれば電池の容量
保持率は85%以上となることがわかり、Xa /Xb が
式(8)をさらに満足すれば容量保持率はさらに上昇す
ることがわかる。以上のことからXa /Xb が少なくと
も式(7)を満足するように、巻回電極体において電極
の外周層と内周層とにおける活物質又は活物質担持体の
含有率比を決定することによって容量保持率のよい二次
電池を得ることができる。Considering the results in Tables 3 and 4 from the above formulas (7) and (8), the content ratio of the active material or the active material carrier (X a /
X b) is at least to satisfy the equation (7) capacity retention of the battery was found to be 85% or more, X a / X b is further increased capacity retention if further satisfies equation (8) You can see that From the above, the content ratio of the active material or the active material carrier in the outer layer and the inner layer of the electrode in the wound electrode body is determined so that X a / X b satisfies at least the expression (7). Thereby, a secondary battery having a good capacity retention can be obtained.
【0064】なお、本発明による非水電解質二次電池
は、渦巻状の巻回電極体を備える非水電解質二次電池で
あれば円筒型以外の形状であってよく、角筒型などでも
よい。The non-aqueous electrolyte secondary battery according to the present invention may have a shape other than a cylindrical shape, or may be a prismatic shape, as long as it is a non-aqueous electrolyte secondary battery having a spirally wound electrode body. .
【0065】[0065]
【発明の効果】本発明によれば、非水電解質二次電池の
巻回電極体において少なくともいずれか一方の電極の外
周層における活物質量をこの電極の内周層よりも多くす
ることによって、この電極の外周層における活物質の充
放電反応に関する負荷をこの電極の内周層と同程度にで
きるから、充放電の繰り返しによる活物質の劣化及び電
極表面における活物質の異常析出等を防止できる。従っ
て、非水電解質二次電池における充放電サイクルに伴う
電池容量の低下を防ぐことができる。しかも、充放電の
繰り返しによって負極から脱離するリチウムのデンドラ
イト発生が抑制されかつ充放電に伴って負極が膨張して
も負極が第1及び第2のセパレータを越えて正極と接触
することが抑制されて、正極と負極との内部短絡が防止
される。この結果、充放電サイクル特性及び重負荷特性
に優れ、信頼性の高い非水電解質二次電池を提供できる
ようになり、その工業的及び商業的価値は大である。According to the present invention, in the wound electrode body of the non-aqueous electrolyte secondary battery, the amount of active material in the outer layer of at least one of the electrodes is made larger than that of the inner layer of the electrode. Since the load relating to the charge and discharge reaction of the active material in the outer layer of the electrode can be made comparable to that of the inner layer of the electrode, deterioration of the active material due to repeated charge and discharge and abnormal deposition of the active material on the electrode surface can be prevented. . Therefore, it is possible to prevent a decrease in battery capacity due to a charge / discharge cycle in the nonaqueous electrolyte secondary battery. Moreover, charging and discharging
Lithium dendra detached from anode by repetition
And the negative electrode expands with charge and discharge.
Negative electrode contacts the positive electrode beyond the first and second separators
To prevent internal short circuit between the positive and negative electrodes
Is done. As a result, a highly reliable nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and heavy load characteristics can be provided, and its industrial and commercial value is great.
【図1】本発明の実施形態による円筒型非水電解質二次
電池の概略的な縦断面図である。FIG. 1 is a schematic longitudinal sectional view of a cylindrical non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
【図2】負極、正極、第1及び第2のセパレータを積層
して得られる積層体の側面図であり、(a)は実施形態
における積層体、(b)は実施形態の変形形態における
積層体、(c)は実施形態の別の変形形態における積層
体を夫々示している。FIGS. 2A and 2B are side views of a laminate obtained by laminating a negative electrode, a positive electrode, and first and second separators, wherein FIG. 2A is a laminate in the embodiment, and FIG. (C) shows a laminate in another variant of the embodiment.
【図3】図2に示す積層体を渦巻状に巻回して得られる
巻回電極体の中心付近の一部横断面図であり、(a)〜
(c)は夫々図2(a)〜(c)に対応している。3 is a partial cross-sectional view near the center of a spirally wound electrode body obtained by spirally winding the laminate shown in FIG. 2;
(C) corresponds to FIGS. 2 (a) to (c), respectively.
【図4】(a)は巻回電極体の斜視図、(b)は従来例
における巻回電極体の中心付近の一部横断面図である。FIG. 4A is a perspective view of a spirally wound electrode body, and FIG. 4B is a partial cross-sectional view near the center of the spirally wound electrode body in a conventional example.
1…負極(第1又は第2の電極)、2…正極(第2又は
第1の電極)、3a…第1のセパレータ、3b…第2の
セパレータ、10、10a、10b、40…巻回電極
体、11…負極集電体、12…負極内周層、13…負極
外周層、t12…負極内周層の厚さ、t13…負極外周層の
厚さ、21…正極集電体、22…正極内周層、23…正
極外周層、t22…正極内周層の厚さ、t23…正極外周層
の厚さDESCRIPTION OF SYMBOLS 1 ... Negative electrode (1st or 2nd electrode), 2 ... Positive electrode (2nd or 1st electrode), 3a ... 1st separator, 3b ... 2nd separator, 10, 10a, 10b, 40 ... winding electrode body 11 ... anode current collector, 12 ... Fukyokunai circumferential layer, 13 ... anode peripheral layer, t 12 ... Fukyokunai thickness of circumferential layer, t 13 ... anode peripheral layer thickness of, 21 ... cathode current collector , 22 ... positive electrode peripheral layer, 23 ... cathode peripheral layer, t 22 ... positive electrode of the circumferential layer thickness, the thickness of t 23 ... cathode peripheral layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大矢 邦泰 福島県郡山市日和田町高倉字下杉下1− 1 株式会社ソニー・エナジー・テック 郡山工場内 (56)参考文献 特開 平4−12471(JP,A) 特開 平2−56871(JP,A) 特開 平2−51875(JP,A) 特開 平1−279578(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/14 - 2/18 H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Kuniyasu Oya 1-1, Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture 1 Sony Energy Tech Koriyama Plant (56) References JP-A-4-12471 ( JP, A) JP-A-2-56871 (JP, A) JP-A-2-51875 (JP, A) JP-A-1-279578 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) H01M 2/14-2/18 H01M 4/02-4/04 H01M 4/58 H01M 10/40
Claims (2)
第1及び第2の電極活物質を含む合剤層が帯状の金属箔
から成る集電体の両面に形成されている帯状の第1及び
第2の電極と、帯状の第1及び第2のセパレータとが交
互に積層された状態で渦巻状に巻回されることによっ
て、上記第1の電極の上記合剤層である外周層と上記第
2の電極の上記合剤層である内周層との間に上記第1の
セパレータが介在し、上記第1の電極の上記合剤層であ
る内周層と上記第2の電極の上記合剤層である外周層と
の間に上記第2のセパレータが介在している巻回電極体
を具備する非水電解質二次電池において、リチウムのドープと脱ドープとが可能な活物質担持体と
して炭素材が用いられている負極と、遷移金属とリチウ
ムとの複合化合物が上記電極活物質として用いられてい
る正極とが、上記第1及び第2の電極になっており、 上記負極の高さが上記正極の高さよりも高くかつ上記第
1及び第2のセパレータの高さよりも低く、 上記第1又は第2の電極の上記外周層と上記第2又は第
1の電極の上記内周層との間における各充放電反応が上
記第1の電極活物質と上記第2の電極活物質との間でほ
ぼ均一に行われるように、少なくとも上記第1又は第2
の電極のいずれか一方の電極の上記外周層の厚さがこの
電極の上記内周層の厚さよりも厚いことによって、上記
外周層における活物質量が上記内周層における活物質量
よりも多いことを特徴とする非水電解質二次電池。1. A strip-shaped first collector in which a mixture layer containing first and second electrode active materials capable of doping and undoping lithium is formed on both surfaces of a current collector made of a strip-shaped metal foil. And the second electrode and the strip-shaped first and second separators are spirally wound in a state of being alternately stacked, so that the outer layer, which is the mixture layer of the first electrode, The first separator is interposed between the second electrode and the inner layer that is the mixture layer, and the inner layer that is the mixture layer of the first electrode and the inner layer that is the second electrode. In a non-aqueous electrolyte secondary battery including a wound electrode body in which the second separator is interposed between the outer layer and the mixture layer, an active material supporting lithium can be doped and de-doped. Body and
Negative electrode using carbon material, and transition metal and lithium
Complex compound is used as the electrode active material.
Positive electrode is the first and second electrodes, the height of the negative electrode is higher than the height of the positive electrode and the
Each charge and discharge reaction between the outer peripheral layer of the first or second electrode and the inner peripheral layer of the second or first electrode is lower than the height of the first and second separators . At least the first or second electrode active material so as to be performed substantially uniformly between the first electrode active material and the second electrode active material.
The thickness of the outer layer of any one of the electrodes is larger than the thickness of the inner layer of the electrode, so that the amount of active material in the outer layer is larger than the amount of active material in the inner layer. Non-aqueous electrolyte secondary battery characterized by the above-mentioned.
さt12及び上記外周層の厚さt13並びに上記第2の電極
における上記内周層の厚さt22及び上記外周層の厚さt
23が、上記第1及び第2の電極並びに上記第1及び第2
のセパレータの厚さの総和Tと、 Δt1 ={(t13−t12)/t12}×100 Δt2 ={(t23一t22)/t22}×100 Δt =Δt1 +Δt2 2≦Δt≦0.055T の関係にあることを特徴とする請求項1記載の非水電解
質二次電池。Wherein the first thickness of the thickness of the inner circumferential layer of the electrode t 12 and the outer peripheral layer t 13 and the thickness of the inner peripheral layer of the second electrode t 22 and the peripheral layer Thickness t
23 , the first and second electrodes and the first and second electrodes
The sum T of the thickness of the separator, Δt 1 = {(t 13 -t 12) / t 12} × 100 Δt 2 = {(t 23 one t 22) / t 22} × 100 Δt = Δt 1 + Δt 2 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a relationship of 2 ≦ Δt ≦ 0.055T is satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29009899A JP3246553B2 (en) | 1999-10-12 | 1999-10-12 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29009899A JP3246553B2 (en) | 1999-10-12 | 1999-10-12 | Non-aqueous electrolyte secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02112261A Division JP3131976B2 (en) | 1990-04-28 | 1990-04-28 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000082497A JP2000082497A (en) | 2000-03-21 |
JP3246553B2 true JP3246553B2 (en) | 2002-01-15 |
Family
ID=17751776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29009899A Expired - Lifetime JP3246553B2 (en) | 1999-10-12 | 1999-10-12 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3246553B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002231312A (en) * | 2001-01-29 | 2002-08-16 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
US7604895B2 (en) * | 2004-03-29 | 2009-10-20 | Lg Chem, Ltd. | Electrochemical cell with two types of separators |
JP2007109512A (en) * | 2005-10-13 | 2007-04-26 | Nec Tokin Corp | Non-aqueous electrolytic liquid secondary battery |
CN107004783B (en) * | 2014-12-08 | 2019-11-12 | 株式会社Lg化学 | Secondary cell with improved output characteristics |
-
1999
- 1999-10-12 JP JP29009899A patent/JP3246553B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000082497A (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6800397B2 (en) | Non-aqueous electrolyte secondary battery and process for the preparation thereof | |
JP3932653B2 (en) | Non-aqueous electrolyte secondary battery | |
KR102209830B1 (en) | Lithium secondary battery | |
JPH02265167A (en) | Nonaqueous electrolyte secondary battery | |
JP3536391B2 (en) | Wound electrode element body, method of manufacturing the same, and method of manufacturing battery using wound electrode element body | |
JP2001143762A (en) | Cylindrical lithium ion battery | |
JP3131976B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3589021B2 (en) | Lithium ion secondary battery | |
JP3160920B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2001338639A (en) | Non-aqueous electrolyte battery | |
US20140370379A1 (en) | Secondary battery and manufacturing method thereof | |
JPH09266012A (en) | Nonaqueous electrolyte secondary battery and battery assembly | |
US11936030B2 (en) | Fabrication process to make electrodes by rolling | |
JP3182786B2 (en) | Battery | |
JPH0547419A (en) | Battery | |
JP3246553B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3371908B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3444302B2 (en) | Non-aqueous electrolyte secondary battery | |
US20190067729A1 (en) | Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime | |
JP3013392B2 (en) | Spiral type non-aqueous electrolyte battery | |
JP3501365B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2000082495A (en) | Solid electrolyte battery | |
JP2503541Y2 (en) | Non-aqueous electrolyte secondary battery | |
JP2506572Y2 (en) | Lithium ion secondary battery | |
JP3196223B2 (en) | Battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081102 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 9 |