[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0565540A - Manufacture of high strength bolt - Google Patents

Manufacture of high strength bolt

Info

Publication number
JPH0565540A
JPH0565540A JP23040391A JP23040391A JPH0565540A JP H0565540 A JPH0565540 A JP H0565540A JP 23040391 A JP23040391 A JP 23040391A JP 23040391 A JP23040391 A JP 23040391A JP H0565540 A JPH0565540 A JP H0565540A
Authority
JP
Japan
Prior art keywords
bolt
strength
delayed fracture
bainite
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23040391A
Other languages
Japanese (ja)
Inventor
Takashi Kumamoto
本 隆 熊
Yoshio Okada
田 義 夫 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23040391A priority Critical patent/JPH0565540A/en
Publication of JPH0565540A publication Critical patent/JPH0565540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To manufacture a high strength bolt having excellent delayed fracture resistance and fatigue strength as well as excellent in the process of manufacturing and heat profitability with tempering treatment after hardening obviated. CONSTITUTION:Steel stock having a compsn. constituted of, by weight, one or two kinds among 0.04 to 0.15% C, 0.05 to 1.5% Si, 0.5 to 1.5% Mn, 0.1 to 1.5% Cr, 0.0003 to 0.005% B, 0.01 to 0.04% Ti and 0.01 to 0.06% sol.Al and the balance Fe with impurities is subjected to cold forming into the shape of a bolt. Then, this bolt is heated to the temp. range of the Ac3 point or above, is htereafter cooled at least to <=400 deg.C at the cooling rate of >=1 deg.C/sec and is hardened to form its structure into a one essentially consisting of martensite or bainite or a mixed one of martensite and bainite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種機械構造物の締
結部品として用いられるボルトを製造するのに利用され
るボルトの製造方法に関し、とくに、100Kgf/m
を越える大きな引張強度を有し、かつ、耐遅れ破壊
性に優れ、しかも良好な疲労強度を有する高強度ボルト
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bolt manufacturing method used for manufacturing bolts used as fastening parts for various mechanical structures, and more particularly to 100 Kgf / m.
The present invention relates to a method for producing a high-strength bolt having a large tensile strength exceeding m 2 , excellent delayed fracture resistance, and good fatigue strength.

【0002】[0002]

【従来の技術】従来、引張強度が90Kgf/mm
上の高強度ボルトの製造においては、JIS規格S45
C等の炭素鋼、あるいはMnB鋼(Fe−0.35%C
−0.8%Mn−0.002%B)等を用い、ボルト形
状に成形した後焼入れ焼もどしの熱処理を施して製造さ
れるのが普通である。
2. Description of the Related Art Conventionally, JIS standard S45 has been used to manufacture high strength bolts having a tensile strength of 90 kgf / mm 2 or more.
Carbon steel such as C, or MnB steel (Fe-0.35% C
(-0.8% Mn-0.002% B) or the like, it is usually manufactured by forming into a bolt shape and then subjecting it to heat treatment such as quenching and tempering.

【0003】また、引張強度が120Kgf/mm
上の高強度ボルト、例えば、エンジン・ヘッドボルトに
おいては、上記炭素鋼やMnB鋼では、高強度を得るた
めに焼入れ後の焼もどし温度を下げる必要があり、これ
が一般に知られている焼もどし脆性を生じる温度域とな
るので、靱性の低下や遅れ破壊感受性の増大などといっ
た問題があるため、高い焼もどし温度をとることのでき
るJIS規格 SCM440等の合金鋼を用いることが
一般に行われている。
In the case of high-strength bolts having a tensile strength of 120 Kgf / mm 2 or more, such as engine head bolts, it is necessary to lower the tempering temperature after quenching in order to obtain high strength with the above carbon steel and MnB steel. Since this is a generally known temperature range that causes temper brittleness, there are problems such as a decrease in toughness and an increase in delayed fracture susceptibility. Therefore, JIS standard SCM440, etc., which can take a high tempering temperature It is common practice to use alloy steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな高強度ボルトの製造工程において、SCM440等
の合金鋼を用いる場合に、この合金鋼はMoを含有して
いるので、コストが高く、また鋼素材の硬さが高く変形
抵抗が大きいため、冷間加工前に長時間の球状化焼鈍を
施すことが必要であり、さらに高強度・高靱性を得るた
めに焼入れ後に必ず焼もどし処理をしなければならず、
多大なエネルギーを消費するといった原価の上昇をもた
らす種々の問題点があった。
However, when an alloy steel such as SCM440 is used in the manufacturing process of such a high-strength bolt, the alloy steel contains Mo, so that the cost is high and the steel cost is high. Since the hardness of the material is high and the deformation resistance is large, it is necessary to perform spheroidizing annealing for a long time before cold working, and in order to obtain high strength and high toughness, be sure to perform tempering treatment after quenching. Must
There have been various problems that increase the cost such as consuming a lot of energy.

【0005】そこで、このような問題点を低減するため
に、例えば、冷間での加工性を向上させたり、焼入れ後
の焼もどし処理を省略した上で高靱性を得るためには、
炭素含有量を低減すれば良いものの、その場合、鋼素材
の焼入れ性が著しく悪化するという問題点があり、これ
らの問題点を解決することが課題となっていた。
Therefore, in order to reduce such problems, for example, in order to improve cold workability or omit tempering treatment after quenching and obtain high toughness,
Although it suffices to reduce the carbon content, in that case, there is a problem that the hardenability of the steel material remarkably deteriorates, and it has been a problem to solve these problems.

【0006】[0006]

【発明の目的】この発明は、上述したような従来の課題
に鑑みてなされたもので、ボルトの製造に用いる鋼素材
の組成を低炭素化し、焼入れ性を補うためにBを添加す
ることによって、鋼素材の良好な冷間加工性を確保する
とともに、焼入れ後の焼もどし処理を省略したうえで、
優れた耐遅れ破壊性および疲労強度を有し、製造工程に
おいてエネルギー消費の少ない経済性のよい高強度ボル
トの製造方法を提供することを目的としている。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is to reduce the composition of the steel material used for the production of bolts by adding B to supplement the hardenability. , While ensuring good cold workability of the steel material and omitting the tempering treatment after quenching,
An object of the present invention is to provide a method for manufacturing a high-strength bolt which has excellent delayed fracture resistance and fatigue strength, consumes less energy in the manufacturing process, and is economical.

【0007】[0007]

【課題を解決するための手段】本発明に係わる高強度ボ
ルトの製造方法は、重量%で、C:0.04〜0.15
%、Si:0.05〜1.5%、Mn:0.5〜1.5
%、Cr:0.1〜1.5%、B:0.0003〜0.
005%、Ti:0.01〜0.04%およびSol.
Al:0.01〜0.06%のうちの1種または2種、
残部Feおよび不純物からなる組成の鋼素材を用いてボ
ルト形状に冷間加工成形し、次いでA 点以上のオー
ステナイト温度域に加熱した後、1°C/sec以上の
冷却速度で少なくとも400°C以下の温度まで冷却し
て焼入れを行い、組織の主体をマルテンサイトまたはベ
イナイトあるいはマルテンサイトとベイナイトの混在組
織として焼入れ後の焼もどし処理を省略する構成とした
ことを特徴としており、このような耐遅れ破壊性および
疲労強度に優れた高強度ボルトの製造方法に係わる発明
の構成をもって前述した従来の課題を解決するための手
段としている。
The method for producing a high strength bolt according to the present invention is, in weight%, C: 0.04 to 0.15.
%, Si: 0.05 to 1.5%, Mn: 0.5 to 1.5
%, Cr: 0.1 to 1.5%, B: 0.0003 to 0.
005%, Ti: 0.01 to 0.04% and Sol.
Al: one or two of 0.01 to 0.06%,
And cold working shaped bolt shape by using a steel material having a composition the balance being Fe and impurities, and then after heating to the austenite temperature region of more than three points A C, at least 400 ° in 1 ° C / sec or more cooling rate It is characterized in that cooling is performed to a temperature of C or lower and quenching is performed so that the main structure is martensite or bainite or a mixed structure of martensite and bainite and the tempering process after quenching is omitted. The structure of the invention relating to the method for manufacturing a high-strength bolt having excellent delayed fracture resistance and fatigue strength is used as means for solving the above-mentioned conventional problems.

【0008】次に、この発明に係わる高強度ボルトの製
造方法に用いる鋼素材の合金元素の含有量の限定理由に
ついて説明する。
Next, the reasons for limiting the content of alloying elements in the steel material used in the method for manufacturing a high-strength bolt according to the present invention will be described.

【0009】C:0.04〜0.15% Cは強度を確保するのに必要な元素であり、とくに焼入
れままの状態で十分な強度を維持するために、少なくと
も0.04%含有させる必要がある。しかし、0.15
%を超えて添加すると冷間加工性を阻害するとともに、
焼入れままの状態では強度が高くなりすぎ、靱性が大幅
に低下すると共に、耐遅れ破壊性が劣化するようになる
のでこれらを回避するために焼もどしが必要となること
から、C含有量を0.04〜0.15%とした。
C: 0.04 to 0.15% C is an element necessary to secure the strength, and it is necessary to contain at least 0.04% in order to maintain sufficient strength especially in the as-quenched state. There is. But 0.15
If added in excess of%, cold workability is impaired and
In the as-quenched state, the strength becomes too high, the toughness decreases significantly, and the delayed fracture resistance deteriorates. Therefore, tempering is necessary to avoid these, so the C content should be 0. It was set to 0.04 to 0.15%.

【0010】Si:0.05〜1.5% Siは鋼の脱酸剤として必要な元素であり、少なくとも
0.05%含有させる必要がある。しかし、Si含有量
が1.5%を超えると、靱性の劣化が著しくなり、ま
た、遅れ破壊感受性を高めることになるので、Si含有
量を0.05〜1.5%とした。
Si: 0.05 to 1.5% Si is an element necessary as a deoxidizing agent for steel and must be contained at least 0.05%. However, if the Si content exceeds 1.5%, the toughness is significantly deteriorated and the delayed fracture susceptibility is increased, so the Si content is set to 0.05 to 1.5%.

【0011】Mn:0.5〜1.5% Mnは焼入れ性の改善に有効な元素であるが、0.5%
未満ではその効果が十分でなく、1.5%を超えて添加
すると、冷間加工製を阻害し、また、熱処理時にPの粒
界偏析を助長して遅れ破壊感受性も高くなることから、
Mn含有量は0.5〜1.5%とした。
Mn: 0.5-1.5% Mn is an element effective for improving hardenability, but 0.5%
If less than 1.5%, the effect is not sufficient, and if added in excess of 1.5%, cold workability is hindered, and further, grain boundary segregation of P is promoted during heat treatment to increase delayed fracture susceptibility,
The Mn content was 0.5 to 1.5%.

【0012】Cr:0.1〜1.5% Crは鋼の焼入れ性および強度を増大させるのに有用な
元素であるが、0.1%未満ではその効果が得られず、
一方、1.5%を超えて含有させると、靱性の劣化およ
び焼き割れ感受性の増大をもたらすばかりでなく、経済
性を損なうことから、Cr含有量を0.1〜1.5%と
定めた。
Cr: 0.1 to 1.5% Cr is an element useful for increasing the hardenability and strength of steel, but if it is less than 0.1%, its effect cannot be obtained.
On the other hand, if the content exceeds 1.5%, not only the toughness deteriorates and the susceptibility to quenching cracks increases, but also the economical efficiency is impaired. Therefore, the Cr content is set to 0.1 to 1.5%. ..

【0013】B:0.0003〜0.005% Bは微量の添加で鋼の焼入れ性を著しく向上させる作用
があるが、0.0003%未満では焼入れ性改善の効果
が十分でなく、0.005%を超えて添加してもこの添
加量の増加に見合った焼入れ性の向上効果が期待できな
いばかりでなく、靱性を劣化させるといった問題が生じ
るため、B含有量を0.0003〜0.005%とし
た。
B: 0.0003 to 0.005% B has the effect of remarkably improving the hardenability of steel with the addition of a trace amount, but if it is less than 0.0003%, the effect of improving the hardenability is not sufficient, Even if added over 005%, not only the effect of improving the hardenability corresponding to the increase of the added amount cannot be expected, but also the problem of degrading the toughness occurs, so the B content is 0.0003 to 0.005. %.

【0014】Ti:0.01〜0.04%およびSo
l.Al:0.01〜0.06%のうちの1種または2
種 Ti,Sol.Alは添加したBを有効に作用させるた
めに鋼中のN,Oを化合物として固定させるのに有効な
元素であるが、各々の下限値未満ではその効果が十分で
なく、一方、含有量が過剰になると材料の清浄度を悪化
させることから、これらの含有量をTi:0.01〜
0.04%およびSol.Al:0.01〜0.06%
のうちの1種または2種とした。
Ti: 0.01 to 0.04% and So
l. Al: 0.01 to 0.06%, or 1 or 2
Species Ti, Sol. Al is an element effective in fixing N and O in the steel as a compound in order to effectively act the added B, but if the content is less than the lower limit of each, the effect is not sufficient, while the content is If the content is excessive, the cleanliness of the material is deteriorated.
0.04% and Sol. Al: 0.01 to 0.06%
One or two of them.

【0015】そのほか、Pは熱処理時に粒界に偏析し、
靱性や耐遅れ破壊性を低下させる不純物元素であり、ま
た、冷間加工性を阻害する元素である。そして、とくに
耐遅れ破壊性の観点からは,0.01%以下に制限する
ことが望ましい。
In addition, P segregates at grain boundaries during heat treatment,
It is an impurity element that reduces toughness and delayed fracture resistance, and is an element that impairs cold workability. From the viewpoint of delayed fracture resistance, it is desirable to limit the content to 0.01% or less.

【0016】続いて、製造条件の限定理由について述べ
る。
Next, the reasons for limiting the manufacturing conditions will be described.

【0017】従来、引張り強度が100Kgf/mm
以上の高強度ボルトは、ボルト形状に成形したのち、A
C3点以上に加熱し、焼入れを行った後にAC1点以下
で焼もどしを行うことにうより製造されていた。
Conventionally, the tensile strength is 100 Kgf / mm 2.
The above high-strength bolts are molded into a bolt shape and then
Heated above C3 points had been Uyori produced by performing tempering in the following point C1 A after the quenching.

【0018】しかし、このような焼入れ焼もどしの熱処
理は、焼もどし時に鋼中のPの旧オーステナイト粒界へ
の偏析を促進し、靱性の低下とともに、耐遅れ破壊性を
劣化させる原因となっていた。
However, such heat treatment for quenching and tempering promotes segregation of P in the steel to the former austenite grain boundaries during tempering, which causes deterioration of toughness and delayed fracture resistance. It was

【0019】そこでこの発明では、ボルト形状に冷間加
工成形し、次いでボルト鋼素材の組織を完全にオーステ
ナイト化した後、すなわち、AC3点以上の温度域に加
熱した後、焼入れを行なうことにより、焼きもどしを施
すことなしに所望の強度および靱性を得ることができる
ようにし、焼もどしを省略することによって、粒界への
Pの偏析を抑制することが可能となり、耐遅れ破壊性を
向上させたものである。
Therefore, in the present invention, by cold working into a bolt shape and then completely austenitizing the structure of the bolt steel material, that is, after heating to a temperature range of AC 3 points or higher, quenching is performed. By allowing the desired strength and toughness to be obtained without tempering and omitting tempering, segregation of P at grain boundaries can be suppressed and delayed fracture resistance is improved. It was made.

【0020】また、上記焼入れ時の冷却速度は、1°C
/sec以上とする必要がある。これは、冷却速度が小
さいと組織がフェライト・パーライトもしくはベイナイ
トとフェライト・パーライトの混合組織となり、焼入れ
ままの状態で所望の強度を確保することが困難になるた
めである。
The cooling rate during the quenching is 1 ° C.
/ Sec or more is required. This is because if the cooling rate is low, the structure becomes ferrite / pearlite or a mixed structure of bainite and ferrite / pearlite, and it becomes difficult to secure the desired strength in the as-quenched state.

【0021】また、遅れ破壊性の観点からPが粒界に偏
析する400〜600°Cの温度域を急冷してこれを防
ぐ観点から、少なくとも400°C以下の温度まで冷却
する必要がある。
Further, from the viewpoint of delayed fracture property, it is necessary to cool the temperature range of 400 to 600 ° C. where P segregates at the grain boundaries by quenching to prevent this from cooling to at least 400 ° C. or less.

【0022】[0022]

【発明の作用】この発明に係わる高強度ボルトの製造方
法では、ボルトの製造に用いる鋼素材の組成を低炭素化
し、低炭素化による焼入れ性の低下を補うためにBを添
加することによって、鋼素材の良好な冷間加工性を確保
し、ボルト形状に冷間加工成形したのち、AC3点以上
のオーステナイト温度域に加熱し、1°C/sec以上
の冷却速度で少なくとも400°C以下の温度まで冷却
して焼入れを行い、組織の主体をマルテンサイトまたは
ベイナイトあるいはマルテンサイトとベイナイトの混在
組織とするようにしているので、焼入れ後の焼もどしを
省略したうえで優れた耐遅れ破壊性および疲労強度を有
し、製造工程においてエネルギー消費の少ない経済性の
よい高強度ボルトが製造されるようになる。
In the method for producing a high-strength bolt according to the present invention, the composition of the steel material used for producing the bolt is made to have a low carbon content, and B is added in order to compensate for the deterioration of the hardenability due to the low carbon content. After ensuring good cold workability of the steel material and cold forming into a bolt shape, it is heated to an austenite temperature range of AC 3 points or higher, and at least 400 ° C or lower at a cooling rate of 1 ° C / sec or higher. Since the main structure is martensite or bainite or a mixed structure of martensite and bainite, it is excellent in delayed fracture resistance while omitting tempering after quenching. Also, a high-strength bolt having fatigue strength and low energy consumption in the manufacturing process and having good economical efficiency can be manufactured.

【0023】[0023]

【実施例】次に、本発明の実施例を比較例とともに説明
する。
EXAMPLES Next, examples of the present invention will be described together with comparative examples.

【0024】MnB鋼であるSAE規格 10B35を
素材として従来法によりボルトを製造した比較例1およ
び比較例3と、合金鋼であるJIS規格 SCM440
を素材として従来法によりボルトを製造した比較例2お
よび比較例4と、本発明法によりボルトを製造した実施
例1および実施例2とについて比較試験を行なった結果
について説明する。
Comparative Examples 1 and 3 in which bolts were manufactured by a conventional method using SAE standard 10B35, which is MnB steel, and JIS standard SCM440, which is alloy steel.
The results of comparison tests of Comparative Examples 2 and 4 in which bolts are manufactured by the conventional method using the above as a raw material and Examples 1 and 2 in which bolts are manufactured by the method of the present invention will be described.

【0025】まず、表1に示す化学成分の各鋼素材を線
引き加工した後、ボルトヘッダー機にてボルトサイズ:
M10、首下長さ:70mm のフランジ付六角ボルト
に冷間加工成形し、次いで、ピッチ:1.25、ネジ部
長さ:30mmのネジ転造を施したボルトを実験に供し
た。
First, after drawing each steel material having the chemical composition shown in Table 1, a bolt size is measured by a bolt header machine:
M10, under-neck length: 70 mm, a flanged hexagonal bolt was cold-worked and formed, and then a thread-rolled bolt having a pitch of 1.25 and a thread length of 30 mm was subjected to an experiment.

【0026】熱処理は、同じく表1に示す条件で行い、
比較例1,2と本発明実施例3、および比較例3,4と
本発明実施例2が同じ強度レベルとなるように、すなわ
ち各々引張強度が125Kgf/mm、140Kgf
/mmとなるように行った。
The heat treatment is also performed under the conditions shown in Table 1,
Comparative Examples 1 and 2 and Inventive Example 3 and Comparative Examples 3 and 4 and Inventive Example 2 have the same strength level, that is, tensile strengths of 125 Kgf / mm 2 and 140 Kgf, respectively.
/ Mm < 2 >.

【0027】表2は、酸浸漬法による遅れ破壊性評価試
験を行った結果を示す。
Table 2 shows the results of the delayed fracture evaluation test by the acid immersion method.

【0028】この遅れ破壊性評価試験は、ボルトを治具
に取り付け、ナット回転角法にてボルトの降伏点まで応
力を付与したのち、0.1NのHC1に2分間浸積した
後、水洗、乾燥したものを常温に放置し、48時間後の
破損の有無で評価する方法を用いた。
In this delayed fracture resistance evaluation test, the bolt was attached to a jig, stress was applied to the yield point of the bolt by the nut rotation angle method, and then the specimen was immersed in 0.1N HC1 for 2 minutes and washed with water. A method was used in which the dried product was left at room temperature and evaluated for damage after 48 hours.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1および表2に示す結果から、本発明に
よるボルトは、焼入れ後の焼もどし処理を省略しても、
引張強度125Kgf/mm、140Kgf/mm
級の高強度が得られ、さらに焼もどし処理の省略による
Pの焼もどし時の旧オーステナイト粒界への偏析の防
止、および低C化やSi、Mn、P量の最適化による遅
れ破壊感受性の低減が可能となるため、従来鋼を用いた
比較例と比べて、いずれの強度レベルにおいても極めて
良好な耐遅れ破壊特性を有していることがわかる。
From the results shown in Tables 1 and 2, the bolts according to the present invention can be obtained by omitting the tempering treatment after quenching.
Tensile strength 125 Kgf / mm 2 , 140 Kgf / mm 2
-Grade high strength is obtained, and segregation to the former austenite grain boundaries during P tempering is prevented by omitting the tempering treatment, and delayed fracture susceptibility is improved by lowering C and optimizing the amounts of Si, Mn, and P. Since it can be reduced, it can be seen that compared with the comparative example using the conventional steel, it has extremely good delayed fracture resistance at any strength level.

【0032】次に、上記した比較例3,4および本発明
実施例の各ボルトを使い、ボルト単体で引張−引張の繰
り返し加重を負荷し、疲労試験を行った結果を図1に示
す。
Next, using the bolts of Comparative Examples 3 and 4 and the example of the present invention described above, a fatigue test was carried out by repeatedly applying tension-tension load with the bolt alone, and the results are shown in FIG.

【0033】図1より明らかなように、同じ引張強度レ
ベルで比較すると、本発明実施例2によるボルトの方が
比較例3,4によるボルトに比べて優れた疲労強度を有
することがわかる。
As is apparent from FIG. 1, when compared at the same tensile strength level, the bolt according to Example 2 of the present invention has superior fatigue strength to the bolts according to Comparative Examples 3 and 4.

【0034】この実験において、破損部位はネジ部であ
り、ネジの谷部分を疲労の起点としているが、本発明に
よるボルトは、低C化により繰り返し入力に対する切欠
き感受性が大幅に低くなっているので、ボルトのネジ底
部のように応力集中部が疲労の起点となる部材に対して
有効であることがわかる。
In this experiment, the damaged portion is the screw portion, and the root portion of the screw is used as the starting point of fatigue, but the bolt according to the present invention has a significantly reduced sensitivity to notches against repeated input due to the low C. Therefore, it can be seen that the stress concentration portion is effective for the member that causes the fatigue, such as the screw bottom portion of the bolt.

【0035】次に、焼入れ時の冷却速度の下限を見極め
るために、表1の本発明実施例1に示す鋼素材を用いた
ボルトを供試体とし、AC3点以上のオーステナイト温
度域から種々の速度で冷却したものの硬さの測定結果を
図2に示す。
Next, in order to determine the lower limit of the cooling rate at the time of quenching, the bolts using the steel materials shown in Example 1 of the present invention in Table 1 were used as specimens, and various bolts were selected from the austenite temperature range of AC 3 points or higher. The result of measuring the hardness of the product cooled at a speed is shown in FIG.

【0036】図2より明らかなように、冷却速度が1°
C/sec付近において硬さ−冷却速度の関係の変曲点
が認められる。これは、冷却速度がほぼ1°C/sec
よりも遅くなると組織がベイナイト単体からフェライト
+パーライトが混在した組織となるためであり、硬さの
低下とともに引張強度にも変曲点が認められた。
As is apparent from FIG. 2, the cooling rate is 1 °.
An inflection point of the relationship between hardness and cooling rate is recognized near C / sec. This is because the cooling rate is almost 1 ° C / sec.
This is because the structure becomes a structure in which ferrite + pearlite is mixed from the bainite simple substance at a later time than that, and an inflection point was recognized in the tensile strength as well as in the decrease in hardness.

【0037】従って、冷却速度が1°C/sec以上で
あれば、組織は耐遅れ破壊性および疲労強度に優れたマ
ルテンサイトまたはベイナイトあるいはそれらの混在組
織とすることが可能である。
Therefore, if the cooling rate is 1 ° C./sec or more, the structure can be martensite or bainite excellent in delayed fracture resistance and fatigue strength or a mixed structure thereof.

【0038】[0038]

【発明の効果】この発明に係わる高強度ボルトの製造方
法によれば、ボルトの製造に用いる鋼部材の組成とし
て、高価なMoを添加せず、低C化して冷間加工性を向
上させるとともに、Bを添加して焼入れ性を保証し、C
r,Mn,Si,Ti,Al等の量を最適化した鋼を選
択することによって、ボルトを製造するにあたっての鋼
素材の優れた冷間加工性を確保し、焼入れ後の焼もどし
処理の省略が可能となるため、材料費の低減、工程の短
縮、エネルギー消費量の低減、設備投資の軽減等の多大
な経済的効果をもたらし、かつまた優れた耐遅れ破壊性
および疲労強度を有する品質の優れた高強度ボルトを得
ることが出来るという著大なる効果がもたらされる。
According to the method for producing a high strength bolt according to the present invention, the composition of the steel member used for producing the bolt does not include expensive Mo and the carbon content is lowered to improve the cold workability. , B are added to ensure hardenability, and C
By selecting steel with optimized amounts of r, Mn, Si, Ti, Al, etc., we ensure excellent cold workability of the steel material when manufacturing bolts and omit tempering treatment after quenching. Therefore, it brings great economic effects such as material cost reduction, process reduction, energy consumption reduction, equipment investment reduction, and also has a quality with excellent delayed fracture resistance and fatigue strength. The great effect that an excellent high-strength bolt can be obtained is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例2,比較例3,比較例4のボルト
について疲労試験を行った結果を示すグラフである。
FIG. 1 is a graph showing the results of fatigue tests performed on bolts of Example 2 of the present invention, Comparative Example 3, and Comparative Example 4.

【図2】AC3点以上のオーステナイト温度域からの冷
却速度による硬さへの影響を調べた結果を示すグラフで
ある。
FIG. 2 is a graph showing the results of examining the effect of the cooling rate from the austenite temperature range of AC 3 points or higher on hardness.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 301 A 7217−4K 38/32 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 38/00 301 A 7217-4K 38/32

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.04〜0.15%、
Si:0.05〜1.5%、Mn:0.5〜1.5%、
Cr:0.1〜1.5%,B:0.0003〜0.00
5%、Ti:0.01〜0.04%およびSol.A
l:0.01〜0.06%のうちの1種または2種、残
部Feおよび不純物からなる組成の鋼素材を用いてボル
ト形状に冷間加工成形し、次いでAC3点以上の温度域
に加熱した後、1°C/sec以上の冷却速度で少なく
とも400°C以下の温度まで冷却して焼入れを行い、
組織の主体をマルテンサイトまたはベイナイトあるいは
マルテンサイトとベイナイトの混在組織とすることを特
徴とする耐遅れ破壊性および疲労強度に優れた高強度ボ
ルトの製造方法。
1. C: 0.04 to 0.15% by weight,
Si: 0.05-1.5%, Mn: 0.5-1.5%,
Cr: 0.1-1.5%, B: 0.0003-0.00
5%, Ti: 0.01 to 0.04% and Sol. A
1: Cold-worked into a bolt shape using a steel material having a composition of one or two of 0.01 to 0.06%, the balance Fe and impurities, and then in a temperature range of AC 3 points or higher. After heating, quenching is performed by cooling to a temperature of at least 400 ° C or less at a cooling rate of 1 ° C / sec or more,
A method for producing a high-strength bolt excellent in delayed fracture resistance and fatigue strength, characterized in that the main structure is martensite or bainite or a mixed structure of martensite and bainite.
【請求項2】 不純物中のP:0.01%以下である鋼
素材を用いる請求項1に記載の高強度ボルトの製造方
法。
2. The method for producing a high-strength bolt according to claim 1, wherein a steel material containing P: 0.01% or less in impurities is used.
JP23040391A 1991-09-10 1991-09-10 Manufacture of high strength bolt Pending JPH0565540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23040391A JPH0565540A (en) 1991-09-10 1991-09-10 Manufacture of high strength bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23040391A JPH0565540A (en) 1991-09-10 1991-09-10 Manufacture of high strength bolt

Publications (1)

Publication Number Publication Date
JPH0565540A true JPH0565540A (en) 1993-03-19

Family

ID=16907339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23040391A Pending JPH0565540A (en) 1991-09-10 1991-09-10 Manufacture of high strength bolt

Country Status (1)

Country Link
JP (1) JPH0565540A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756298A1 (en) * 1996-11-26 1998-05-29 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF A MECHANICAL PART HAVING A BATH STRUCTURE
EP0851038A1 (en) * 1996-12-31 1998-07-01 Ascometal Steel and process for forming a steel article by cold plastic working
KR100345641B1 (en) * 1997-09-05 2002-10-25 토피 고교 가부시키가이샤 Manufacturing method of heat treatment member
CN103084533A (en) * 2012-12-04 2013-05-08 安徽六方重联机械股份有限公司 Method for forging torsional shear type high-strength bolt
CN103084797A (en) * 2012-12-04 2013-05-08 安徽六方重联机械股份有限公司 Method for forging bolt for caterpillar track of excavator
CN103084798A (en) * 2012-12-04 2013-05-08 安徽六方重联机械股份有限公司 Method for forging high-strength bolt
CN103084799A (en) * 2012-12-04 2013-05-08 安徽六方重联机械股份有限公司 Method for forging fracture-resistant bolt
CN103586645A (en) * 2013-11-28 2014-02-19 郑州水野大一热处理技术有限公司 Manufacturing process of M72 high-strength bolts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756298A1 (en) * 1996-11-26 1998-05-29 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF A MECHANICAL PART HAVING A BATH STRUCTURE
EP0845544A1 (en) * 1996-11-26 1998-06-03 Ascometal Steel product made from bainitic steel and process for making the steel product
EP0851038A1 (en) * 1996-12-31 1998-07-01 Ascometal Steel and process for forming a steel article by cold plastic working
FR2757877A1 (en) * 1996-12-31 1998-07-03 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF A STEEL PART SHAPED BY COLD PLASTIC DEFORMATION
US5919415A (en) * 1996-12-31 1999-07-06 Ascometal Steel and process for the manufacture of a steel component formed by cold plastic deformation
KR100345641B1 (en) * 1997-09-05 2002-10-25 토피 고교 가부시키가이샤 Manufacturing method of heat treatment member
CN103084533A (en) * 2012-12-04 2013-05-08 安徽六方重联机械股份有限公司 Method for forging torsional shear type high-strength bolt
CN103084797A (en) * 2012-12-04 2013-05-08 安徽六方重联机械股份有限公司 Method for forging bolt for caterpillar track of excavator
CN103084798A (en) * 2012-12-04 2013-05-08 安徽六方重联机械股份有限公司 Method for forging high-strength bolt
CN103084799A (en) * 2012-12-04 2013-05-08 安徽六方重联机械股份有限公司 Method for forging fracture-resistant bolt
CN103586645A (en) * 2013-11-28 2014-02-19 郑州水野大一热处理技术有限公司 Manufacturing process of M72 high-strength bolts
CN103586645B (en) * 2013-11-28 2016-08-17 郑州水野大一热处理技术有限公司 A kind of production technology of M72 high-strength bolt

Similar Documents

Publication Publication Date Title
JP3940270B2 (en) Method for producing high-strength bolts with excellent delayed fracture resistance and relaxation resistance
EP1491647B1 (en) Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring
JP2001240941A (en) Bar wire rod for cold forging and its production method
JPH11315349A (en) High strength wire rod excellent in delayed fracture resistance, its production, and high strength bolt
JP2001062639A (en) High strength bolt excellent in delayed fracture resistance and manufacture thereof
JP2002097551A (en) High strength steel superior in resistance to hydrogen fatigue, and manufacturing method
US7678207B2 (en) Steel product for induction hardening, induction-hardened member using the same, and methods producing them
JP6601284B2 (en) High strength bolt
JPH0565540A (en) Manufacture of high strength bolt
JPH09263875A (en) High strength steel for machine structural use, excellent in delayed fracture characteristic, and its production
JP4009218B2 (en) Bolt with excellent hydrogen embrittlement resistance and method for producing the same
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JPH11131134A (en) Production of high strength formed part made of non-refining steel
JP4124590B2 (en) High-strength steel wire with excellent delayed fracture resistance and corrosion resistance
JPH108189A (en) Steel for induction hardening excellent in bendability and induction hardened part excellent in bendability using the same steel
JP2000008141A (en) Non-heat treated soft-nitrided steel forged parts and production thereof
JP3267164B2 (en) Method for producing steel for nitriding and nitrided steel products
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH1162943A (en) Soft nitrided as rolled or normalized crankshaft and manufacture thereof
JP3211627B2 (en) Steel for nitriding and method for producing the same
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JPH04371547A (en) Production of high strength and high toughness steel
JPH01225751A (en) Work roll for heavy-load cold rolling excellent in spalling resistance and its production
JPH0625745A (en) Manufacture of steel for machine structural use excellent in delayed fracture resistance