JP2002097551A - High strength steel superior in resistance to hydrogen fatigue, and manufacturing method - Google Patents
High strength steel superior in resistance to hydrogen fatigue, and manufacturing methodInfo
- Publication number
- JP2002097551A JP2002097551A JP2000290880A JP2000290880A JP2002097551A JP 2002097551 A JP2002097551 A JP 2002097551A JP 2000290880 A JP2000290880 A JP 2000290880A JP 2000290880 A JP2000290880 A JP 2000290880A JP 2002097551 A JP2002097551 A JP 2002097551A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- fatigue
- steel
- spring steel
- strength spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Vehicle Body Suspensions (AREA)
- Springs (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自動車等のエンジンの
弁ばねや懸架ばね、スタビライザー、トーションバー等
に用いられる1700MPa以上の引張強度を有する高強度ば
ねに関し、特に重要なばね特性である耐水素疲労特性の
優れた高強度ばね用鋼、及びその製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength spring having a tensile strength of 1700 MPa or more used for valve springs, suspension springs, stabilizers, torsion bars and the like of engines of automobiles and the like. The present invention relates to a high-strength spring steel having excellent hydrogen fatigue properties and a method for producing the same.
【0002】[0002]
【従来の技術】自動車等に数多く使用されている高強度
ばねは、例えばJIS G 3565〜3567及び4801等に規定され
ているばね用鋼を用いて熱間圧延後、所定の線径まで引
き抜き加工し、オイルテンパー処理後にばね加工する、
あるいは引き抜き加工後に加熱してばね加工し、焼入れ
焼戻しを行う、という方法によって製造される。近年炭
酸ガス排出低減などの、環境問題対応のために、自動車
には燃費低減のため、軽量化が求められている。その一
環として、焼入れ焼戻し後の引張強度を1800MPa以上に
高めたばねが求められている。しかしながら一般にばね
を高強度化すると、腐食環境下における疲労特性が劣化
するため、早期折損が懸念される。腐食疲労特性を劣化
させる一因として、腐食反応の進行に伴って発生する水
素による脆化があげられ、その改善策としては、種々の
合金元素を多量に添加して高強度化を図るという方法が
採用されてきたが、この方法では素材のコストが高くな
るという問題がある。また、水素疲労特性を抑制する方
法としては、結晶粒を微細化させる方法や、微細析出物
を生成させる方法が有力と考えられているが、いずれの
提案も本発明者らの試験では、大幅な水素脆化特性の改
善には至っていない。2. Description of the Related Art High-strength springs, which are widely used in automobiles and the like, are hot-rolled using spring steel specified in, for example, JIS G 3565-3567 and 4801, and then drawn to a predetermined wire diameter. And, after the oil tempering process, spring processing,
Alternatively, it is manufactured by a method of performing spring processing by heating after drawing processing and performing quenching and tempering. In recent years, in order to cope with environmental problems such as reduction of carbon dioxide emission, automobiles have been required to be lighter in weight to reduce fuel consumption. As a part of this, there is a demand for a spring whose tensile strength after quenching and tempering is increased to 1800 MPa or more. However, in general, when the strength of the spring is increased, the fatigue characteristics in a corrosive environment deteriorate, and there is a concern that the spring may be broken at an early stage. One of the causes of deterioration of the corrosion fatigue characteristics is embrittlement due to hydrogen generated as the corrosion reaction progresses. One of the improvement measures is to increase the strength by adding a large amount of various alloying elements. However, this method has a problem that the cost of the material is high. Further, as a method of suppressing the hydrogen fatigue characteristics, a method of refining crystal grains and a method of generating fine precipitates are considered to be promising. The improvement of the hydrogen embrittlement characteristics has not yet been achieved.
【0003】以上のように、従来の技術では、耐水素疲
労特性を抜本的に向上させた高強度ばねを製造すること
には限界があった。As described above, in the prior art, there was a limit in manufacturing a high-strength spring with drastically improved resistance to hydrogen fatigue.
【0004】[0004]
【発明が解決しようとする課題】本発明は上記の如き実
状に鑑みなされたものであって、耐水素疲労特性の良好
で且つ引張強度が1700MPa以上の高強度ばね用鋼を実現
するとともにその製造方法を提供することを目的とする
ものである。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above situation, and provides a high-strength spring steel having good hydrogen fatigue resistance and a tensile strength of 1700 MPa or more, and its production. It is intended to provide a method.
【0005】[0005]
【課題を解決するための手段】本発明者らは、まず焼入
れ・焼戻し処理によって製造した種々の強度レベルのば
ね用鋼を用いて、水素疲労挙動を詳細に解析した。その
結果、疲労限以下の応力で、疲労寿命が鋼材中の水素に
よって低下することを明らかにした。また、疲労寿命の
低下は、外部環境から鋼材中に侵入し、鋼材中を室温で
拡散しうる拡散性水素に起因して発生していることを明
らかにした。拡散性水素は、鋼材を100℃/hour
の速度で加熱した際に得られる温度-鋼材からの水素放
出速度の曲線において、約100℃の温度にピークを有
する曲線として測定できる(図1)。従って、環境から
侵入した水素を鋼材中の何らかの部分に捕捉することに
よって拡散しないようにすれば、水素を無害化すること
が可能になり、疲労寿命低下が抑制される。そこで、耐
水素疲労特性について、水素疲労が発生しない「限界拡
散性水素量」を求めることにより評価した。この方法
は、電解水素チャージにより種々のレベルの拡散性水素
量を含有させた後、回転曲げ疲労試験中に試料から大気
中に水素が抜けることを防止するためにCdめっきを施
し、その後、大気中で所定の荷重を負荷し、疲労破壊が
発生しなくなる拡散性水素量を評価するものである。図
2に拡散性水素量と疲労寿命の関係について解析した一
例を示す。試料中に含まれる拡散性水素量が少なくなる
ほど疲労寿命が長くなり、拡散性水素量がある値以下で
は疲労破壊が発生しなくなる。この水素量を「限界拡散
性水素量」と定義する。限界拡散性水素量が高いほど鋼
材の耐水素疲労特性は良好であり、鋼材の成分、熱処理
等の製造条件によって決まる鋼材固有の値である。The present inventors first analyzed the hydrogen fatigue behavior in detail using spring steels of various strength levels manufactured by quenching and tempering. As a result, it has been clarified that the fatigue life is reduced by hydrogen in steel at the stress less than the fatigue limit. In addition, it was clarified that the decrease in fatigue life was caused by diffusible hydrogen that could enter the steel from the external environment and diffuse through the steel at room temperature. Diffusible hydrogen is applied to steel at 100 ° C / hour.
Can be measured as a curve having a peak at a temperature of about 100 ° C. in a curve of temperature versus hydrogen release rate obtained when the steel is heated at the rate of (FIG. 1). Therefore, by preventing hydrogen that has invaded from the environment from diffusing by trapping it in some part in the steel material, it becomes possible to make the hydrogen harmless, and a reduction in fatigue life is suppressed. Therefore, the hydrogen fatigue resistance was evaluated by obtaining the “critical diffusible hydrogen amount” at which hydrogen fatigue does not occur. In this method, various levels of diffusible hydrogen are contained by electrolytic hydrogen charging, and then Cd plating is applied to prevent hydrogen from leaking from the sample into the atmosphere during the rotating bending fatigue test. A predetermined load is applied in the inside, and the amount of diffusible hydrogen at which fatigue fracture does not occur is evaluated. FIG. 2 shows an example of analyzing the relationship between the amount of diffusible hydrogen and the fatigue life. The fatigue life becomes longer as the amount of diffusible hydrogen contained in the sample decreases, and when the amount of diffusible hydrogen is less than a certain value, fatigue fracture does not occur. This amount of hydrogen is defined as “critical diffusible hydrogen amount”. The higher the critical diffusible hydrogen content, the better the hydrogen fatigue resistance characteristics of the steel material, which is a value specific to the steel material determined by the steel composition, heat treatment, and other manufacturing conditions.
【0006】そこで、高強度ばねの限界拡散性水素量を
増加させる手段、即ち耐水素疲労特性を上げるべく、オ
ーステナイト結晶粒度、焼入れ焼戻し条件の影響等につ
いて検討を重ねた結果、次のことが判明した。[0006] Therefore, in order to increase the critical diffusible hydrogen content of the high-strength spring, that is, to improve the hydrogen fatigue resistance, the inventors examined the effects of the austenite grain size and the conditions of quenching and tempering, and found the following. did.
【0007】すなわち、熱間加工仕上げ温度を未再結晶
温度域である700℃〜900℃としこの温度域での圧下率を
30%以上、好ましくは50%以上とし、加工直後に冷却す
ることによって表層から少なくとも0.5mm以上の深さま
での旧オーステナイト結晶粒が伸長化され、表層から少
なくとも0.5mmの深さまでの旧オーステナイト粒のアス
ペクト比が2以上、前記の好ましい条件下で4以上であ
り、かつ面積率最大の層がマルテンサイトであるような
組織を得ることができる。このような組織では1700MPa
を超えるような高強度域でも限界拡散性水素量が大幅に
増加し、耐水素疲労特性が向上するという知見を見出し
た。以上の検討結果に基づき、鋼材組成、組織形態、熱
処理条件を最適に選択すれば、遅れ破壊特性に優れた高
強度ボルトを実現できるという結論に達し、本発明をな
したものである。That is, the hot working finishing temperature is set at 700 ° C. to 900 ° C., which is the non-recrystallization temperature range, and the rolling reduction in this temperature range is
30% or more, preferably 50% or more, by cooling immediately after processing, the old austenite crystal grains from the surface layer to a depth of at least 0.5 mm or more are elongated, the old austenite grains from the surface layer to a depth of at least 0.5 mm It is possible to obtain a structure having an aspect ratio of 2 or more, 4 or more under the above preferable conditions, and a layer having the maximum area ratio of martensite. 1700MPa for such an organization
It has been found that the amount of critical diffusible hydrogen increases significantly even in a high-strength region exceeding the above range, and that hydrogen fatigue resistance is improved. Based on the above examination results, it has been concluded that a high-strength bolt excellent in delayed fracture characteristics can be realized by optimally selecting a steel material composition, a structure form, and a heat treatment condition, and made the present invention.
【0008】本発明は以上の知見に基づいてなされたも
のであって、その要旨とするところは、下記の通りであ
る。 (1)鋼材の疲労試験を、大気中の疲労限の90%の応
力で行う際、疲労寿命が107回未満に低下しない拡散
性水素量(室温から500℃に加熱する際に放出される
水素量)の上限値(以後、限界拡散性水素量とする)が
0.1ppm以上であることを特徴とする耐水素疲労特性の優
れた高強度ばね用鋼。 (2)面積率最大の相が焼戻しマルテンサイトであり、
旧オーステナイト粒の長さと幅の比(以後アスペクト比
とする)が2以上であることを特徴とする、耐水素疲労
特性の優れた高強度ばね用鋼。 (3)面積率最大の相が焼戻しマルテンサイトであり、
アスペクト比が2以上であり、かつ疲労限界水素量が0.
1ppm以上であることを特徴とする、耐水素疲労特性の優
れた高強度ばね用鋼。 (4)質量%で、 C:0.3〜1% Si:0.05〜4% Mn:0.05〜2% を含有し、残部がFe及び不可避的不純物よりなる上記
(1)〜(3)の何れか1項に記載の耐水素疲労特性の
優れた高強度ばね用鋼。(5)質量%で、 Al:0.005〜0.1% Ti:0.005〜0.5% Cr:0.05〜2%、 Mo:0.05〜2% Ni:0.05〜5%、 Cu:0.05〜1% V:0.05〜2% Nb:0.005〜0.2% Ta:0.005〜0.5% W:0.05〜0.5% 及びB:0.0003〜0.005% の1種または2種以上を含有することを特徴とする上記
(4)記載の耐水素疲労特性の優れた高強度ばね用鋼。 (6)前記(1)〜(5)の何れか1項に記載の高強度
ばね用鋼を製造する方法であって、700℃〜900℃の温度
域で30%以上の圧下率を与える熱間加工工程を経た後、
焼入れして面積率最大の相をマルテンサイト組織にし、
その後、焼戻処理を行うことを特徴とする耐水素疲特性
の優れた高強度ばね用鋼の製造方法。[0008] The present invention has been made based on the above findings, and the gist thereof is as follows. (1) a fatigue test of the steel material, is released upon heating when performed in 90% stress of the fatigue limit in air, the amount of diffusible hydrogen of fatigue life is not reduced to less than 10 7 times (from room temperature to 500 ° C. Hydrogen amount) (hereinafter referred to as the critical diffusible hydrogen amount)
High strength spring steel excellent in hydrogen fatigue resistance characterized by being 0.1 ppm or more. (2) The phase having the largest area ratio is tempered martensite,
A high-strength spring steel having excellent hydrogen fatigue resistance, wherein the ratio between the length and the width of the prior austenite grains (hereinafter referred to as the aspect ratio) is 2 or more. (3) The phase having the largest area ratio is tempered martensite,
The aspect ratio is 2 or more and the fatigue limit hydrogen content is 0.
High-strength spring steel with excellent hydrogen fatigue resistance, characterized by being at least 1 ppm. (4) By mass%, C: 0.3 to 1% Si: 0.05 to 4% Mn: 0.05 to 2%, and the balance is Fe or any of the above (1) to (3), which consists of unavoidable impurities. A high-strength steel for springs having excellent hydrogen fatigue resistance according to the above item. (5) In mass%, Al: 0.005 to 0.1% Ti: 0.005 to 0.5% Cr: 0.05 to 2%, Mo: 0.05 to 2% Ni: 0.05 to 5%, Cu: 0.05 to 1% V: 0.05 to 2 % Nb: 0.005 to 0.2% Ta: 0.005 to 0.5% W: 0.05 to 0.5% and B: 0.0003 to 0.005% High strength spring steel with excellent properties. (6) A method for producing a high-strength spring steel according to any one of the above (1) to (5), wherein a heat giving a rolling reduction of 30% or more in a temperature range of 700 ° C to 900 ° C. After the cold working process,
Quenching to make the phase with the largest area ratio a martensite structure,
Thereafter, a tempering treatment is carried out.
【0009】[0009]
【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。Next, an embodiment of the present invention will be described.
【0010】限界拡散性水素量:限界拡散性水素量が
0.1ppm未満であると、対疲労特性が不十分なた
め、0.1ppm以上とする。[0010] Critical diffusible hydrogen content: If the critical diffusible hydrogen content is less than 0.1 ppm, the fatigue resistance is insufficient, so the content is set to 0.1 ppm or more.
【0011】組織:高強度を得るため、組織は面積率最
大の相が焼き戻しマルテンサイトであることが好まし
い。本発明において、焼戻しマルテンサイトの面積率は
鋼棒のC断面t/4部又はボルトのC断面t/4を光学顕
微鏡で200〜1000倍で10視野観察した場合の平均値であ
る。その他の組織として、残留オーステナイト、ベイナ
イト、フェライト、パーライトを含有することができ
る。Structure: In order to obtain high strength, it is preferable that the phase having the largest area ratio is tempered martensite. In the present invention, the area ratio of the tempered martensite is an average value when a C section t / 4 portion of a steel rod or a C section t / 4 of a bolt is observed with an optical microscope at a magnification of 200 to 1000 for 10 fields of view. Other structures can include retained austenite, bainite, ferrite, and pearlite.
【0012】アスペクト比:本発明で目的とする高強度
ばね用鋼の耐水素疲労特性の向上に対して最も重要な点
である旧オーステナイト粒のアスペクト比の限定理由に
ついて述べる。図3に焼戻しマルテンサイト組織からな
るばねの限界拡散性水素量に及ぼす旧オーステナイト粒
のアスペクト比の影響について解析した一例を示す。ア
スペクト比が2未満では限界拡散性水素量の向上効果が
少ない、即ち耐水素疲労特性向上効果が少ないため、ア
スペクト比を2以上に限定した。好ましくは3以上であ
る。アスペクト比の上限は特に定めることなく本発明の
効果を得ることができるが,遅れ破壊特性以外の良好な
機械的性質を得るためには,8以下とすることが好まし
い。Aspect ratio: The reason for limiting the aspect ratio of prior austenite grains, which is the most important point for improving the hydrogen fatigue resistance of the high-strength spring steel intended in the present invention, will be described. FIG. 3 shows an example in which the influence of the aspect ratio of the prior austenite grains on the critical diffusible hydrogen content of the spring having the tempered martensite structure is analyzed. When the aspect ratio is less than 2, the effect of improving the critical diffusible hydrogen amount is small, that is, the effect of improving the hydrogen fatigue resistance is small, so the aspect ratio is limited to 2 or more. Preferably it is 3 or more. Although the effect of the present invention can be obtained without any particular upper limit of the aspect ratio, it is preferably 8 or less in order to obtain good mechanical properties other than delayed fracture characteristics.
【0013】また、旧オーステナイト粒のアスペクト比
は、上記試料において、粒界エッチングを施した後に光
学顕微鏡で200〜1000倍で10視野観察した場合の平均値
である。The aspect ratio of the prior austenite grains is an average value when the above-mentioned sample is subjected to grain boundary etching and observed in 10 visual fields at 200 to 1000 times with an optical microscope.
【0014】鋼材成分:次に本発明の対象とする鋼の成
分の限定理由について述べる。Steel composition: Next, the reasons for limiting the composition of the steel targeted by the present invention will be described.
【0015】C:Cはばねの強度を確保する上で必須の
元素であるが、0.3%未満では所定の焼戻し温度範囲で
は所要の強度が得られず、一方1%を越えると靭性を劣
化させるために、0.3〜1%、望ましくは0.5〜1%の範囲
に制限した。C: C is an essential element for securing the strength of the spring, but if it is less than 0.3%, the required strength cannot be obtained within a predetermined tempering temperature range, while if it exceeds 1%, the toughness is deteriorated. Therefore, it was limited to the range of 0.3 to 1%, preferably 0.5 to 1%.
【0016】Si:Siは固溶体硬化作用によって強度
を高める作用がある。0.05%未満では前記作用が発揮で
きず、一方、4%を超えると添加量に見合う効果が期待
できないために、0.05〜4%の範囲に制限した。Si: Si has an effect of increasing the strength by a solid solution hardening effect. If it is less than 0.05%, the above-mentioned effect cannot be exerted. On the other hand, if it exceeds 4%, an effect commensurate with the added amount cannot be expected.
【0017】Mn:Mnは脱酸、脱硫のために必要であ
るばかりでなく、マルテンサイト組織を得るための焼入
性を高めるために有効な元素であるが、0.05%未満では
上記の効果が得られず、一方2%を越えるとオーステナ
イト域加熱時に粒界に偏析し粒界を脆化させるとともに
耐遅れ破壊特性を劣化させるために0.05〜2%の範囲に
制限した。Mn: Mn is an element not only necessary for deoxidation and desulfurization but also effective for enhancing hardenability for obtaining a martensitic structure. On the other hand, if it exceeds 2%, it is segregated at the grain boundary during heating in the austenite region, embrittles the grain boundary and deteriorates the delayed fracture resistance, so that it is limited to the range of 0.05 to 2%.
【0018】以上が本発明の対象とする鋼の基本成分で
あるが、本発明においては、さらにこの鋼に Al:0.005〜0.1% Ti:0.005〜0.5% Cr:0.05〜2%、 Mo:0.05〜2% Ni:0.05〜5%、 Cu:0.05〜1% V:0.05〜2% Nb:0.005〜0.2% Ta:0.005〜0.5% W:0.05〜0.5% 及びB:0.0003〜0.005% の1種または2種以上を含有せしめることができる。The above are the basic components of the steel which is the subject of the present invention. In the present invention, the steel further contains Al: 0.005 to 0.1% Ti: 0.005 to 0.5% Cr: 0.05 to 2%, Mo: 0.05 Ni: 0.05 to 5%, Cu: 0.05 to 1% V: 0.05 to 2% Nb: 0.005 to 0.2% Ta: 0.005 to 0.5% W: 0.05 to 0.5% and B: 0.0003 to 0.005% Alternatively, two or more kinds can be contained.
【0019】Al:Alは脱酸および熱処理時において
AlNを形成することによりオーステナイト粒の粗大化
を防止する効果とともにNを固定する効果も有している
が、0.005%未満ではこれらの効果が発揮されず、0.1%
を越えても効果が飽和するため0.005〜0.1%の範囲に限
定した。Al: Al has an effect of preventing austenite grains from being coarsened by forming AlN during deoxidation and heat treatment, and also has an effect of fixing N. However, if less than 0.005%, these effects are exhibited. Not 0.1%
Is exceeded, the effect is saturated, so the range is limited to 0.005 to 0.1%.
【0020】Ti:TiはAlと同様に脱酸および熱処
理時においてTiNを形成することによりオーステナイ
ト粒の粗大化を防止する効果とともにNを固定する効果
も有しているが、0.005%未満ではこれらの効果が発揮
されず、0.5%を超えると焼入れ時に炭化物を固溶させ
るために高温に加熱する必要があり、疲労特性を劣化さ
せる脱炭が生じるため0.005〜0.5%の範囲に限定した。Ti: Like Ti, Ti forms TiN during deoxidation and heat treatment to prevent the austenite grains from becoming coarser and to fix N. When the content exceeds 0.5%, it is necessary to heat to a high temperature in order to form a solid solution of carbides during quenching, and decarburization which deteriorates fatigue properties occurs. Therefore, the range is limited to 0.005 to 0.5%.
【0021】Cr:Crは焼入性の向上および焼戻し処
理時の軟化抵抗を増加させるために有効な元素である
が、0.05%未満ではその効果が十分に発揮できず、一方
2%を超えると靭性の劣化、冷間加工性の劣化を招くた
めに0.05〜2%に限定した。Cr: Cr is an element effective for improving hardenability and increasing softening resistance during tempering, but if it is less than 0.05%, its effect cannot be sufficiently exhibited.
If it exceeds 2%, the toughness and the cold workability deteriorate, so the content is limited to 0.05 to 2%.
【0022】Mo:MoはCrと同様に強い焼戻し軟化
抵抗を有し熱処理後の引張強さを高めるために有効な元
素であるが、0.05%未満ではその効果が少なく、一方2
%を超えるとその効果は飽和しコストの上昇を招くため
に0.05〜2%に制限した。Mo: Mo, like Cr, has a strong tempering softening resistance and is an effective element for increasing the tensile strength after heat treatment, but if it is less than 0.05%, its effect is small.
Beyond the limit, the effect is saturated and the cost is increased, so that it is limited to 0.05 to 2%.
【0023】Ni:Niは高強度化に伴って劣化する延
性を向上させるとともに熱処理時の焼入性を向上させて
引張強さを増加させるために添加されるが、0.05%未満
ではその効果が少なく、一方5%を越えても添加量にみ
あう効果が発揮できないため、0.05〜5%の範囲に制限
した。Ni: Ni is added in order to improve the ductility, which deteriorates with the increase in strength, and also to improve the hardenability during heat treatment to increase the tensile strength. On the other hand, if the content exceeds 5%, the effect corresponding to the added amount cannot be exhibited, so the content is limited to the range of 0.05 to 5%.
【0024】Cu:Cuは焼戻し軟化抵抗を高めるため
に有効な元素であるが、0.05%未満では効果が発揮でき
ず、1%を超えると熱間加工性が劣化するため、0.05〜1
%に制限した。Cu: Cu is an element effective for increasing the tempering softening resistance. However, if it is less than 0.05%, the effect cannot be exhibited, and if it exceeds 1%, the hot workability deteriorates.
%.
【0025】V:Vは焼入れ処理時において炭窒化物を
生成することによりオーステナイト粒を微細化させる効
果があるが、0.05%未満では前記作用の効果が得られ
ず、一方2%を越えても効果が飽和するため0.05〜2%に
限定した。V: V has the effect of reducing the size of austenite grains by forming carbonitride during the quenching treatment. However, if it is less than 0.05%, the above effect cannot be obtained. Since the effect is saturated, it was limited to 0.05 to 2%.
【0026】Nb:Nbは再結晶温度を高め、アスペク
ト比の大きい旧オーステナイト粒を得るために有効な元
素であるが、0.005%未満では上記効果が不十分であ
り、一方0.2%を越えるとこの効果が飽和するため0.005
〜0.2%に制限した。Nb: Nb is an effective element for increasing the recrystallization temperature and obtaining prior austenite grains having a large aspect ratio. However, if the content is less than 0.005%, the above effect is insufficient. 0.005 because the effect saturates
Limited to ~ 0.2%.
【0027】Ta:TaもNbと同様にオーステナイト
粒の微細化効果を有しているが、0.005%未満では前記
の効果が発揮されず、0.5%を越えて添加しても効果が
飽和するため、0.005〜0.5%に限定した。Ta: Ta also has an austenite grain refinement effect similarly to Nb. However, if the content is less than 0.005%, the above effect is not exerted. Even if added over 0.5%, the effect is saturated. , 0.005 to 0.5%.
【0028】W:Wは高強度ボルトの遅れ破壊特性を向
上させるために有効な元素であるが、0.05%未満では前
記の効果が発揮されず、一方、0.5%を越えて添加して
も効果が飽和するため、0.05〜0.5%の範囲に限定し
た。W: W is an element effective for improving the delayed fracture characteristics of high-strength bolts. However, if the content is less than 0.05%, the above effect is not exhibited. Is saturated, so the range is limited to 0.05 to 0.5%.
【0029】B:Bは粒界破壊を抑制し遅れ破壊特性を
向上させる効果がある。更に、Bはオーステナイト粒界
に偏析することにより焼入性を著しく高めるが、0.0003
%未満では前記の効果が発揮されず、0.005%を超えて
も効果が飽和するため0.0003〜0.005%に制限した。B: B has the effect of suppressing grain boundary fracture and improving delayed fracture characteristics. Further, B segregates at austenite grain boundaries to significantly enhance hardenability.
%, The effect is not exhibited, and if it exceeds 0.005%, the effect is saturated, so the content is limited to 0.0003 to 0.005%.
【0030】不純物元素であるP、Sについては特に制
限しないものの、耐水素疲労特性を向上させる観点か
ら、それぞれ0.015%以下が好ましい範囲である。Nに
ついては、Al、V、Nb、Tiの窒化物を形成するこ
とによって旧オーステナイト粒の微細化、降伏強度の増
加の効果があるため、0.002〜0.1%が望ましい範囲であ
る。P and S, which are impurity elements, are not particularly limited, but are each preferably 0.015% or less from the viewpoint of improving hydrogen fatigue resistance. As for N, since the formation of nitrides of Al, V, Nb, and Ti has the effect of refining old austenite grains and increasing the yield strength, 0.002 to 0.1% is a desirable range.
【0031】本発明の高強度ばねの製造方法では、所定
の条件で熱間加工を行った後、直ちに焼入れてマルテン
サイト組織にした後、焼戻しを行うものであるが、次に
この製造条件の限定理由について述べる。In the method of manufacturing a high-strength spring according to the present invention, after hot working is performed under predetermined conditions, it is immediately quenched to obtain a martensitic structure and then tempered. The reason for limitation will be described.
【0032】熱間加工温度;熱間加工温度が900℃を
超えると熱間加工時の再結晶が顕著になり、アスペクト
比が2以上のマルテンサイト組織を得ることが困難であ
る。一方、熱間加工温度が700℃未満では所定のアスペ
クト比の組織を得るに十分な圧下率を確保できない。従
って熱間加工温度を700℃〜900℃,好ましくは70
0〜850℃に限定した。Hot working temperature: When the hot working temperature exceeds 900 ° C., recrystallization during hot working becomes remarkable, and it is difficult to obtain a martensite structure having an aspect ratio of 2 or more. On the other hand, if the hot working temperature is lower than 700 ° C., it is not possible to secure a sufficient rolling reduction to obtain a structure having a predetermined aspect ratio. Therefore, the hot working temperature is set at 700 ° C to 900 ° C, preferably 70 ° C.
Limited to 0-850 ° C.
【0033】圧下率;アスペクト比が2以上のマルテン
サイト組織を得るには未再結晶域で30%以上の圧下率が
必要であるため圧下率を30%以上に限定した。なお、本
発明鋼のばね用鋼およびばねの引張強度の上限は特に定
めることなく本発明の効果を得られるが、靭性を劣化さ
せないためには、2200MPa以下が望ましい。Reduction ratio: To obtain a martensite structure having an aspect ratio of 2 or more, a reduction ratio of 30% or more is required in a non-recrystallized region. Therefore, the reduction ratio was limited to 30% or more. The effect of the present invention can be obtained without particularly defining the upper limit of the tensile strength of the spring steel and the spring of the present invention, but is preferably 2200 MPa or less so as not to deteriorate the toughness.
【0034】[0034]
【実施例】以下、実施例により本発明の効果をさらに具
体的に説明する。EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
【0035】表1に示す化学組成を有するばね用鋼を焼
入れ、表2に示す温度で焼戻しを行い、最大面積率が焼
戻しマルテンサイトである組織に調整した。The steel for spring having the chemical composition shown in Table 1 was quenched and tempered at the temperature shown in Table 2, and the maximum area ratio was adjusted to a structure of tempered martensite.
【0036】上記の試料を用いて、機械的性質、組織形
態、耐水素疲労特性について評価した結果を表1に示
す。水素疲労特性は、前に述べた疲労限界水素量で評価
を行い、負荷応力は大気中疲労限の90%の条件で実施し
た。Table 1 shows the results of the evaluation of the mechanical properties, structure morphology, and hydrogen fatigue resistance of the above samples. Hydrogen fatigue characteristics were evaluated based on the previously described fatigue limit hydrogen amount, and the applied stress was performed under the condition of 90% of the atmospheric fatigue limit.
【0037】[0037]
【表1】 [Table 1]
【0038】表2の試験No.1〜16が本発明例で、
その他は比較例である。同表に見られるように本発明例
はいずれも熱間加工温度が700℃〜900℃で、圧下
率が30%以上であり、旧オーステナイト粒のアスペク
ト比が2以上であるような、最大面積相が焼戻しマルテ
ンサイトである組織となっている。これらの鋼は限界拡
散性水素量が従来のばねに比べ高く、耐水素疲労特性の
優れたばねが実現されている。Test Nos. 1 to 16 in Table 2 are examples of the present invention.
Others are comparative examples. As can be seen from the table, each of the examples of the present invention has a maximum area where the hot working temperature is 700 ° C. to 900 ° C., the rolling reduction is 30% or more, and the aspect ratio of the prior austenite grains is 2 or more. The structure is such that the phase is tempered martensite. These steels have a higher critical diffusible hydrogen content than conventional springs, and springs with excellent hydrogen fatigue resistance have been realized.
【0039】これに対して比較例であるNo.17は、
C量が低いため、1700MPa以上の強度が得られ
ず、高強度ばね用鋼として使用できなかった例である。On the other hand, the comparative example No. 17 is
This is an example in which the strength of 1700 MPa or more was not obtained because the C content was low, and the steel could not be used as high-strength spring steel.
【0040】比較例であるNo.18は、圧下率が低か
ったため、所定のアスペクト比の旧オーステナイト粒が
得られず、疲労限界水素量が低かった例である。The comparative example No. Sample No. 18 is an example in which old austenite grains having a predetermined aspect ratio were not obtained because the rolling reduction was low, and the fatigue limit hydrogen amount was low.
【0041】比較例であるNo.19は、熱間加工温度
が高かったために、所定のアスペクト比の旧オーステナ
イト粒が得られず、疲労限界水素量が低かった例であ
る。In Comparative Example No. 19 is an example in which old austenite grains having a predetermined aspect ratio were not obtained because the hot working temperature was high, and the fatigue limit hydrogen amount was low.
【0042】比較鋼であるNo.20は、熱間加工温度
が低かったためにフェライトが析出し、所定の強度が得
られなかった例である。The comparative steel No. No. 20 is an example in which ferrite was precipitated because the hot working temperature was low, and a predetermined strength was not obtained.
【0043】比較鋼であるNo.21はSi含有量が高
すぎたために、No.23は、C含有量が高すぎるため
に、No.24はMn含有量が高すぎるために、いずれ
も疲労限界水素量が低かった例である。The comparative steel No. No. 21 was No. 21 because the Si content was too high. In No. 23, the C content was too high. Sample No. 24 is an example in which the fatigue limit hydrogen amount was low because the Mn content was too high.
【0044】比較鋼であるNo.22は、強度が高すぎ
たため、疲労限界水素量が低かった例である。The comparative steel No. 22 is an example in which the fatigue limit hydrogen amount was low because the strength was too high.
【0045】[0045]
【表2】 [Table 2]
【0046】[0046]
【発明の効果】以上の実施例からも明らかなごとく、本
発明は旧オーステナイト粒のアスペクト比を特定の値に
することによって、引張強度が1700MPa以上の高
強度ばねの水素疲労特性を大幅に向上させることを可能
にするとともに、鋼の化学成分、熱間加工条件を最適に
選択することによって、ばね用鋼及びその製造方法を確
立したものであり、産業上の効果は極めて顕著なものが
ある。As is apparent from the above examples, the present invention significantly improves the hydrogen fatigue characteristics of a high-strength spring having a tensile strength of 1700 MPa or more by setting the aspect ratio of prior austenite grains to a specific value. The steel for springs and its manufacturing method were established by optimally selecting the chemical composition and hot working conditions of the steel, and the industrial effect was extremely remarkable. .
【図1】昇温分析による水素放出曲線と、拡散性水素量
を示す図である。FIG. 1 is a diagram showing a hydrogen release curve by a temperature rise analysis and a diffusible hydrogen amount.
【図2】拡散性水素量と疲労寿命の関係の一例を示す図
である。FIG. 2 is a diagram showing an example of the relationship between the amount of diffusible hydrogen and fatigue life.
【図3】旧オーステナイト粒のアスペクト比と、疲労限
界水素量の関係を示す図である。FIG. 3 is a diagram showing the relationship between the aspect ratio of prior austenite grains and the fatigue limit hydrogen content.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 正春 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 3J059 AB05 BC02 BC19 EA09 GA02 GA08 4K032 AA01 AA02 AA05 AA06 AA11 AA12 AA14 AA16 AA19 AA20 AA22 AA23 AA24 AA31 AA32 AA33 AA35 AA36 AA37 CB01 CB02 CC02 CC03 CC04 CF01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masaharu Oka 20-1 Shintomi, Futtsu Nippon Steel Corporation Technology Development Division F-term (reference) 3J059 AB05 BC02 BC19 EA09 GA02 GA08 4K032 AA01 AA02 AA05 AA06 AA11 AA12 AA14 AA16 AA19 AA20 AA22 AA23 AA24 AA31 AA32 AA33 AA35 AA36 AA37 CB01 CB02 CC02 CC03 CC04 CF01
Claims (6)
0%の応力で行う際に、疲労寿命が107回未満に低下
しない拡散性水素量(室温から500℃に加熱する際に
放出される水素量)の上限値(以後、限界拡散性水素量
とする)が0.1ppm以上であることを特徴とする耐水素疲
労特性の優れた高強度ばね用鋼。1. A fatigue test of a steel material is carried out at a fatigue limit of 9 in the atmosphere.
The upper limit of the amount of diffusible hydrogen (the amount of hydrogen released when heated from room temperature to 500 ° C.) at which the fatigue life does not decrease to less than 10 7 times when the stress is applied at 0% (hereinafter referred to as the critical diffusible hydrogen amount) ) Is 0.1 ppm or more, and is a high strength spring steel excellent in hydrogen fatigue resistance.
であり、旧オーステナイト粒の長さと幅の比(以後アス
ペクト比とする)が2以上であることを特徴とする耐水
素疲労特性の優れた高強度ばね用鋼。2. The phase having the largest area ratio is tempered martensite, and the ratio between the length and the width of the prior austenite grains (hereinafter referred to as aspect ratio) is 2 or more, and the hydrogen fatigue resistance is excellent. High strength spring steel.
であり、アスペクト比が2以上であり、かつ限界拡散性
水素量が0.1ppm以上であるとこを特徴とする耐水素疲労
特性の優れた高強度ばね用鋼。3. A phase having a maximum area ratio of tempered martensite, an aspect ratio of 2 or more, and a critical diffusible hydrogen content of 0.1 ppm or more. Steel for strength springs.
を特徴とする請求項1〜3のいずれかに記載の耐水素疲
労特性の優れた高強度ばね用鋼。4. The method according to claim 1, wherein C: 0.3 to 1% Si: 0.05 to 4% Mn: 0.05 to 2% in mass%, the balance being Fe and unavoidable impurities. A high-strength spring steel having excellent hydrogen fatigue resistance according to any one of the above.
項4記載の耐水素疲労特性の優れた高強度ばね用鋼。5. In mass%, Al: 0.005 to 0.1% Ti: 0.005 to 0.5% Cr: 0.05 to 2%, Mo: 0.05 to 2% Ni: 0.05 to 5%, Cu: 0.05 to 1% V: 0.05 The hydrogen-resistant material according to claim 4, characterized in that it contains one or more of Nb: 0.005 to 0.2% Ta: 0.005 to 0.5% W: 0.05 to 0.5% and B: 0.0003 to 0.005%. High strength spring steel with excellent fatigue properties.
ばね用鋼を製造する方法であって、700℃〜900℃の温度
域で30%以上の圧下率を与える熱間加工工程を経た後、
焼入れして面積率最大の相をマルテンサイト組織にし、
その後、焼戻処理を行うことを特徴とする耐水素疲労特
性の優れた高強度ばね用鋼の製造方法。6. A method for producing a high-strength spring steel according to any one of claims 1 to 5, wherein a hot working step of giving a reduction of 30% or more in a temperature range of 700 ° C. to 900 ° C. After passing
Quenching the phase with the largest area ratio to martensite structure,
Thereafter, a tempering treatment is performed, thereby producing a high-strength spring steel excellent in hydrogen fatigue resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000290880A JP4116762B2 (en) | 2000-09-25 | 2000-09-25 | High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000290880A JP4116762B2 (en) | 2000-09-25 | 2000-09-25 | High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002097551A true JP2002097551A (en) | 2002-04-02 |
JP4116762B2 JP4116762B2 (en) | 2008-07-09 |
Family
ID=18774042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000290880A Expired - Fee Related JP4116762B2 (en) | 2000-09-25 | 2000-09-25 | High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4116762B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004074529A1 (en) * | 2003-02-20 | 2004-09-02 | Nippon Steel Corporation | High strength steel product excellent in characteristics of resistance to hydrogen embrittlement |
JP2005344199A (en) * | 2004-06-07 | 2005-12-15 | Kobe Steel Ltd | Steel material to be cold-bent |
JP2006207021A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP2006207019A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP2006207020A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP2007031736A (en) * | 2005-07-22 | 2007-02-08 | Nippon Steel Corp | Method for manufacturing high strength bolt excellent in delayed fracture resistance |
JP2007100209A (en) * | 2005-01-28 | 2007-04-19 | Kobe Steel Ltd | High-strength spring steel having excellent hydrogen embrittlement resistance |
JP2008266782A (en) * | 2007-03-23 | 2008-11-06 | Aichi Steel Works Ltd | Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same |
WO2010137343A1 (en) * | 2009-05-29 | 2010-12-02 | 株式会社神戸製鋼所 | High strength steel sheet having excellent hydrogen embrittlement resistance |
WO2011074600A1 (en) * | 2009-12-18 | 2011-06-23 | 愛知製鋼株式会社 | Steel for leaf spring with high fatigue strength, and leaf spring component |
JP2011127181A (en) * | 2009-12-18 | 2011-06-30 | Aichi Steel Works Ltd | Plate spring steel having excellent strength and toughness, and plate spring part |
KR101364392B1 (en) | 2009-06-11 | 2014-02-17 | 신닛테츠스미킨 카부시키카이샤 | High strength steel pipe and method for producing same |
JP2014043612A (en) * | 2012-08-27 | 2014-03-13 | Nippon Steel & Sumitomo Metal | High strength steel excellent in delayed fracture resistance |
EP2708612A4 (en) * | 2011-05-12 | 2015-08-05 | Nhk Spring Co Ltd | Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same |
CN105671428A (en) * | 2016-03-04 | 2016-06-15 | 北汽福田汽车股份有限公司 | Manufacturing method of steel material, hot-rolled flat steel and steel plate spring, manufactured steel plate spring and vehicle |
WO2017018457A1 (en) * | 2015-07-27 | 2017-02-02 | 新日鐵住金株式会社 | Steel for suspension spring and method for manufacturing same |
CN109778067A (en) * | 2019-02-18 | 2019-05-21 | 西南交通大学 | A kind of preparation method of sleeper spring |
KR20210007804A (en) * | 2019-07-12 | 2021-01-20 | 주식회사 포스코 | High strength steel wire rod and steel wire for spring and manufacturing method same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6338012B2 (en) | 2015-03-10 | 2018-06-06 | 新日鐵住金株式会社 | Suspension spring steel and manufacturing method thereof |
-
2000
- 2000-09-25 JP JP2000290880A patent/JP4116762B2/en not_active Expired - Fee Related
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004074529A1 (en) * | 2003-02-20 | 2004-09-02 | Nippon Steel Corporation | High strength steel product excellent in characteristics of resistance to hydrogen embrittlement |
JPWO2004074529A1 (en) * | 2003-02-20 | 2006-06-01 | 新日本製鐵株式会社 | High strength steel with excellent hydrogen embrittlement resistance |
US8557060B2 (en) | 2003-02-20 | 2013-10-15 | Nippon Steel & Sumitomo Metal Corporation | High-strength steel material with excellent hydrogen embrittlement resistance |
US8016953B2 (en) | 2003-02-20 | 2011-09-13 | Nippon Steel Corporation | High-strength steel material with excellent hydrogen embrittlement resistance |
JP2005344199A (en) * | 2004-06-07 | 2005-12-15 | Kobe Steel Ltd | Steel material to be cold-bent |
JP4608242B2 (en) * | 2004-06-07 | 2011-01-12 | 株式会社神戸製鋼所 | Steel for cold bending |
JP4551816B2 (en) * | 2004-12-28 | 2010-09-29 | 株式会社神戸製鋼所 | Super high strength thin steel sheet with excellent hydrogen embrittlement resistance and workability |
JP2006207019A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP4551815B2 (en) * | 2004-12-28 | 2010-09-29 | 株式会社神戸製鋼所 | Super high strength thin steel sheet with excellent hydrogen embrittlement resistance and workability |
JP2006207021A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP2006207020A (en) * | 2004-12-28 | 2006-08-10 | Kobe Steel Ltd | Ultrahigh-strength steel sheet superior in hydrogen-embrittlement resistance and workability |
JP4684003B2 (en) * | 2004-12-28 | 2011-05-18 | 株式会社神戸製鋼所 | Super high strength thin steel sheet with excellent hydrogen embrittlement resistance and workability |
JP2007100209A (en) * | 2005-01-28 | 2007-04-19 | Kobe Steel Ltd | High-strength spring steel having excellent hydrogen embrittlement resistance |
JP4618682B2 (en) * | 2005-01-28 | 2011-01-26 | 株式会社神戸製鋼所 | High strength spring steel with excellent hydrogen embrittlement resistance |
JP4485424B2 (en) * | 2005-07-22 | 2010-06-23 | 新日本製鐵株式会社 | Manufacturing method of high-strength bolts with excellent delayed fracture resistance |
JP2007031736A (en) * | 2005-07-22 | 2007-02-08 | Nippon Steel Corp | Method for manufacturing high strength bolt excellent in delayed fracture resistance |
JP2008266782A (en) * | 2007-03-23 | 2008-11-06 | Aichi Steel Works Ltd | Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same |
KR101362021B1 (en) | 2009-05-29 | 2014-02-11 | 뵈스트알파인 스탈 게엠베하 | High strength steel sheet having excellent hydrogen embrittlement resistance |
JP2010275608A (en) * | 2009-05-29 | 2010-12-09 | Kobe Steel Ltd | High-strength steel sheet having excellent hydrogen embrittlement resistance |
WO2010137343A1 (en) * | 2009-05-29 | 2010-12-02 | 株式会社神戸製鋼所 | High strength steel sheet having excellent hydrogen embrittlement resistance |
US9464337B2 (en) | 2009-05-29 | 2016-10-11 | Kabushiki Kaisha Kobe Seiko Sho | High strength steel sheet having excellent hydrogen embrittlement resistance |
KR101364392B1 (en) | 2009-06-11 | 2014-02-17 | 신닛테츠스미킨 카부시키카이샤 | High strength steel pipe and method for producing same |
US8685182B2 (en) | 2009-06-11 | 2014-04-01 | Nippon Steel & Sumitomo Metal Corporation | High-strength steel pipe and producing method thereof |
JP2011127181A (en) * | 2009-12-18 | 2011-06-30 | Aichi Steel Works Ltd | Plate spring steel having excellent strength and toughness, and plate spring part |
JP2011127182A (en) * | 2009-12-18 | 2011-06-30 | Aichi Steel Works Ltd | High fatigue strength plate spring steel and plate spring part |
WO2011074600A1 (en) * | 2009-12-18 | 2011-06-23 | 愛知製鋼株式会社 | Steel for leaf spring with high fatigue strength, and leaf spring component |
CN102803537A (en) * | 2009-12-18 | 2012-11-28 | 爱知制钢株式会社 | Steel for leaf spring with high fatigue strength, and leaf spring component |
US8741216B2 (en) | 2009-12-18 | 2014-06-03 | Nhk Spring Co., Ltd. | Steel for leaf spring with high fatigue strength, and leaf spring parts |
EP2708612A4 (en) * | 2011-05-12 | 2015-08-05 | Nhk Spring Co Ltd | Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same |
JP2014043612A (en) * | 2012-08-27 | 2014-03-13 | Nippon Steel & Sumitomo Metal | High strength steel excellent in delayed fracture resistance |
WO2017018457A1 (en) * | 2015-07-27 | 2017-02-02 | 新日鐵住金株式会社 | Steel for suspension spring and method for manufacturing same |
CN107709597A (en) * | 2015-07-27 | 2018-02-16 | 新日铁住金株式会社 | Bearing spring steel and its manufacture method |
KR20180019212A (en) | 2015-07-27 | 2018-02-23 | 신닛테츠스미킨 카부시키카이샤 | Steel for suspended spring and method of manufacturing the same |
JPWO2017018457A1 (en) * | 2015-07-27 | 2018-05-24 | 新日鐵住金株式会社 | Suspension spring steel and manufacturing method thereof |
EP3330399A4 (en) * | 2015-07-27 | 2019-03-27 | Nippon Steel & Sumitomo Metal Corporation | Steel for suspension spring and method for manufacturing same |
CN107709597B (en) * | 2015-07-27 | 2019-08-27 | 日本制铁株式会社 | Bearing spring steel and its manufacturing method |
KR102087525B1 (en) | 2015-07-27 | 2020-03-10 | 닛폰세이테츠 가부시키가이샤 | Suspension spring steel and its manufacturing method |
CN105671428A (en) * | 2016-03-04 | 2016-06-15 | 北汽福田汽车股份有限公司 | Manufacturing method of steel material, hot-rolled flat steel and steel plate spring, manufactured steel plate spring and vehicle |
CN109778067A (en) * | 2019-02-18 | 2019-05-21 | 西南交通大学 | A kind of preparation method of sleeper spring |
KR20210007804A (en) * | 2019-07-12 | 2021-01-20 | 주식회사 포스코 | High strength steel wire rod and steel wire for spring and manufacturing method same |
KR102355675B1 (en) | 2019-07-12 | 2022-01-27 | 주식회사 포스코 | High strength steel wire rod and steel wire for spring and manufacturing method same |
Also Published As
Publication number | Publication date |
---|---|
JP4116762B2 (en) | 2008-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003105485A (en) | High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor | |
JP2002097551A (en) | High strength steel superior in resistance to hydrogen fatigue, and manufacturing method | |
JP4927899B2 (en) | Spring steel, method for producing the same, and spring | |
EP2397571A1 (en) | Steel for high-strength vehicle stabilizer with excellent corrosion resistance and low-temperature toughness, and process for the production of same, and stabilizer | |
JP4464524B2 (en) | Spring steel excellent in hydrogen fatigue resistance and method for producing the same | |
JP2001348618A (en) | Method for producing high strength bolt excellent in delayed fracture resistance and relaxation resistant characteristic | |
JP4267376B2 (en) | High strength PC steel wire with excellent delayed fracture characteristics and method for producing the same | |
KR20150081366A (en) | High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring | |
JP2002146479A (en) | Wire rod for wire drawing having excellent twisting characteristic and its production method | |
JP5543814B2 (en) | Steel plate for heat treatment and method for producing steel member | |
JP3494799B2 (en) | High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same | |
JP3793391B2 (en) | High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same | |
JP3494798B2 (en) | High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same | |
JPH11241143A (en) | Spring improved in corrosion fatigue strength | |
JP3409277B2 (en) | Rolled steel or bar steel for non-heat treated springs | |
JP2003213372A (en) | Steel wire for spring and spring | |
JPH11246941A (en) | High strength valve spring and its manufacture | |
JP5146063B2 (en) | High strength steel with excellent internal fatigue damage resistance and method for producing the same | |
JP4009218B2 (en) | Bolt with excellent hydrogen embrittlement resistance and method for producing the same | |
JP4209514B2 (en) | High toughness tempered rolled martensitic stainless steel sheet with high spring characteristics and method for producing the same | |
JP2001234285A (en) | High strength and high toughness steel bar for earthquake proof damper excellent in low cycle fatigue characteristic nd producing method therefor | |
JP2002180201A (en) | Steel for hard-drawn wire having excellent fatigue strength and ductility, and hard-drawn wire | |
JP2002173739A (en) | High strength steel having excellent hydrogen embrittlement resistance | |
CN116724131A (en) | High-strength wire rod for cold heading having excellent heat treatment characteristics and hydrogen-induced delayed fracture resistance, heat-treated component, and method for producing same | |
JP2007031735A (en) | Hot-forged component having excellent delayed fracture resistance, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071011 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080418 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4116762 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140425 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |