JPH0547504B2 - - Google Patents
Info
- Publication number
- JPH0547504B2 JPH0547504B2 JP17664988A JP17664988A JPH0547504B2 JP H0547504 B2 JPH0547504 B2 JP H0547504B2 JP 17664988 A JP17664988 A JP 17664988A JP 17664988 A JP17664988 A JP 17664988A JP H0547504 B2 JPH0547504 B2 JP H0547504B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- ultrafine
- powder
- sintered body
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 44
- 239000000377 silicon dioxide Substances 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims 1
- 239000011521 glass Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 241001128391 Taia Species 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003826 uniaxial pressing Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、シリカを基体とする焼結体を低温で
製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a sintered body based on silica at a low temperature.
これまで、シリカ焼結体を製造するためには、
1500℃以上の高温で溶融させたシリカを冷却する
溶融法と、溶液中で作つたシリカゲルを乾燥させ
て、1000℃程度に加熱するゾル・ゲル法が行なわ
れている。しかし、前者の溶融法では高温を必要
とするという問題があり、一方、後者のゾル・ゲ
ル法ではゲルの収縮で焼結の途中で形状が変化す
るという問題がある。従つて、従来からの方法で
は低温で形状の正確なシリカ焼結体を得ることは
困難である。
Until now, in order to manufacture silica sintered bodies,
Two methods are used: the melting method, in which silica is melted at a high temperature of 1,500°C or higher, and then cooled, and the sol-gel method, in which silica gel made in a solution is dried and heated to about 1,000°C. However, the former melting method has the problem of requiring high temperatures, while the latter sol-gel method has the problem that the shape changes during sintering due to gel contraction. Therefore, it is difficult to obtain a silica sintered body with an accurate shape at a low temperature using conventional methods.
本発明は、低温で形状の正確なシリカ焼結体を
製造し得る方法を提供することを目的とする。
An object of the present invention is to provide a method that can produce a silica sintered body with an accurate shape at a low temperature.
本発明の方法は、シリカ超微粉末を高真空中で
温度500〜800℃でホツトプレスすることにより、
形状の正確なシリカ焼結体を製造する方法であ
る。
The method of the present invention involves hot pressing ultrafine silica powder in a high vacuum at a temperature of 500 to 800°C.
This is a method of manufacturing a silica sintered body with an accurate shape.
本発明で用いるシリカ超微粉末は、平均粒径
500Å以下、好ましくは50〜200Åの範囲のもので
ある。微細なもの程好ましい。このシリカ超微粉
末には、必要に応じ、希土類酸化物等の超微粉末
を添加することができる。その添加量は、シリカ
超微粉末100重量部に対し、0〜30重量部、好ま
しくは1〜5重量部の割合である。シリカと希土
類酸化物の複合酸化物の超微粉末を出発原料とし
て用いることもできる。このような添加剤の使用
により、シリカを基体とした多成分のガラスやセ
ラミツク焼結体を得ることができる。 The ultrafine silica powder used in the present invention has an average particle size of
The thickness is 500 Å or less, preferably in the range of 50 to 200 Å. The finer it is, the more preferable it is. Ultrafine powder of rare earth oxide or the like can be added to this ultrafine silica powder, if necessary. The amount added is 0 to 30 parts by weight, preferably 1 to 5 parts by weight, per 100 parts by weight of ultrafine silica powder. Ultrafine powder of a composite oxide of silica and rare earth oxide can also be used as a starting material. By using such additives, multicomponent glass or ceramic sintered bodies based on silica can be obtained.
本発明においては、このシリカ超微粉末を慣用
のホツトプレス機を用いて高真空中でホツトプレ
スする。この場合、加熱温度は500〜800℃、好ま
しくは550〜700℃である。真空条件としては、
10-2〜10-9Torr、好ましくは10-4〜10-6Torrの
高真空が採用される。プレス圧は、0.05〜
10ton/cm2、好ましくは0.1〜0.5ton/cm2である。 In the present invention, this ultrafine silica powder is hot pressed in a high vacuum using a conventional hot press machine. In this case, the heating temperature is 500-800°C, preferably 550-700°C. As for the vacuum conditions,
A high vacuum of 10 -2 to 10 -9 Torr, preferably 10 -4 to 10 -6 Torr is employed. Press pressure is 0.05~
10 ton/cm 2 , preferably 0.1 to 0.5 ton/cm 2 .
〔発明の効果〕
本発明の方法によれば、単成分のシリカ焼結体
の他、適当な添加剤を加えることにより、シリカ
を基体とした多成分のガラスやセラミツクスの焼
結体を低温で、形状正確に製造することができ
る。本発明では、従来法のように高温に加熱しな
いので、容器等からの不純物の混入もさけられる
し、多成分のガラスを作るときに問題となる相分
離や結晶化の問題もさけられる。また、従来のゾ
ル・ゲル法のように有機物を原料に用いることが
ないので、炭素等が不純物として混入することも
さけられる。また、真空排気を徹底的に行なえ
ば、水分も徹底的に除去できる。また、ホツトプ
レスの条件により、非常に多孔性の焼結体を作る
こともできるし、一軸のプレスによるひずみを残
留させることにより、異方性の強いガラスも製造
できる。[Effects of the Invention] According to the method of the present invention, in addition to single-component sintered silica, multi-component sintered glass or ceramics based on silica can be produced at low temperatures by adding appropriate additives. , the shape can be manufactured accurately. In the present invention, unlike conventional methods, the glass is not heated to high temperatures, so it is possible to avoid the contamination of impurities from containers, etc., and also to avoid the problems of phase separation and crystallization that occur when producing multi-component glasses. Furthermore, unlike the conventional sol-gel method, organic matter is not used as a raw material, so contamination of carbon and the like as impurities can be avoided. Moreover, if the vacuum is thoroughly evacuated, moisture can also be thoroughly removed. Further, depending on the conditions of hot pressing, it is possible to produce a highly porous sintered body, and by leaving strain due to uniaxial pressing, it is also possible to produce glass with strong anisotropy.
次に実施例によつて本発明をさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.
実施例
原料のシリカ超微粉末としては、日本アエロジ
ル社製のアエロジル200(粒径は約12nm)を用い
た。この粉末10.4gを大気にさらしておいたもの
を、真空ホツトプレス装置(大亜真空技研(株)製)
の中で処理した。この場合、ダイスはグラフアイ
ト製で、内径50mmのシリンダー状であり、ダイス
の内側の表面には薄く窒化ホウ素の粉末を塗布し
た。また、真空排気するまえに、シリカ超微粉末
に0.5tonの荷重をかけ、軽くつぶした後、真空排
気し、5×10-3Paの真空になつたところで、600
℃で4tonの荷重をかけてプレスした。このように
して、シリカの焼結体が得られた。その焼結体は
かさ密度0.642g/cm3であり、充填率は約24%で
ある。色は白色であつた。この破断面を走査型電
子顕微鏡で観察したら、ところどころ数μm程度
の粒子も見られたが、他の大部分はほぼ平滑で一
様であつた。Examples Aerosil 200 (particle size: about 12 nm) manufactured by Nippon Aerosil Co., Ltd. was used as the raw material ultrafine silica powder. 10.4g of this powder was exposed to the atmosphere and then heated using a vacuum hot press machine (manufactured by Taia Vacuum Giken Co., Ltd.).
It was processed inside. In this case, the die was made of graphite and had a cylindrical shape with an inner diameter of 50 mm, and a thin layer of boron nitride powder was applied to the inner surface of the die. Also, before evacuation, a 0.5 ton load was applied to the ultrafine silica powder, and after crushing it, it was evacuated, and when the vacuum reached 5 × 10 -3 Pa, it was
It was pressed at ℃ with a load of 4 tons. In this way, a sintered body of silica was obtained. The sintered body has a bulk density of 0.642 g/cm 3 and a filling rate of about 24%. The color was white. When this fractured surface was observed with a scanning electron microscope, particles of several micrometers were observed here and there, but the rest of the surface was almost smooth and uniform.
Claims (1)
℃でホツトプレスすることを特徴とするシリカ焼
結体の製造方法。 2 該シリカ超微粉が、添加剤として、希土類酸
化物を含有する請求項1の方法。[Claims] 1 Ultrafine silica powder is heated to a temperature of 500 to 800 in a high vacuum.
A method for producing a sintered silica body, characterized by hot pressing at ℃. 2. The method according to claim 1, wherein the ultrafine silica powder contains a rare earth oxide as an additive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17664988A JPH0226862A (en) | 1988-07-15 | 1988-07-15 | Production of silica sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17664988A JPH0226862A (en) | 1988-07-15 | 1988-07-15 | Production of silica sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0226862A JPH0226862A (en) | 1990-01-29 |
JPH0547504B2 true JPH0547504B2 (en) | 1993-07-16 |
Family
ID=16017273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17664988A Granted JPH0226862A (en) | 1988-07-15 | 1988-07-15 | Production of silica sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0226862A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5728470A (en) * | 1994-05-13 | 1998-03-17 | Nec Corporation | Multi-layer wiring substrate, and process for producing the same |
CN114349516B (en) * | 2021-12-16 | 2023-05-12 | 郑州大学 | Method for synthesizing high-density SiC ceramic at low temperature |
-
1988
- 1988-07-15 JP JP17664988A patent/JPH0226862A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0226862A (en) | 1990-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109400123B (en) | Fine-crystal alumina ceramic and preparation method and application thereof | |
JPS62223070A (en) | Substantially pore-less polycrystal aluminum nitride formed body and manufacture thereof without sintering aid | |
JPH029763A (en) | Boron nitride sintered body and production thereof under ordinary pressure | |
US4496503A (en) | Method of making a densified silicon nitride/oxynitride composite | |
JPS627150B2 (en) | ||
JPH07215780A (en) | Highly heat resistant composite material | |
JPH0547504B2 (en) | ||
JP2002226285A (en) | Lightweight ceramic member and method for manufacturing the same | |
CN108178615B (en) | Microwave ceramic dielectric sintered powder material, microwave dielectric ceramic and application thereof | |
JP2525432B2 (en) | Normal pressure sintered boron nitride compact | |
JP2620287B2 (en) | Method for producing translucent spinel sintered body | |
JPH0567593B2 (en) | ||
JPS6364973A (en) | Boron nitride sintered body and manufacture | |
JPS6128629B2 (en) | ||
JPS61163180A (en) | High size precision and anti-abrasivity silicon carbide composite body and manufacture | |
JP2510705B2 (en) | Method for producing transparent aluminum oxynitride composite sintered body | |
JPS59207883A (en) | Manufacture of aluminum nitride sintered body | |
JPH053430B2 (en) | ||
JPS6110069A (en) | High strength minute silicon nitride sintered body and manufacture | |
JPS6046908A (en) | Production of sic powder | |
JPH0648839A (en) | Production of boron nitride sintered body | |
JPS6045147B2 (en) | Transparent polycrystalline alumina composition and method for producing the same | |
JP2001058870A (en) | Sintered quartz and its production | |
JPS6340771A (en) | Normal pressure high density composite sintered body of cubic boron nitride and manufacture | |
JPH0798333B2 (en) | Binderless molding method for anisotropic carbon products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |