[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05331660A - Copper metallizing method - Google Patents

Copper metallizing method

Info

Publication number
JPH05331660A
JPH05331660A JP16692192A JP16692192A JPH05331660A JP H05331660 A JPH05331660 A JP H05331660A JP 16692192 A JP16692192 A JP 16692192A JP 16692192 A JP16692192 A JP 16692192A JP H05331660 A JPH05331660 A JP H05331660A
Authority
JP
Japan
Prior art keywords
copper
substrate
plating
plated
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16692192A
Other languages
Japanese (ja)
Other versions
JP2990955B2 (en
Inventor
Kenichi Uchiyama
兼一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP4166921A priority Critical patent/JP2990955B2/en
Publication of JPH05331660A publication Critical patent/JPH05331660A/en
Application granted granted Critical
Publication of JP2990955B2 publication Critical patent/JP2990955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Chemically Coating (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To enable the use of aluminum nitride, etc., which are heretofore difficult to be used as a substrate by improving the adhesive strength between the substrate and a copper plated surface. CONSTITUTION:A zinc acetate soln. is sprayed by a spraying method on the substrate A1 to form the film of zinc oxide A2 thereon. The substrate is then immersed into a Pd soln. and is thereby treated to be deposited with a catalyst. Further, the substrate is immersed into an electroless copper plating liquid and is subjected to copper plating A3. The plated copper is subjected to a heating treatment in the atm. and is converted to copper oxide. The copper oxide surface is then reduced in a hydrogen atmosphere and finally copper A4 is plated by copper electroplating thereon, by which the wiring board for electronic equipment is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス、ガラス等
と銅とを接合する方法に関し、特に電子機器用配線板を
製造するに際して、基板材料であるセラミックス、ガラ
ス等と、配線材料である金属銅とを接合する銅メタライ
ズ法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining ceramics, glass or the like to copper, and particularly when manufacturing a wiring board for electronic equipment, the substrate material such as ceramics or glass and the wiring material metallic copper. The present invention relates to a copper metallizing method for joining and.

【0002】[0002]

【従来の技術】電子機器用配線板を製造するに際して、
基板材料であるセラミックス、ガラス等と、配線材料で
ある金属銅とを接合する方法として、以下のものが知ら
れている。
2. Description of the Related Art When manufacturing a wiring board for electronic equipment,
The following methods are known as a method for joining a substrate material such as ceramics and glass to a wiring material such as metallic copper.

【0003】(イ)銅メタライズ法 図2に従来の銅メタライズ法の工程例を示す。まず基板
B1を洗浄、乾燥し、銅化合物、酸化ケイ素および溶剤
からなる銅化合物ペーストB2を塗布して乾燥する。こ
のペーストを大気中1,000〜1,300℃で焼成し
て酸化銅層を形成し、次にこの銅層の表面を約300℃
で水素還元する。最後に前記還元面に電解銅メッキB3
を施す。
(A) Copper metallizing method FIG. 2 shows an example of steps of a conventional copper metallizing method. First, the substrate B1 is washed and dried, a copper compound paste B2 made of a copper compound, silicon oxide and a solvent is applied and dried. This paste is baked in the air at 1,000 to 1,300 ° C. to form a copper oxide layer, and then the surface of the copper layer is heated to about 300 ° C.
Reduce with hydrogen. Finally, electrolytic copper plating B3 on the reducing surface
Apply.

【0004】(ロ)銅法(耐熱メタライズ法) 図3に従来の銅法(耐熱メタライズ法)の工程例を示
す。まず基板C1を洗浄、乾燥後、基板C1とニッケル
板C3の間に酸化させた銅板C2を挟み、1,060〜
1,100℃で焼成する。最後に前記ニッケル板表面に
電解銅メッキC4を施す。
(B) Copper method (heat-resistant metallizing method) FIG. 3 shows an example of steps of the conventional copper method (heat-resistant metallizing method). First, the substrate C1 is washed and dried, and then the oxidized copper plate C2 is sandwiched between the substrate C1 and the nickel plate C3.
Bake at 1,100 ° C. Finally, electrolytic copper plating C4 is applied to the surface of the nickel plate.

【0005】(ハ)厚膜印刷法(銅ペースト法) 樹脂、銅粉およびガラスフリットを混合したペーストを
基板に印刷し、還元雰囲気中800〜900℃で焼成す
る。
(C) Thick film printing method (copper paste method) A paste prepared by mixing resin, copper powder and glass frit is printed on a substrate and baked at 800 to 900 ° C. in a reducing atmosphere.

【0006】(ニ)直接メッキ法 セラミックス表面に微細な凹凸面を形成し無電解銅メッ
キを施す。
(D) Direct plating method A fine uneven surface is formed on the ceramic surface and electroless copper plating is performed.

【0007】(ホ)スパッタリング法 基板上にCrあるいはTi薄膜層を設け、その上に銅を付
着させる。
(E) Sputtering method A Cr or Ti thin film layer is provided on a substrate, and copper is deposited thereon.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0008】上記従来の銅メタライズ法および銅法(耐
熱メタライズ法)については、1,000℃以上の高温
で処理する工程が必要なため、基板と銅(銅化合物)と
の熱膨張差が内部応力となって密着強度に悪い影響を与
える。従って耐熱性の基板以外には使用できないという
難点があった。
Since the conventional copper metallizing method and copper method (heat resistant metallizing method) require a step of treating at a high temperature of 1,000 ° C. or higher, the difference in thermal expansion between the substrate and copper (copper compound) is internal. It becomes stress and adversely affects the adhesion strength. Therefore, there is a drawback that it cannot be used for anything other than a heat resistant substrate.

【0009】厚膜印刷法(銅ペースト)については、8
00〜900℃の高温の還元性雰囲気中で焼成するため
焼成費用が嵩み、また上記他の従来法と同じく耐熱性基
板以外には使用できないという難点があった。また直接
メッキ法は、常温プロセスであるが表面を粗面とするた
め平滑な基板へのメッキには適用できず、さらにスパッ
タリング法については、低温で平滑な基板にもメタライ
ズできるが装置が複雑・高価なため生産性が上がらない
という弱点があった。
For the thick film printing method (copper paste), see 8
Since firing is performed in a reducing atmosphere at a high temperature of 00 to 900 ° C., the firing cost is high, and like the other conventional methods described above, there is a problem that it cannot be used for other than a heat resistant substrate. The direct plating method is a normal temperature process, but it cannot be applied to plating on a smooth substrate because the surface is rough, and the sputtering method can be metalized on a smooth substrate at low temperature, but the equipment is complicated. There was a weak point that productivity was not increased because it was expensive.

【0010】[0010]

【課題を解決するための手段】本発明は、基板上に酸化
銅層を形成する第一の工程と、前記酸化銅層の外表面を
還元して金属銅とする第二の工程と、前記金属銅表面に
電解銅メッキを施す第三の工程からなる銅メタライズ法
の第一の工程において、前記基板上に酸化亜鉛膜を形成
させ、この酸化亜鉛膜上に無電解銅メッキを施し、次に
酸素雰囲気中で熱処理することによって前記酸化銅層を
形成することを特徴とする銅メタライズ法に関する。
The present invention comprises a first step of forming a copper oxide layer on a substrate, a second step of reducing the outer surface of the copper oxide layer to metallic copper, and In the first step of the copper metallizing method consisting of the third step of electrolytic copper plating on the metal copper surface, a zinc oxide film is formed on the substrate, electroless copper plating is applied on the zinc oxide film, The present invention relates to a copper metallizing method, characterized in that the copper oxide layer is formed by heat treatment in an oxygen atmosphere.

【0011】本発明の方法においては、上記各工程の処
理温度が400℃以下であることが好ましい。
In the method of the present invention, the processing temperature in each of the above steps is preferably 400 ° C. or lower.

【0012】[0012]

【作用】本発明の方法によれば、高温での焼成工程が不
要のため、耐熱性以外の基板であっても支障なく使用す
ることができ密着強度が低下することがない。また基板
表面を粗面にする必要がないため、平滑な基板にもメタ
ライズすることができる。
According to the method of the present invention, since a baking process at a high temperature is unnecessary, even a substrate other than heat resistant can be used without trouble and the adhesion strength is not lowered. Further, since it is not necessary to make the substrate surface rough, it is possible to metalize even a smooth substrate.

【0013】[0013]

【実施例】以下、本発明に基づく実施例を示す。ここ
で、図1は本発明の方法の一例を示す銅メタライズ法の
工程図であり、本図の(a)〜(f)に沿って実施例を
説明する。
EXAMPLES Examples according to the present invention will be shown below. Here, FIG. 1 is a process diagram of a copper metallizing method showing an example of the method of the present invention, and an embodiment will be described along with (a) to (f) of the figure.

【0014】(a)ガラス基板(コーニング社製 705
9)を洗浄した後乾燥した。基板としては、公知のどの
様なものでも使用できるが、例を挙げれば、フェライ
ト、チタン酸化合物等のセラミックス類あるいは石英ガ
ラス等のガラス類がある。また従来メタライズが困難で
あった窒化アルミ等も用いることができる。また基板表
面の平滑なものでも凹凸のあるものでもメタライズする
ことができる。
(A) Glass substrate (Corning 705
9) was washed and then dried. Any known substrate can be used as the substrate, but examples thereof include ceramics such as ferrite and titanate compounds, and glasses such as quartz glass. Further, aluminum nitride or the like, which has conventionally been difficult to metallize, can also be used. In addition, even if the surface of the substrate is smooth or uneven, it can be metallized.

【0015】(b)スプレー法により、250〜450
℃に加熱した基板上に酢酸亜鉛(又は塩化亜鉛)の溶液
を吹き付けて厚さ0.6ミクロンの酸化亜鉛の膜付けを
行った。加熱温度は好ましくは300〜400℃、さら
に好ましくは350〜400℃である。膜付け法の他の
例としては、スパッタリング法、CVD法があるがスプ
レー法が比較的容易で低コストである。
(B) 250 to 450 by spray method
A zinc acetate (or zinc chloride) solution was sprayed onto the substrate heated to 0 ° C. to form a zinc oxide film having a thickness of 0.6 μm. The heating temperature is preferably 300 to 400 ° C, more preferably 350 to 400 ° C. Other examples of the film deposition method include the sputtering method and the CVD method, but the spray method is relatively easy and low in cost.

【0016】(c)無電解銅メッキ 酸化亜鉛を膜付けした基板をPd溶液に浸漬して触媒付
け処理を行い、次に無電解銅メッキ液に浸して厚さ0.
2ミクロンの銅メッキを施した。
(C) Electroless Copper Plating A substrate coated with zinc oxide is dipped in a Pd solution to carry out a catalytic treatment, and then dipped in an electroless copper plating solution to a thickness of 0.
2 micron copper plating was applied.

【0017】(d)銅酸化処理 上記のメッキした銅を大気中で200〜500℃に加熱
処理して酸化銅とした。この銅酸化処理によって銅と酸
化亜鉛との密着強度が向上する。酸化処理は大気中に限
らず酸素雰囲気中であればよい。また酸化処理温度は好
ましくは300〜400℃、さらに好ましくは350〜
400℃である。
(D) Copper Oxidation Treatment The plated copper was heat-treated at 200 to 500 ° C. in the atmosphere to obtain copper oxide. This copper oxidation treatment improves the adhesion strength between copper and zinc oxide. The oxidation treatment is not limited to the atmosphere, but may be an oxygen atmosphere. The oxidation treatment temperature is preferably 300 to 400 ° C., more preferably 350 to 400 ° C.
It is 400 ° C.

【0018】(e)銅表面還元処理 次工程の電解銅メッキの前処理として上記銅表面を還元
した。この還元は以下の方法で行った。すなわち、上記
酸化銅の標準電極電位より卑である金属粉(Zn、Fe、
Sn、Al等)を銅表面に付着させて室温下、酸で処理す
ることにより、金属粉から活性な水素が発生する。この
水素によって上記酸化銅が還元される。
(E) Copper surface reduction treatment The copper surface was reduced as a pretreatment for electrolytic copper plating in the next step. This reduction was performed by the following method. That is, the metal powder (Zn, Fe,
Sn, Al, etc.) is attached to the copper surface and treated with an acid at room temperature to generate active hydrogen from the metal powder. This hydrogen reduces the copper oxide.

【0019】(f)電気銅メッキ 公知の電気銅メッキによって、所望の膜厚迄銅をメッキ
した。
(F) Electrolytic copper plating Copper was plated to a desired film thickness by known electrolytic copper plating.

【0020】上記によって作成し配線板の、ガラス基板
に対する銅メタライズの密着強度を測定するために、2
mm×2mm角のパターンを作成して引張り試験を行ったと
ころ、メタライズ金属が剥離する前に基板が破壊され
た。即ち本発明に基づく配線板は、実用上充分なメタラ
イズ強度を有するものである。
In order to measure the adhesion strength of the copper metallization to the glass substrate of the wiring board prepared as described above, 2
When a pattern of mm × 2 mm square was prepared and a tensile test was conducted, the substrate was broken before the metallized metal was peeled off. That is, the wiring board according to the present invention has a practically sufficient metallization strength.

【0021】上記で明らかなように本実施例の方法によ
って形成した配線板には、従来の方法によって形成した
配線板に比較して格段に強靭な銅メッキが施されてい
た。
As is clear from the above, the wiring board formed by the method of this embodiment was plated with copper, which was significantly stronger than the wiring board formed by the conventional method.

【0022】[0022]

【発明の効果】以上に説明した如く本発明によれば、各
工程の処理温度が低いため、ほとんどのセラミックス、
ガラス等を基板として使用することができる。また従来
の低温メタライズでは不可能であった表面の平滑な基板
も用いることができる。また酸化亜鉛の場合は銅のエッ
チング液で容易にエッチングができるので、フォトエッ
チングによりファインパターンの配線ができる。更に従
来メタライズが困難であった窒化アルミ基板にもメタラ
イズを行うことが可能である。また還元処理を行ってい
るのでシート抵抗が下がり、メッキ時の電流密度を高く
できるため、メッキ速度が上がって時間を短縮でき、メ
ッキ厚のばらつきがなくなり、その結果量産性を挙げる
ことができる。
As described above, according to the present invention, since the processing temperature of each step is low, most of the ceramics,
Glass or the like can be used as the substrate. Further, a substrate having a smooth surface which cannot be obtained by the conventional low temperature metallization can be used. Further, in the case of zinc oxide, since etching can be easily performed with a copper etching solution, fine pattern wiring can be formed by photo etching. Furthermore, it is possible to perform metallization on an aluminum nitride substrate, which has been difficult to metallize conventionally. Further, since the reduction treatment is performed, the sheet resistance is reduced, and the current density during plating can be increased, so that the plating speed can be increased, the time can be shortened, the variation in plating thickness can be eliminated, and as a result, mass productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく銅メタライズ法の一例を示す工
程図である。
FIG. 1 is a process drawing showing an example of a copper metallizing method according to the present invention.

【図2】従来技術による銅メタライズ法の一例を示す工
程図である。
FIG. 2 is a process drawing showing an example of a copper metallizing method according to a conventional technique.

【図3】従来技術による銅法(耐熱メタライズ法)の一
例を示す工程図である。
FIG. 3 is a process drawing showing an example of a copper method (heat resistant metallizing method) according to a conventional technique.

【符号の説明】[Explanation of symbols]

A1、B1、C1…基板、A2…酸化亜鉛膜、A3…無
電解銅メッキ層、A4、B3、C4…電解銅メッキ層、
B2…銅化合物ペースト、C2…酸化銅板、C3…ニッ
ケル板
A1, B1, C1 ... Substrate, A2 ... Zinc oxide film, A3 ... Electroless copper plating layer, A4, B3, C4 ... Electrolytic copper plating layer,
B2 ... Copper compound paste, C2 ... Copper oxide plate, C3 ... Nickel plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に酸化銅層を形成する第一の工程
と、前記酸化銅層の外表面を還元して金属銅とする第二
の工程と、前記金属銅表面に電解銅メッキを施す第三の
工程からなる銅メタライズ法の第一の工程において、前
記基板上に酸化亜鉛膜を形成させ、この酸化亜鉛膜上に
無電解銅メッキを施し、次に酸素雰囲気中で熱処理する
ことによって前記酸化銅層を形成することを特徴とする
銅メタライズ法。
1. A first step of forming a copper oxide layer on a substrate, a second step of reducing the outer surface of the copper oxide layer to metallic copper, and electrolytic copper plating on the metallic copper surface. Forming a zinc oxide film on the substrate in the first step of the copper metallizing method consisting of the third step of applying, electroless copper plating on the zinc oxide film, and then heat treating in an oxygen atmosphere. Forming a copper oxide layer by a copper metallizing method.
【請求項2】 請求項1に記載の各工程の処理温度が4
00℃以下である銅メタライズ法。
2. The processing temperature of each step according to claim 1 is 4
Copper metallization method at 00 ° C or lower.
JP4166921A 1992-06-02 1992-06-02 Copper metallization method Expired - Lifetime JP2990955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166921A JP2990955B2 (en) 1992-06-02 1992-06-02 Copper metallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166921A JP2990955B2 (en) 1992-06-02 1992-06-02 Copper metallization method

Publications (2)

Publication Number Publication Date
JPH05331660A true JPH05331660A (en) 1993-12-14
JP2990955B2 JP2990955B2 (en) 1999-12-13

Family

ID=15840126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166921A Expired - Lifetime JP2990955B2 (en) 1992-06-02 1992-06-02 Copper metallization method

Country Status (1)

Country Link
JP (1) JP2990955B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2286202A (en) * 1994-01-31 1995-08-09 Matsushita Electric Works Ltd Method of coating a copper film on a ceramic substrate
WO2000060649A1 (en) * 1999-03-30 2000-10-12 Pac Tech - Packaging Technologies Gmbh Contact bump with support metallization and method of producing said support metallization
JP2006165430A (en) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd Inductor and its manufacturing method
JP2007235040A (en) * 2006-03-03 2007-09-13 Osaka City Method of forming metal copper layer on cuprous oxide film
WO2015044091A1 (en) 2013-09-26 2015-04-02 Atotech Deutschland Gmbh Novel adhesion promoting process for metallisation of substrate surfaces
WO2015044089A1 (en) * 2013-09-26 2015-04-02 Atotech Deutschland Gmbh Novel adhesion promoting agents for metallisation of substrate surfaces
CN104562122A (en) * 2014-12-26 2015-04-29 惠州市特创电子科技有限公司 Delay compensation method and system of copper plating thickness
CN113853451A (en) * 2020-06-30 2021-12-28 松下知识产权经营株式会社 Laminated film structure and method for manufacturing laminated film structure
WO2022067352A3 (en) * 2020-09-28 2022-04-28 The Trustees Of Princeton University Antimicrobial and antiviral treatments of materials
WO2022153995A1 (en) * 2021-01-14 2022-07-21 長野県 Material which is for underlying conductive layer and exhibits conductivity due to oxidation-reduction reaction, and manufacturing process, device, plated article, plated article manufacturing method, and coating liquid which use same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2286202A (en) * 1994-01-31 1995-08-09 Matsushita Electric Works Ltd Method of coating a copper film on a ceramic substrate
GB2286202B (en) * 1994-01-31 1997-09-17 Matsushita Electric Works Ltd Method of coating a copper film on a ceramic substrate
WO2000060649A1 (en) * 1999-03-30 2000-10-12 Pac Tech - Packaging Technologies Gmbh Contact bump with support metallization and method of producing said support metallization
US6720257B1 (en) 1999-03-30 2004-04-13 Pac Tech-Packaging Technologies Gmbh Bump with basic metallization and method for manufacturing the basic metallization
JP2006165430A (en) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd Inductor and its manufacturing method
JP2007235040A (en) * 2006-03-03 2007-09-13 Osaka City Method of forming metal copper layer on cuprous oxide film
CN114107984A (en) * 2013-09-26 2022-03-01 德国艾托特克公司 Novel adhesion promotion method for substrate surface metallization
WO2015044089A1 (en) * 2013-09-26 2015-04-02 Atotech Deutschland Gmbh Novel adhesion promoting agents for metallisation of substrate surfaces
CN105579621A (en) * 2013-09-26 2016-05-11 德国艾托特克公司 Novel adhesion promoting agents for metallisation of substrate surfaces
CN105593410A (en) * 2013-09-26 2016-05-18 德国艾托特克公司 Novel adhesion promoting process for metallisation of substrate surfaces
WO2015044091A1 (en) 2013-09-26 2015-04-02 Atotech Deutschland Gmbh Novel adhesion promoting process for metallisation of substrate surfaces
CN104562122A (en) * 2014-12-26 2015-04-29 惠州市特创电子科技有限公司 Delay compensation method and system of copper plating thickness
CN113853451A (en) * 2020-06-30 2021-12-28 松下知识产权经营株式会社 Laminated film structure and method for manufacturing laminated film structure
US20230156924A1 (en) * 2020-06-30 2023-05-18 Panasonic Intellectual Property Management Co., Ltd. Laminated film structure and method for manufacturing laminated film structure
US11825608B2 (en) 2020-06-30 2023-11-21 Panasonic Intellectual Property Management Co., Ltd. Laminated film structure and method for manufacturing laminated film structure
US12069809B2 (en) 2020-06-30 2024-08-20 Panasonic Intellectual Property Management Co., Ltd. Laminated film structure and method for manufacturing laminated film structure
WO2022067352A3 (en) * 2020-09-28 2022-04-28 The Trustees Of Princeton University Antimicrobial and antiviral treatments of materials
WO2022153995A1 (en) * 2021-01-14 2022-07-21 長野県 Material which is for underlying conductive layer and exhibits conductivity due to oxidation-reduction reaction, and manufacturing process, device, plated article, plated article manufacturing method, and coating liquid which use same

Also Published As

Publication number Publication date
JP2990955B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
KR900003152B1 (en) Method for forming capacitive circuit on circuit board
JPH0684546B2 (en) Electronic parts
JP2990955B2 (en) Copper metallization method
US4264646A (en) Selectively electrolessly depositing a metal pattern on the surface of a laminar film
JPS6227393A (en) Formation of copper film on ceramic substrate
US4780332A (en) Process for producing adherent, electrochemically reinforcible and solderable metal layers on an aluminum-oxide containing ceramic substrate
JPH02166294A (en) Plated base material
JPH03179793A (en) Surface structure of ceramic board and manufacture thereof
US4915759A (en) Method for producing a multilayer system
US3679472A (en) Method for bonding a metal pattern to a substrate
JP3066201B2 (en) Circuit board and method of manufacturing the same
JP3610050B2 (en) Ceramic substrate metallization method, ceramic circuit substrate manufacturing method, and ceramic circuit substrate
JPH0891969A (en) Nickel metalizing method for ceramic base material
JPS58161759A (en) Method for plating on aluminum base plate
TW470734B (en) Method of coating a copper film on a ceramic substrate
JPH0368116B2 (en)
EP0232026A2 (en) Multilayer systems and their method of production
JPH01272192A (en) Ceramics substrate
JP3152090B2 (en) Manufacturing method of ceramic wiring board
JPH02294007A (en) Formation of ceramic electronic component electrode
JPH01235291A (en) Manufacture of ceramic circuit board with resistor
JP3089961B2 (en) Copper metallization of ceramic substrates
JP2745557B2 (en) Metallized film and method for forming the same
JPH0632358B2 (en) Method for manufacturing ceramic circuit board with resistor
JPH029192A (en) Manufacture of ceramic circuit board with resistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990914