[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007235040A - Method of forming metal copper layer on cuprous oxide film - Google Patents

Method of forming metal copper layer on cuprous oxide film Download PDF

Info

Publication number
JP2007235040A
JP2007235040A JP2006057773A JP2006057773A JP2007235040A JP 2007235040 A JP2007235040 A JP 2007235040A JP 2006057773 A JP2006057773 A JP 2006057773A JP 2006057773 A JP2006057773 A JP 2006057773A JP 2007235040 A JP2007235040 A JP 2007235040A
Authority
JP
Japan
Prior art keywords
film
zinc
aqueous solution
forming
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006057773A
Other languages
Japanese (ja)
Other versions
JP4803549B2 (en
Inventor
Yutaka Fujiwara
裕 藤原
Masanobu Isaki
昌伸 伊▲崎▼
Yasuyuki Kobayashi
靖之 小林
Junichi Katayama
順一 片山
Satomi Otomo
さとみ 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Osaka City
Original Assignee
Okuno Chemical Industries Co Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd, Osaka City filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2006057773A priority Critical patent/JP4803549B2/en
Publication of JP2007235040A publication Critical patent/JP2007235040A/en
Application granted granted Critical
Publication of JP4803549B2 publication Critical patent/JP4803549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemically Coating (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method of forming a metal layer on a Cu<SB>2</SB>O film by a simple processing method, without requiring a complicated processing step. <P>SOLUTION: There is provided a method of forming a metal Cu layer on a Cu<SB>2</SB>O film surface in which an object to be processed formed with the Cu<SB>2</SB>O film is brought into contact with an aqueous solution containing a reducing agent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、亜酸化銅(Cu2O)膜の表面に金属Cu層を形成する方法に関する。 The present invention relates to a method for forming a metal Cu layer on the surface of a cuprous oxide (Cu 2 O) film.

亜酸化銅(Cu2O)は、主に船底塗料の防汚薬剤として用いられているが、その他に、禁制帯幅が2.1eV付近のp型半導体であり、可視光領域の光を吸収してキャリアを生成することから、太陽電池の光電変換材料としての利用が提案されている。例えば、Cu/Cu2O積層構造のショットキーー型太陽電池、n型半導体であるIn2O3とのヘテロ接合太陽電池等の研究報告がある(下記非特許文献1〜3参照)。 Cuprous oxide (Cu 2 O) is mainly used as an antifouling agent for ship bottom paints. In addition, it is a p-type semiconductor with a forbidden band around 2.1 eV, which absorbs light in the visible light region. Therefore, the use of solar cells as photoelectric conversion materials has been proposed. For example, there are research reports such as a Schottky type solar cell having a Cu / Cu 2 O laminated structure, a heterojunction solar cell with In 2 O 3 which is an n-type semiconductor (see Non-Patent Documents 1 to 3 below).

Cu2OはCuの熱酸化法により作製することが可能であり、近年では、水溶液電解法によるCu2Oの製膜についてもいくつかの報告がある。例えば、乳酸、リンゴ酸等を錯化剤として加えたアルカリ性の硫酸銅水溶液から、陰極電解法によって直接Cu2O膜が得られることが報告されている(下記非特許文献4〜6参照)。 Cu 2 O can be produced by a thermal oxidation method of Cu, and in recent years, there have been several reports on Cu 2 O film formation by an aqueous solution electrolysis method. For example, it has been reported that a Cu 2 O film can be obtained directly from an alkaline copper sulfate aqueous solution to which lactic acid, malic acid or the like is added as a complexing agent by a cathodic electrolysis method (see Non-Patent Documents 4 to 6 below).

Cu2O膜を光電変換材料として太陽電池を形成する場合には、Cu2O膜表面にオーミック接合となるように電極として金属薄膜を形成する必要がある。 When forming a solar cell using a Cu 2 O film as a photoelectric conversion material, it is necessary to form a metal thin film as an electrode so as to form an ohmic junction on the surface of the Cu 2 O film.

一般的に酸化物薄膜に金属膜を形成する際には、スパッタ法、蒸着法などの乾式法により金属薄膜を形成することが多いが、この方法は大規模な装置が必要であり、処理効率も低いという欠点がある。湿式法によって金属薄膜を形成する方法としては、酸化物膜表面にPdなどの無電解めっき用触媒を付与した後、無電解めっき法などによって、Cu、Au、Ag、Ni-P、Ni-Bなどの金属を形成する方法が知られている。しかしながら、この方法では、触媒を付与した後、無電解めっきを行う2工程からなる煩雑な操作が必要であり、しかも、一般的な触媒付与溶液は、Pd、Pt、Au、Agなどの貴金属を酸性領域で溶解させた水溶液であることが多く、Cu2O層を溶解する可能性がある。
Solar Energy Materials 4 (1980) , P101-112p Appl.Phys. Lett. 34 (1), 47-49 (1979) 長野県工業高等専門学校紀要 第25号 (1992) Chem. Mater. 8 (1996) , p2499 J. Mater. Res 13 (1988). p 909 J. Appl. Electrochem. 34 (2004), p 687p
In general, when a metal film is formed on an oxide thin film, the metal thin film is often formed by a dry method such as sputtering or vapor deposition. However, this method requires a large-scale apparatus and has a processing efficiency. Has the disadvantage of being low. As a method of forming a metal thin film by a wet method, after applying an electroless plating catalyst such as Pd to the oxide film surface, Cu, Au, Ag, Ni-P, Ni-B, etc. A method of forming a metal such as is known. However, this method requires a complicated operation consisting of two steps in which electroless plating is performed after applying the catalyst, and a general catalyst application solution contains noble metals such as Pd, Pt, Au, and Ag. In many cases, the aqueous solution is dissolved in an acidic region, and the Cu 2 O layer may be dissolved.
Solar Energy Materials 4 (1980), P101-112p Appl.Phys. Lett. 34 (1), 47-49 (1979) Bulletin of Nagano National College of Technology No. 25 (1992) Chem. Mater. 8 (1996), p2499 J. Mater. Res 13 (1988). P 909 J. Appl. Electrochem. 34 (2004), p 687p

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、複雑な処理工程を要することなく、簡単な処理方法によってCu2O膜上に金属層を形成することが可能な、新規な方法を提供することである。 The present invention has been made in view of the current state of the prior art described above, and its main object is to form a metal layer on a Cu 2 O film by a simple processing method without requiring a complicated processing step. It is to provide a novel method that is possible.

本発明者は、上記した目的を達成すべく鋭意研究を重ねた結果、還元剤を含有する水溶液にCu2O膜を接触させるという非常に簡単な方法によって、Cu2O膜の表面にオーミック接合のCu層を形成でき、これにより、Cu2O膜の表面に容易に電極を形成することが可能となることを見出し、ここに本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has achieved an ohmic junction on the surface of the Cu 2 O film by a very simple method of bringing the Cu 2 O film into contact with an aqueous solution containing a reducing agent. The present inventors have found that an Cu layer can be formed, whereby an electrode can be easily formed on the surface of the Cu 2 O film, and the present invention has been completed here.

即ち、本発明は、下記のCu2O膜表面に金属Cu層を形成する方法を提供するものである。
1. Cu2O膜を形成した被処理物を、還元剤を含有する水溶液に接触させることを特徴とするCu2O膜表面に金属Cu層を形成する方法。
2. 還元剤が、アミンボラン化合物及び水素化ホウ素化合物からなる群から選ばれた少なくとも一種の化合物である上記項1に記載の方法。
3. 被処理物が、Cu2O層を光電変換材料とする太陽電池用材料である上記項1又は2に記載の方法。
4. 被処理物が、光化学反応によって析出したCuO膜を含む材料である上記項1又は2に記載の方法。
That is, the present invention provides a method for forming a metal Cu layer on the surface of the following Cu 2 O film.
1. A method for forming a metal Cu layer on the surface of a Cu 2 O film, wherein the object to be treated on which the Cu 2 O film is formed is brought into contact with an aqueous solution containing a reducing agent.
2. Item 2. The method according to Item 1, wherein the reducing agent is at least one compound selected from the group consisting of amine borane compounds and borohydride compounds.
3. Item 3. The method according to Item 1 or 2, wherein the object to be processed is a solar cell material having a Cu 2 O layer as a photoelectric conversion material.
4). Item 3. The method according to Item 1 or 2, wherein the workpiece is a material containing a Cu 2 O film deposited by a photochemical reaction.

以下、本発明のCu2O膜表面に金属Cu層を形成する方法について具体的に説明する。
(I) 金属Cu層の形成方法
本発明方法によれば、処理対象とするCu2O膜を還元剤を含有する水溶液に接触させることによって、Cu2O膜の表面が還元されて、Cu2O膜表面にオーミック接合の金属Cu層を形成することができる。
Hereinafter, a method for forming a metal Cu layer on the surface of the Cu 2 O film of the present invention will be specifically described.
According to the method for forming the present invention a method of (I) a metal Cu layer, by contacting the Cu 2 O film to be processed in an aqueous solution containing a reducing agent, the surface of the Cu 2 O film is reduced, Cu 2 An ohmic junction metal Cu layer can be formed on the surface of the O film.

還元剤の種類については特に限定的ではないが、実用的な還元速度を示す還元剤としては、ジメチルアミンボラン(DMAB)、トリメチルアミンボラン(TMAB)等のアミンボラン化合物;水素化ホウ素ナトリム(NaBH4)、水素化ホウ素カリウム(KBH4)等の水素化ホウ素化合物などを例示することができる。 The type of reducing agent is not particularly limited, but examples of reducing agents that exhibit a practical reduction rate include amine borane compounds such as dimethylamine borane (DMAB) and trimethylamine borane (TMAB); sodium borohydride (NaBH 4 ) And borohydride compounds such as potassium borohydride (KBH 4 ).

水溶液液中の還元剤の濃度については、特に限定的ではないが、還元剤濃度が高すぎる場合には還元速度が速くなり、高密度の金属Cu層を形成できない。また、Cu2O膜が薄い場合には、短時間で膜全体が還元されて金属化されるので、製造条件の制御が困難である。これらの点を考慮すると、還元剤濃度は0.0001〜1mol/l程度とすることが好ましく、0.01〜0.1mol/l程度とすることがより好ましい。 The concentration of the reducing agent in the aqueous solution is not particularly limited, but when the reducing agent concentration is too high, the reduction rate increases and a high-density metallic Cu layer cannot be formed. In addition, when the Cu 2 O film is thin, the entire film is reduced and metallized in a short time, so that it is difficult to control the manufacturing conditions. Considering these points, the reducing agent concentration is preferably about 0.0001 to 1 mol / l, and more preferably about 0.01 to 0.1 mol / l.

還元剤を含有する水溶液にCu2O膜を接触させる方法については、特に限定的ではなく、必要とする厚さの金属Cu層が形成されるまで、還元剤を含有する水溶液をCu2O膜に接触させることができる方法であればよい。通常は、還元剤を含有する水溶液中にCu2O膜を形成した被処理物を浸漬する方法によれば、効率の良い処理が可能である。 The method of bringing the Cu 2 O film into contact with the aqueous solution containing the reducing agent is not particularly limited, and the aqueous solution containing the reducing agent is removed from the Cu 2 O film until a metal Cu layer having a required thickness is formed. Any method can be used as long as it can be brought into contact with the surface. Normally, efficient treatment is possible by a method of immersing an object to be treated in which a Cu 2 O film is formed in an aqueous solution containing a reducing agent.

還元剤を含有する水溶液の液温については特に限定的ではなく、還元剤の濃度が高い場合には低い液温で金属Cu層を形成可能であり、還元剤濃度が低い場合にはより高い処理温度が必要となる。通常は、10〜70℃程度、好ましくは30〜60℃程度の範囲の液温とすればよい。   The liquid temperature of the aqueous solution containing the reducing agent is not particularly limited. When the concentration of the reducing agent is high, the Cu layer can be formed at a low liquid temperature, and when the concentration of the reducing agent is low, the treatment is higher. Temperature is required. Usually, the liquid temperature may be about 10 to 70 ° C, preferably about 30 to 60 ° C.

還元反応は Cu2O膜の表面から進行し、処理時間の増加にともなって金属Cu層の厚さは増加する。よって、処理時間を調節することによって、金属Cu層の膜厚を制御することができる。 The reduction reaction proceeds from the surface of the Cu 2 O film, and the thickness of the metal Cu layer increases as the processing time increases. Therefore, the film thickness of the metal Cu layer can be controlled by adjusting the processing time.

(II)本発明方法の適用例
(1)酸化物薄膜太陽電池の電極形成法としての利用
本発明の金属Cu層の形成方法は、例えば、Cu2O膜を光電変換材料とする太陽電池において、Cu2O膜表面に電極を形成する方法として適用できる。
(II) Application Example of the Method of the Present Invention (1) Utilization of an Oxide Thin Film Solar Cell as an Electrode Formation Method The method for forming a metal Cu layer of the present invention is, for example, in a solar cell using a Cu 2 O film as a photoelectric conversion material. It can be applied as a method for forming electrodes on the surface of the Cu 2 O film.

以下、Cu2O膜を光電変換材料とする酸化物薄膜太陽電池の具体的な構成例及びその製造方法を説明する。 Hereinafter, a specific configuration example of an oxide thin film solar cell using a Cu 2 O film as a photoelectric conversion material and a manufacturing method thereof will be described.

本発明の金属Cu層の形成方法を適用するこができる太陽電池の具体例として、透明電極上に、ZnO膜、AgO膜及びCuO膜が順次積層された構造を有する酸化物薄膜太陽電池を挙げることができる。この太陽電池は、p型酸化物半導体であるAgOを光電変換層として用い、n型半導体であるZnOと積層した構造とすることによって、高い変換効率を有するものとなり、更に、その上に、禁制帯幅が広いCuO膜が形成されていることにより、ZnO/AgO接合界面において光照射時に生成した電子と正孔(ホール)の再結合が抑制されて、非常に高い変換効率を発揮できる。 As a specific example of a solar cell to which the method for forming a metal Cu layer of the present invention can be applied, an oxide thin film having a structure in which a ZnO film, an Ag 2 O film, and a Cu 2 O film are sequentially laminated on a transparent electrode A solar cell can be mentioned. This solar cell has a high conversion efficiency by using Ag 2 O, which is a p-type oxide semiconductor, as a photoelectric conversion layer and laminated with ZnO, which is an n-type semiconductor. The formation of a Cu 2 O film with a wide forbidden band suppresses recombination of electrons and holes generated during light irradiation at the ZnO / Ag 2 O junction interface, resulting in extremely high conversion. The efficiency can be demonstrated.

透明電極としては、特に限定はなく、従来から太陽電池において用いられている透明電極、例えば、ZnO電極、ITO電極、SnO電極、NESA電極等を用いることができる。透明電極の厚さについては特に限定はないが、例えば、0.1〜1μm程度とすればよい。 The transparent electrode is not particularly limited, and a transparent electrode conventionally used in solar cells, for example, a ZnO electrode, an ITO electrode, a SnO 2 electrode, a NESA electrode, or the like can be used. Although there is no limitation in particular about the thickness of a transparent electrode, What is necessary is just to be about 0.1-1 micrometer, for example.

透明電極は、必要に応じて、透明基板上に形成される。透明基板の種類についても特に限定はなく、例えば、ガラス基板、ポリマー基板等の通常の太陽電池において用いられている各種透明基板を用いることができる。透明基板の厚さについては特に限定はないが、例えば、0.1〜10mm程度とすればよい。   A transparent electrode is formed on a transparent substrate as needed. There is no limitation in particular also about the kind of transparent substrate, For example, the various transparent substrates currently used in normal solar cells, such as a glass substrate and a polymer substrate, can be used. Although there is no limitation in particular about the thickness of a transparent substrate, What is necessary is just to be about 0.1-10 mm, for example.

透明電極の上に形成するZnO膜、AgO膜及びCuO膜の厚さについては、特に限定的ではないが、通常、それぞれ0.01〜20μm程度とすればよい。 The thicknesses of the ZnO film, the Ag 2 O film, and the Cu 2 O film formed on the transparent electrode are not particularly limited, but are usually about 0.01 to 20 μm.

ZnO膜、AgO膜及び及びCuO膜の形成方法については特に限定はなく、CVD法、蒸着法、スパッタリング法、レーザーアブレーション法、MBE法などの乾式法、スプレーパイロリシス法、ゾルーゲル法、液相成長法などの湿式法等の各種方法によって形成可能である。特に、水溶液から電気化学的方法又は化学的方法によって膜を形成する場合には、原料が比較的安価であり、製造コストも低いことから、低コストで優れた変換性能を有する太陽電池を得ることができる。 There are no particular limitations on the method of forming the ZnO film, Ag 2 O film, and Cu 2 O film. CVD, vapor deposition, sputtering, laser ablation, MBE, and other dry methods, spray pyrolysis, sol-gel methods Further, it can be formed by various methods such as a wet method such as a liquid phase growth method. In particular, when a film is formed from an aqueous solution by an electrochemical method or a chemical method, since the raw materials are relatively inexpensive and the manufacturing cost is low, a solar cell having excellent conversion performance can be obtained at a low cost. Can do.

また、水溶液からの形成方法によれば、(0001)配向したZnO膜を形成することが可能である。形成されるZnO膜は、格子定数aが約0.325nm、cが約0.521nmの六方晶構造を有するものであり、この上に、水溶液からAgO膜を形成することによって、ZnOの(0001)面上に、格子定数aが約0.586nm、bが0.324nm、cが0.550nm、βが107.5度の単斜晶構造を有するAgOの(-111)面を優先的に成長させることができる。このようにして(-111)面が優先的に配向したAgO膜を形成した後、加熱処理することによって、ZnO膜の(0001)面上に、AgO膜の(111)面が優先的に成長したヘテロエピタキシャル構造を形成することが可能である。更に、この上に水溶液からCuO膜を形成することによって、ヘテロエピタキシャル接合を有する太陽電池を得ることができる。この太陽電池は、原子レベルにおいて良好な接合界面が形成されており、高い変換効率を有するものとなる。 In addition, according to the formation method from an aqueous solution, a (0001) -oriented ZnO film can be formed. The formed ZnO film has a hexagonal crystal structure with a lattice constant a of about 0.325 nm and c of about 0.521 nm. On this, an AgO film is formed from an aqueous solution, whereby the ZnO (0001) plane is formed. Further, the (−111) plane of AgO having a monoclinic structure having a lattice constant a of about 0.586 nm, b of 0.324 nm, c of 0.550 nm, and β of 107.5 degrees can be preferentially grown. After the AgO film having the (−111) plane preferentially oriented is formed in this way, the (111) plane of the Ag 2 O film is preferentially formed on the (0001) plane of the ZnO film by heat treatment. It is possible to form a heteroepitaxial structure grown on the substrate. Furthermore, a solar cell having a heteroepitaxial junction can be obtained by forming a Cu 2 O film from an aqueous solution thereon. In this solar cell, a good junction interface is formed at the atomic level, and the solar cell has high conversion efficiency.

ZnO膜を水溶液から形成する方法としては、例えば、特開平8−217443号公報、特開平8−260175号公報、特開平9−278437号公報、特開2005−47752号公報などに記載されている公知の方法を採用できる。   Methods for forming a ZnO film from an aqueous solution are described in, for example, JP-A-8-217443, JP-A-8-260175, JP-A-9-278437, and JP-A-2005-47752. A known method can be adopted.

以下、これらの方法について具体的に説明する。   Hereinafter, these methods will be specifically described.

(i)水溶液からのZnO膜の形成方法
(イ)化学的形成方法
ZnO膜の化学的形成方法としては、亜鉛イオン、硝酸イオン及びアミンボラン化合物を含有する水溶液からなる酸化亜鉛膜形成用組成物中に被処理物を浸漬する方法を採用できる。
(I) Formation method of ZnO film from aqueous solution (a) Chemical formation method
As a chemical formation method of the ZnO film, a method of immersing an object to be processed in a composition for forming a zinc oxide film made of an aqueous solution containing zinc ions, nitrate ions and an amine borane compound can be employed.

亜鉛イオンイオン源となる化合物としては、水溶性亜鉛塩を用いればよく、その具体例として、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、リン酸亜鉛、ピロリン酸亜鉛、炭酸亜鉛等を挙げることができる。硝酸イオン源としては、硝酸、水溶性硝酸塩等を用いることができ、硝酸塩の具体例として、硝酸亜鉛、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸尿素等を挙げることができる。亜鉛イオン源となる化合物及び硝酸イオン源となる化合物は、それぞれ、一種単独又は二種以上混合して用いることができ、また、亜鉛イオン及び硝酸イオンの両方のイオン源として、硝酸亜鉛を単独で用いても良い。特に、硝酸亜鉛を単独で用いる場合には、浴中に不要な成分が多く存在することがなく、水酸化亜鉛の形成なども抑制されて、純度の高い酸化亜鉛膜を広い濃度範囲で形成することが可能となる。   As a compound serving as a zinc ion source, a water-soluble zinc salt may be used. Specific examples thereof include zinc nitrate, zinc sulfate, zinc chloride, zinc acetate, zinc phosphate, zinc pyrophosphate, and zinc carbonate. Can do. As the nitrate ion source, nitric acid, water-soluble nitrate and the like can be used, and specific examples of nitrate include zinc nitrate, ammonium nitrate, sodium nitrate, potassium nitrate, lithium nitrate, urea nitrate and the like. The compound serving as the zinc ion source and the compound serving as the nitrate ion source can be used singly or in combination of two or more, respectively, and zinc nitrate alone can be used as both the zinc ion and nitrate ion sources. It may be used. In particular, when zinc nitrate is used alone, there are not many unnecessary components in the bath, formation of zinc hydroxide and the like are suppressed, and a high-purity zinc oxide film is formed in a wide concentration range. It becomes possible.

亜鉛イオン及び硝酸イオンの濃度は広い範囲で調整できるが、いずれか一方でもイオン濃度が低すぎると酸化亜鉛膜を形成することができず、又、いずれか一方でもイオン濃度が高すぎると水酸化亜鉛膜が形成され易くなって酸化亜鉛膜の純度が低下しやすい。このため亜鉛イオン及び硝酸イオンのそれぞれの濃度は、0.001mol/l〜0.5mol/l(亜鉛分換算で0.065〜32.7g/l)程度の範囲内にあることが好ましく、0.01mol/l〜0.2mol/l(亜鉛分換算で0.65〜13g/l)程度の範囲内にあることがより好ましい。   The concentration of zinc ions and nitrate ions can be adjusted over a wide range. However, if either ion concentration is too low, a zinc oxide film cannot be formed, and if either ion concentration is too high, hydroxylation can occur. A zinc film is easily formed, and the purity of the zinc oxide film is likely to be lowered. For this reason, it is preferable that each density | concentration of zinc ion and nitrate ion exists in the range of about 0.001 mol / l-0.5 mol / l (0.065-32.7 g / l in conversion of zinc content), 0 More preferably, it is in the range of about 0.01 mol / l to 0.2 mol / l (0.65 to 13 g / l in terms of zinc content).

アミンボラン化合物としては、水溶性の化合物であればいずれも用いることができ、具体例として、ジメチルアミンボラン、トリメチルアミンボラン等を挙げることができる。特に、トリメチルアミンボランを用いる場合には、浴の安定性が良好となり、良好な酸化亜鉛膜を長期間継続して形成できる。   As the amine borane compound, any water-soluble compound can be used, and specific examples include dimethylamine borane, trimethylamine borane and the like. In particular, when trimethylamine borane is used, the stability of the bath is improved and a good zinc oxide film can be formed continuously for a long period of time.

アミンボラン化合物の配合量は、特に限定的ではないが、配合量が少なすぎる場合には、水溶液の安定性は向上するものの酸化亜鉛の析出速度が遅くなり、一方、配合量が多すぎる場合には、溶解が困難になることに加えて、加温した場合に浴の安定性が低下して沈殿が生成し易くなる等の問題点がある。このため、アミンボラン化合物の配合量は、0.001mol/l〜0.5mol/l程度とすることが好ましく、0.005mol/l〜0.1mol/l程度とすることがより好ましい。   The compounding amount of the amine borane compound is not particularly limited. However, if the compounding amount is too small, the stability of the aqueous solution is improved, but the precipitation rate of zinc oxide is slowed, while the compounding amount is too large. In addition to difficulty in dissolution, there is a problem that when heated, the stability of the bath is lowered and precipitation is likely to occur. For this reason, the compounding amount of the amine borane compound is preferably about 0.001 mol / l to 0.5 mol / l, and more preferably about 0.005 mol / l to 0.1 mol / l.

処理時の液温は、40〜100℃程度とすることが好ましく、60〜100℃程度とすることがより好ましい。又、酸化亜鉛膜形成用組成物のpHは、特に限定されるものではないが、pHが低い場合には浴の安定性は向上するものの成膜速度が低下し、一方、pHが高い場合には、成膜速度は向上するが浴の安定性が低下して沈殿が生成し易くなり、酸化亜鉛膜を得ることが困難となる。これらの点から、該組成物のpHは4〜7程度とすることが好ましい。   The liquid temperature during the treatment is preferably about 40 to 100 ° C, more preferably about 60 to 100 ° C. Further, the pH of the composition for forming a zinc oxide film is not particularly limited. However, when the pH is low, the stability of the bath is improved, but the film formation rate is lowered, while when the pH is high. However, the deposition rate is improved, but the stability of the bath is lowered and precipitation is likely to occur, making it difficult to obtain a zinc oxide film. From these points, the pH of the composition is preferably about 4 to 7.

被処理物が触媒活性を有しない場合には、上記組成物に浸漬する前に、無電解めっき皮膜を形成する際に用いられるパラジウム、鉄、コバルト、ニッケル、白金等の触媒金属を付与する処理を行なう。触媒付与処理の具体的な方法としては、無電解めっき皮膜を形成する場合の触媒付与方法と同様の公知の方法をいずれも適用でき、一般にパラジウムを付与する方法が広く行われており、例えば、センシタイジング−アクチベーション法、キャタリスト−アクセレレーター法、アルカリキャタリスト法等により触媒を付与すればよい。   When the object to be treated does not have catalytic activity, a treatment for imparting a catalytic metal such as palladium, iron, cobalt, nickel, or platinum used when forming an electroless plating film before immersing in the composition. To do. As a specific method of the catalyst application treatment, any known method similar to the catalyst application method in the case of forming an electroless plating film can be applied, and generally a method of applying palladium is widely performed. The catalyst may be applied by a sensitizing-activation method, a catalyst-accelerator method, an alkaline catalyst method, or the like.

上記した製膜条件において、特に、製膜時の液温を75〜100℃程度の高温とすることによって、(0001)面の配向性の良いZnO膜を形成することができる。   Under the above-mentioned film forming conditions, a ZnO film with good orientation on the (0001) plane can be formed by setting the liquid temperature during film formation to a high temperature of about 75 to 100 ° C.

また、特開2005−281583号公報に記載されている方法を採用する場合には、簡単な方法で(0001)面に優先配向したZnO膜を形成することができ、配向性や析出状況を制御することができる。   In addition, when adopting the method described in Japanese Patent Application Laid-Open No. 2005-28183, a ZnO film preferentially oriented on the (0001) plane can be formed by a simple method, and the orientation and deposition state can be controlled. can do.

即ち、亜鉛イオン、硝酸イオン及びアミンボラン化合物を含み、亜鉛イオン濃度が0.06〜0.075mol/lであって、硝酸イオンのモル濃度が亜鉛イオンのモル濃度の1〜3倍の範囲内にある水溶液からなる酸化亜鉛膜形成用組成物を被処理物に接触させることによって、(0001)面に優先配向した緻密な構造のZnO膜を形成することができる。アミンボラン化合物の添加量については、広い範囲で調整することが可能であり、例えば、0.001〜0.5mol/l程度とすることができるが、0.01〜0.1mol/l程度とすることが好ましい。該組成物のpHは4〜7程度とすることが好ましく、該組成物の液温は、40〜90℃程度とすることが好ましく、55〜90℃程度とすることがより好ましい。   That is, it contains zinc ions, nitrate ions and amine borane compounds, the zinc ion concentration is 0.06 to 0.075 mol / l, and the molar concentration of nitrate ions is within the range of 1 to 3 times the molar concentration of zinc ions. By bringing a composition for forming a zinc oxide film made of a certain aqueous solution into contact with an object to be processed, a ZnO film having a dense structure preferentially oriented on the (0001) plane can be formed. The addition amount of the amine borane compound can be adjusted in a wide range, for example, about 0.001 to 0.5 mol / l, but about 0.01 to 0.1 mol / l. It is preferable. The pH of the composition is preferably about 4 to 7, and the liquid temperature of the composition is preferably about 40 to 90 ° C, more preferably about 55 to 90 ° C.

また、亜鉛イオン、硝酸イオン及びアミンボラン化合物を含み、亜鉛イオン濃度が0.075〜0.1mol/lであって、硝酸イオンのモル濃度が亜鉛イオンのモル濃度の1〜3倍の範囲内にある水溶液からなる酸化亜鉛膜形成用組成物を、70〜90℃の液温で被処理物に接触させることによっても、(0001)面に優先配向した緻密な構造のZnO膜を形成することができる。アミンボラン化合物の添加量については、広い範囲で調整することが可能であり、例えば、0.001〜0.5mol/l程度とすることができ、0.01〜0.1mol/l程度とすることが好ましい。該組成物のpHは4〜7程度とすることが好ましい。この方法では、液温を上昇させることによって配向性の程度を強くすることができ、処理液の液温を適宜設定することによって、優先配向の程度を調整することが可能である。   Moreover, it contains zinc ions, nitrate ions and amine borane compounds, the zinc ion concentration is 0.075 to 0.1 mol / l, and the molar concentration of nitrate ions is within the range of 1 to 3 times the molar concentration of zinc ions. A ZnO film having a dense structure preferentially oriented in the (0001) plane can also be formed by bringing a composition for forming a zinc oxide film made of an aqueous solution into contact with an object to be processed at a liquid temperature of 70 to 90 ° C. it can. The addition amount of the amine borane compound can be adjusted in a wide range, for example, about 0.001 to 0.5 mol / l, and about 0.01 to 0.1 mol / l. Is preferred. The pH of the composition is preferably about 4-7. In this method, the degree of orientation can be strengthened by increasing the liquid temperature, and the degree of preferential orientation can be adjusted by appropriately setting the liquid temperature of the treatment liquid.

更に、亜鉛イオン、硝酸イオン及びアミンボラン化合物を含み、亜鉛イオン濃度が0.01〜0.05mol/lであって、硝酸イオンのモル濃度が亜鉛イオンのモル濃度の1〜3倍の範囲内にある水溶液からなる酸化亜鉛膜形成用組成物を被処理物に接触させた後、亜鉛イオン、硝酸イオン及びアミンボラン化合物を含み、亜鉛イオン濃度が0.08〜0.1mol/lであって、硝酸イオンのモル濃度が亜鉛イオンのモル濃度の1〜3倍の範囲内にある水溶液からなる酸化亜鉛膜形成用組成物を被処理物に接触させることによって、(0001)面に優先配向した緻密な構造のZnO膜を形成することができる。この方法によれば、第一工程において、(0001)面に優先配向したポーラス構造の酸化亜鉛膜が形成され、次いで、第二工程において、第一工程で形成されたポーラス構造の酸化亜鉛膜のポアー部分に酸化亜鉛粒子が成長して粒子間のポアーが消滅し、(0001)面に優先的に配向し、しかも緻密な構造の酸化亜鉛膜が形成される。特に、上記二段階の析出方法によれば、(0001)面の配向性が非常に高い酸化亜鉛膜を形成することができる。   Furthermore, it contains zinc ions, nitrate ions and amine borane compounds, the zinc ion concentration is 0.01 to 0.05 mol / l, and the molar concentration of nitrate ions is within the range of 1 to 3 times the molar concentration of zinc ions. A composition for forming a zinc oxide film made of an aqueous solution is brought into contact with an object to be processed, and then contains zinc ions, nitrate ions and an amine borane compound, and the zinc ion concentration is 0.08 to 0.1 mol / l. By bringing the composition for forming a zinc oxide film made of an aqueous solution having a molar concentration of ions in the range of 1 to 3 times the molar concentration of zinc ions into contact with the object to be processed, a densely oriented layer preferentially oriented on the (0001) plane A ZnO film having a structure can be formed. According to this method, a porous zinc oxide film preferentially oriented in the (0001) plane is formed in the first step, and then, in the second step, the porous zinc oxide film formed in the first step is formed. Zinc oxide particles grow in the pores, and the pores between the particles disappear, and a zinc oxide film having a dense structure is formed that is preferentially oriented in the (0001) plane. In particular, according to the two-stage deposition method, a zinc oxide film having a very high (0001) plane orientation can be formed.

この方法で用いる酸化亜鉛膜形成用組成物についても、アミンボラン化合物の添加量は広い範囲で調整することが可能であり、第一工程で用いる酸化亜鉛膜形成用組成物と第二工程で用いる酸化亜鉛膜形成用組成物のいずれについても、0.001〜0.5mol/l程度とすることができ、0.01〜0.1mol/l程度とすることが好ましい。酸化亜鉛膜形成用組成物のpHについては、特に限定されるものではないが、pH4〜7程度とすることが好ましい。   Also for the zinc oxide film forming composition used in this method, the amount of amine borane compound added can be adjusted in a wide range, and the zinc oxide film forming composition used in the first step and the oxidation used in the second step. For any of the compositions for forming a zinc film, it can be about 0.001 to 0.5 mol / l, and preferably about 0.01 to 0.1 mol / l. Although it does not specifically limit about the pH of the composition for zinc oxide film formation, It is preferable to set it as about pH 4-7.

処理時間については、目的とする膜厚のポーラス構造の酸化亜鉛膜が形成されるまで第一工程の処理を行い、次いで、粒子間のポアーが消滅するまで第二工程の処理を行えばよい。例えば、第一工程において、5〜30分間程度処理を行った場合には、第二工程において、10〜60分間程度の処理を行えばよい。この方法では、処理温度は、第一工程及び第二工程共に、40〜90℃程度、好ましくは55〜90℃程度とすることができる。特に、この方法は、55〜70℃程度、更には、55〜65℃程度という比較的低い処理液温度において、(0001)面に優先配向した緻密な酸化亜鉛膜を形成することができるので、処理液の安定性が低下することが少ない点で有利である。   With respect to the treatment time, the treatment in the first step may be performed until a porous zinc oxide film having a desired film thickness is formed, and then the treatment in the second step may be performed until the pores between the particles disappear. For example, when processing is performed for about 5 to 30 minutes in the first step, processing may be performed for about 10 to 60 minutes in the second step. In this method, the treatment temperature can be about 40 to 90 ° C., preferably about 55 to 90 ° C. in both the first step and the second step. In particular, this method can form a dense zinc oxide film preferentially oriented on the (0001) plane at a relatively low treatment liquid temperature of about 55 to 70 ° C., further about 55 to 65 ° C. This is advantageous in that the stability of the treatment liquid is less likely to deteriorate.

上記した各種方法で形成されたZnO膜は、更に、N,Ar等の不活性ガス雰囲気や真空中などの被酸化性雰囲気中で400〜600℃程度で10〜300分程度加熱することによって、電気伝導性を向上させることができる。 The ZnO film formed by the various methods described above is further heated at about 400 to 600 ° C. for about 10 to 300 minutes in an inert gas atmosphere such as N 2 or Ar or an oxidizable atmosphere such as vacuum. , Electrical conductivity can be improved.

(ロ)電気化学的形成方法
電気化学的方法によってZnO膜を形成する方法としては、亜鉛イオン及び硝酸イオンを含有する水溶液中で電解処理を行えばよい。この電解反応によって陰極上にZnO膜を形成することができる。
(B) Electrochemical formation method As a method of forming a ZnO film by an electrochemical method, electrolytic treatment may be performed in an aqueous solution containing zinc ions and nitrate ions. By this electrolytic reaction, a ZnO film can be formed on the cathode.

酸化亜鉛膜作製用電解液は、亜鉛イオン及び硝酸イオンを含有する水溶液であればよく、例えば、亜鉛イオン及び硝酸イオンの両方のイオン源となる硝酸亜鉛を含有する水溶液、亜鉛イオン源として水溶性の亜鉛塩を含有し、硝酸イオン源として硝酸又は水溶性の硝酸塩を含有する水溶液等を用いることができる。   The electrolytic solution for forming the zinc oxide film may be an aqueous solution containing zinc ions and nitrate ions. For example, an aqueous solution containing zinc nitrate serving as an ion source of both zinc ions and nitrate ions, and water-soluble as a zinc ion source An aqueous solution containing nitric acid or water-soluble nitrate as a nitrate ion source can be used.

水溶性の亜鉛塩としては、特に限定はなく、例えば、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、リン酸亜鉛、ピロリン酸亜鉛、炭酸亜鉛等を挙げることができる。また、水溶性の硝酸塩としても特に限定はなく、硝酸亜鉛、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸尿素等を挙げることができる。   The water-soluble zinc salt is not particularly limited, and examples thereof include zinc nitrate, zinc sulfate, zinc chloride, zinc acetate, zinc phosphate, zinc pyrophosphate, and zinc carbonate. The water-soluble nitrate is not particularly limited, and examples thereof include zinc nitrate, ammonium nitrate, sodium nitrate, potassium nitrate, lithium nitrate, and urea nitrate.

亜鉛イオン源として使用する化合物及び硝酸イオン源として使用する化合物は、それぞれ一種類のものを用いてもよく、或いは複数のものを混合して用いてもよい。   As the compound used as the zinc ion source and the compound used as the nitrate ion source, one type of each may be used, or a plurality of types may be used in combination.

亜鉛イオン及び硝酸イオンの濃度は、広い範囲で調整できるが、濃度が低くなりすぎると電解条件を調整しても連続膜を形成することが困難になり、濃度が高くなりすぎると水酸化亜鉛膜が得られる傾向にある。このため、通常、亜鉛イオン及び硝酸イオンのそれぞれの濃度が、0.001mol/l〜0.5mol/l(亜鉛分換算で0.065〜32.7g/l)程度の範囲にあることが適当であり、特に、それぞれの濃度が0.1mol/l(亜鉛分換算で6.5g/l)程度であることが好ましい。   The concentration of zinc ions and nitrate ions can be adjusted over a wide range, but if the concentration is too low, it will be difficult to form a continuous film even if the electrolysis conditions are adjusted, and if the concentration is too high, the zinc hydroxide film Tends to be obtained. For this reason, it is appropriate that the concentrations of zinc ions and nitrate ions are usually in the range of about 0.001 mol / l to 0.5 mol / l (0.065 to 32.7 g / l in terms of zinc content). In particular, the concentration is preferably about 0.1 mol / l (6.5 g / l in terms of zinc content).

電解方法としては、通常の電解法をいずれも採用できる。たとえば、陰極電位は、電解液の濃度などに応じて適宜設定すればよいが、通常、Ag/AgCl電極基準で−0.2V〜−2.0V程度が適当であり、−0.5V〜−1.6V程度が好ましく、−0.7V〜−1.6V程度が特に好ましい。この電位範囲での陰極電流密度は0.00001mA/cm2 〜200mA/cm2 程度となるが、陰極電流密度は用いる基材の種類によっても変化する。酸化亜鉛膜の析出速度は、陰極電位が卑になるほど、言い換えれば陰極電流密度が大きいほど、大きくなる。 As the electrolysis method, any ordinary electrolysis method can be adopted. For example, the cathode potential may be appropriately set according to the concentration of the electrolytic solution, etc., but is usually about −0.2 V to −2.0 V on the basis of the Ag / AgCl electrode, and −0.5 V to − About 1.6 V is preferable, and about −0.7 V to −1.6 V is particularly preferable. The cathode current density in this potential range is about 0.00001 mA / cm 2 to 200 mA / cm 2 , but the cathode current density varies depending on the type of substrate used. The deposition rate of the zinc oxide film increases as the cathode potential becomes lower, in other words, as the cathode current density increases.

電解液の液温は、広い範囲で設定できるが、通常は、20℃〜100℃程度とすればよい。また、電解液のpHが高くなりすぎると電解液中に沈殿が生成して、酸化亜鉛膜を得ることが不可能となるので、pH1〜7程度とすることが適当であり、pH5.2程度とすることが好ましい。   The temperature of the electrolytic solution can be set in a wide range, but is usually about 20 ° C to 100 ° C. In addition, if the pH of the electrolytic solution becomes too high, precipitates are generated in the electrolytic solution, making it impossible to obtain a zinc oxide film. Therefore, it is appropriate to adjust the pH to about 1 to 7, and about pH 5.2. It is preferable that

電解に用いる陽極としては、通常の亜鉛めっきに用いられる陽極をいずれも使用できる。具体例としては、可溶性陽極である亜鉛の他に、カーボン、白金、白金めっきチタン等の不溶性陽極材料等を用いることができる。   As an anode used for electrolysis, any anode used for normal galvanization can be used. As a specific example, insoluble anode materials such as carbon, platinum, and platinum-plated titanium can be used in addition to zinc which is a soluble anode.

上記した電解方法において、特に、液温を60〜100℃程度、好ましくは80〜100℃程度として、Ag/AgCl電極基準で−0.5V〜−0.8V程度で定電位電解を行うことによっても、(0001)面の配向性の良いZnO膜を得ることができる。   In the electrolysis method described above, in particular, the liquid temperature is set to about 60 to 100 ° C., preferably about 80 to 100 ° C., and constant potential electrolysis is performed at about −0.5 V to −0.8 V on the basis of the Ag / AgCl electrode. However, a ZnO film having a good orientation on the (0001) plane can be obtained.

(ii)水溶液からのAgO膜の形成方法
次に、AgO膜を水溶液から形成する方法について説明する。
水溶液からAgO膜を形成する方法としては、例えば、「J. Electrochem. Soc., Vol. 143, No.9, September 1996.」に記載されている方法を採用できる。具体的には、水溶性銀塩を含有する水溶液中で電解反応によってAgO膜を形成し、次いで、加熱処理を行うことによって、AgO膜を形成することができる。
Method of forming Ag 2 O film from (ii) an aqueous solution Next, a method for forming from an aqueous solution of Ag 2 O film.
As a method for forming an Ag 2 O film from an aqueous solution, for example, a method described in “J. Electrochem. Soc., Vol. 143, No. 9, September 1996.” can be employed. Specifically, an Ag 2 O film can be formed by forming an AgO film by an electrolytic reaction in an aqueous solution containing a water-soluble silver salt and then performing a heat treatment.

水溶性銀塩としては特に限定はなく、例えば、酢酸銀、硝酸銀、乳酸銀、メタンスルホン酸銀などを使用することができる。水溶液銀塩の濃度は0.01mol/l〜1mol/l程度、好ましくは、0.01mol/l〜0.1mol/l程度とすればよい。   There is no limitation in particular as water-soluble silver salt, For example, silver acetate, silver nitrate, silver lactate, silver methanesulfonate etc. can be used. The concentration of the aqueous silver salt is about 0.01 mol / l to 1 mol / l, preferably about 0.01 mol / l to 0.1 mol / l.

更に、水溶性銀塩を含有する水溶液の電気伝導性を向上させるために、酢酸ナトリウム,酢酸カリウム,酢酸リチウム,酢酸アンモニウム,硝酸アンモニウム,硝酸カリウム,硝酸ナトリウム,乳酸ナトリウム,乳酸アンモニウムなどを添加してもよい。これらの成分の濃度は、0.01mol/l〜1mol/l程度とすることが好ましく、0.01mol/l〜0.1mol/l程度とすることがより好ましい。   Furthermore, in order to improve the electrical conductivity of an aqueous solution containing a water-soluble silver salt, sodium acetate, potassium acetate, lithium acetate, ammonium acetate, ammonium nitrate, potassium nitrate, sodium nitrate, sodium lactate, ammonium lactate, etc. may be added. Good. The concentration of these components is preferably about 0.01 mol / l to 1 mol / l, and more preferably about 0.01 mol / l to 0.1 mol / l.

水溶性銀塩を含有する水溶液のpHは、特に限定されないが,4〜9程度であることが好ましく、5〜9程度であることがより好ましい。浴温は、10〜60℃程度であることが好ましく、20〜40℃程度であることがより好ましい。   Although pH of the aqueous solution containing water-soluble silver salt is not specifically limited, It is preferable that it is about 4-9, and it is more preferable that it is about 5-9. The bath temperature is preferably about 10 to 60 ° C, and more preferably about 20 to 40 ° C.

電解方法としては、ZnO膜を形成した被処理物をアノードとして、定電位電解,定電流電解等の方法によって電解を行えばよい。カソードとしては、例えば、Ag板などを使用できる。定電流電解の場合には、電流密度を0.1〜100mA/cm程度、好ましくは0.1〜10mA/cm程度とすればよい。この様な方法で電解することによって、AgO膜を形成することができる。 As an electrolysis method, electrolysis may be performed by a method such as constant potential electrolysis or constant current electrolysis using the object to be processed on which the ZnO film is formed as an anode. For example, an Ag plate can be used as the cathode. In the case of galvanostatic electrolysis, the current density 0.1~100mA / cm 2, preferably about may be set to 0.1~10mA / cm 2 approximately. By performing electrolysis by such a method, an AgO film can be formed.

次いで、形成されたAgO膜を大気中などの酸化性雰囲気中で加熱処理することによって、AgO膜を得ることができる。加熱温度は、100〜250℃程度とすればよく、好ましくは130〜200℃程度とすればよい。熱処理温度が低すぎる場合には、完全にAgOにならず、AgO+AgOの2相構造となり易いので好ましくない。一方、熱処理温度が高すぎる場合には、金属状態のAgが析出するため、Ag+AgOの2相構造となりやすいのでやはり好ましくない。 Next, the formed AgO film is heat-treated in an oxidizing atmosphere such as the air, whereby an Ag 2 O film can be obtained. The heating temperature may be about 100 to 250 ° C., preferably about 130 to 200 ° C. When the heat treatment temperature is too low, it is not preferable because it is not completely Ag 2 O and tends to have a two-phase structure of AgO + Ag 2 O. On the other hand, when the heat treatment temperature is too high, Ag in a metallic state is precipitated, and therefore, it is easy to have a two-phase structure of Ag + Ag 2 O, which is not preferable.

(0001)配向したZnO膜上にAgO膜をヘテロエピタキシャルに成長させる場合には、上記した条件に従って、0.1〜100mA/cm程度の電流密度で電解を行ってAgO膜を形成した後、加熱処理を行えばよい。 When an Ag 2 O film is grown heteroepitaxially on a (0001) oriented ZnO film, electrolysis was performed at a current density of about 0.1 to 100 mA / cm 2 in accordance with the above-described conditions to form an AgO film. After that, heat treatment may be performed.

(iii)水溶液からのCuO膜の形成方法
水溶液からCuO膜を形成する方法としては、例えば、水溶性銅塩を含むアルカリ性水溶液から電解析出させる方法を挙げることができる。
As a method for forming a Cu 2 O layer from forming method an aqueous solution of Cu 2 O film from (iii) an aqueous solution, for example, a method of electrolytic deposition from an alkaline aqueous solution containing a water-soluble copper salt.

水溶性銅塩としては特に限定はなく、例えば、硫酸銅,塩化銅,硝酸銅,酢酸銅などを使用することができる。また、水溶性銅塩を含有する水溶液は、アルカリ性領域で使用されるため、通常、水酸化物の沈殿を抑制するための錯化剤を配合する。   The water-soluble copper salt is not particularly limited, and for example, copper sulfate, copper chloride, copper nitrate, copper acetate and the like can be used. Moreover, since the aqueous solution containing water-soluble copper salt is used in an alkaline area | region, the complexing agent for suppressing precipitation of a hydroxide is normally mix | blended.

使用可能な錯化剤としては、乳酸、酒石酸,クエン酸、グリコール酸、りんご酸等のヒドロキシカルボン酸を挙げることができる。   Usable complexing agents include hydroxycarboxylic acids such as lactic acid, tartaric acid, citric acid, glycolic acid and malic acid.

該水溶液中の銅塩濃度は0.1〜0.5mol/l程度、錯化剤濃度は0.5〜5mol/l程度の範囲とすることが好ましい。   The copper salt concentration in the aqueous solution is preferably about 0.1 to 0.5 mol / l and the complexing agent concentration is preferably about 0.5 to 5 mol / l.

水溶性銅塩を含有する水溶液のpHは、特に限定されないが、通常、8〜14程度であることが好ましく、9〜13程度であることがより好ましい。浴温は、25〜80℃程度とすることが好ましい。   Although the pH of the aqueous solution containing water-soluble copper salt is not specifically limited, Usually, it is preferable that it is about 8-14, and it is more preferable that it is about 9-13. The bath temperature is preferably about 25 to 80 ° C.

電解方法としては、AgO膜を形成した被処理物をカソードとして、定電位電解、定電流電解等の方法によって電解を行えばよい。特に、定電流電解が好ましい。アノードとしては、例えば、Cu板、Ti−Pt板などを使用できる。定電流電解の場合には、電流密度を30〜1000μA/cm程度の範囲とすればよい。 As an electrolysis method, electrolysis may be performed by a method such as constant-potential electrolysis or constant-current electrolysis using a workpiece on which an Ag 2 O film is formed as a cathode. In particular, constant current electrolysis is preferable. As the anode, for example, a Cu plate, a Ti-Pt plate, or the like can be used. In the case of constant current electrolysis, the current density may be in the range of about 30 to 1000 μA / cm 2 .

AgO(111)面上にCuO(111)面を成長させるためには、液温を40〜60℃程度、好ましくは45〜55℃の範囲として、電流密度範囲を30〜100μA/cm程度とすることが好ましく、30〜80μA/cm程度とすることがより好ましい。 To Ag 2 O (111) Cu 2 O (111) on the surface to grow the face, the liquid temperature 40 to 60 ° C. or so, as a range of preferably 45 to 55 ° C., a current density range 30~100Myuei / it is preferably in the cm 2, and more preferably in a 30~80Myuei / cm 2 or so.

上記した方法によれば、水溶液からの電解反応によって、AgO膜上に、CuO膜を積層することができる。 According to the method described above, the Cu 2 O film can be laminated on the Ag 2 O film by an electrolytic reaction from an aqueous solution.

以上の方法によって得られたZnO膜/AgO膜/CuO膜の積層構造を有する太陽電池について、本発明方法を適用してCuO膜の表面に金属Cu層からなる電極を形成することによって、太陽電池とすることができる。電極とする金属Cu層の厚さについては特に限定的ではないが、通常、10〜500nm程度とすればよい。 For the solar cell having a laminated structure of ZnO film / Ag 2 O film / Cu 2 O film obtained by the above method, an electrode composed of a metallic Cu layer is formed on the surface of the Cu 2 O film by applying the method of the present invention. By doing, it can be set as a solar cell. The thickness of the metal Cu layer used as an electrode is not particularly limited, but is usually about 10 to 500 nm.

本発明の金属Cu層の形成方法によれば、上記したCu2O層を光電変換材料とする太陽電池に対して、非常に簡単な方法によって電極を形成することが可能であり、電極の厚さの制御も容易である。 According to the method for forming a metal Cu layer of the present invention, an electrode can be formed by a very simple method for a solar cell using the above-described Cu 2 O layer as a photoelectric conversion material. It is easy to control the height.

(2)光化学反応によって形成したCuO膜の金属化への適用:
水溶性銅塩を含むアルカリ性水溶液に対して、該水溶液と接触する状態で設置された光透過性を有する材料を介して光を照射することによって、該光透過性材料上にCuO膜を形成することができる。本発明の金属Cu層の形成方法は、この様な光化学反応によって析出したCuO膜に対しても適用することができる。
(2) Application to metallization of Cu 2 O film formed by photochemical reaction:
By irradiating the alkaline aqueous solution containing a water-soluble copper salt with light through a light-transmitting material placed in contact with the aqueous solution, a Cu 2 O film is formed on the light-transmissive material. Can be formed. The method for forming a metal Cu layer of the present invention can also be applied to a Cu 2 O film deposited by such a photochemical reaction.

光化学反応によってCuO膜を析出させるための具体的な方法としては、例えば、少なくとも一部が光透過性材料で形成された容器中に、水溶性銅塩を含むアルカリ性水溶液を入れ、該光透過性材料を介して光を照射すればよい。 As a specific method for depositing a Cu 2 O film by a photochemical reaction, for example, an alkaline aqueous solution containing a water-soluble copper salt is placed in a container at least partially formed of a light-transmitting material, and the light What is necessary is just to irradiate light through a transparent material.

光透過性材料としては特に限定はなく、所定の波長の光を透過できる材料であればよい。例えば、石英ガラス、ソーダガラス、NESAガラス等のガラス材料、PET,ポリカーボネート、ABS等の光透過性の樹脂材料等を用いることができる。   The light transmissive material is not particularly limited as long as it is a material that can transmit light of a predetermined wavelength. For example, glass materials such as quartz glass, soda glass, and NESA glass, and light transmissive resin materials such as PET, polycarbonate, and ABS can be used.

水溶性銅塩としては特に限定はなく、例えば、硫酸銅,塩化銅,硝酸銅,酢酸銅などを使用することができる。また、水溶性銅塩を含有する水溶液は、アルカリ性領域で使用されるため、通常、水酸化物の沈殿を抑制するための錯化剤を配合する。   The water-soluble copper salt is not particularly limited, and for example, copper sulfate, copper chloride, copper nitrate, copper acetate and the like can be used. Moreover, since the aqueous solution containing water-soluble copper salt is used in an alkaline area | region, the complexing agent for suppressing precipitation of a hydroxide is normally mix | blended.

使用可能な錯化剤としては、乳酸、酒石酸,クエン酸、グリコール酸、りんご酸等のヒドロキシカルボン酸を挙げることができる。   Usable complexing agents include hydroxycarboxylic acids such as lactic acid, tartaric acid, citric acid, glycolic acid and malic acid.

該水溶液中の銅塩濃度は0.1〜0.5mol/l程度、錯化剤濃度は0.5〜5mol/l程度の範囲とすることが好ましい。   The copper salt concentration in the aqueous solution is preferably about 0.1 to 0.5 mol / l and the complexing agent concentration is preferably about 0.5 to 5 mol / l.

水溶性銅塩を含有する水溶液のpHは、特に限定されないが、通常、8〜14程度であることが好ましく、9〜13程度であることがより好ましい。浴温は、25〜80℃程度とすることが好ましい。   Although the pH of the aqueous solution containing water-soluble copper salt is not specifically limited, Usually, it is preferable that it is about 8-14, and it is more preferable that it is about 9-13. The bath temperature is preferably about 25 to 80 ° C.

照射する光としては、例えば、270nm程度以上の波長の光を用いることができる。具体例としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯などを用いることができる。   As light to irradiate, for example, light having a wavelength of about 270 nm or more can be used. As a specific example, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, or the like can be used.

例えば、出力250〜500W程度の超高圧水銀灯を用いる場合には、光源から製膜する基板までの距離を1〜5cm程度とすればよい。   For example, when using an ultra-high pressure mercury lamp with an output of about 250 to 500 W, the distance from the light source to the substrate on which the film is formed may be about 1 to 5 cm.

この方法によれば、各種の非導電性材料に対しても、CuO膜を形成することができる。 According to this method, a Cu 2 O film can be formed even for various non-conductive materials.

本発明の金属Cu層の形成方法は、上記した光化学反応によって析出したCuO膜に対しても適用することができる。例えば、CuO膜を形成する光透過性材料の表面に、光遮断材料によって予め任意の形状のフォトマスクを形成し、この材料を介して水溶性銅塩を含むアルカリ性水溶液に光を照射してCuO膜を形成し、形成されたCuO膜の表面を本発明方法によって金属化することによって、任意の形状の導体回路を形成することができる。 The method for forming a metal Cu layer of the present invention can also be applied to a Cu 2 O film deposited by the above-described photochemical reaction. For example, a photomask of an arbitrary shape is formed in advance on the surface of a light transmissive material forming a Cu 2 O film with a light blocking material, and light is irradiated to an alkaline aqueous solution containing a water-soluble copper salt through this material. Cu 2 O film is formed Te, the formed Cu 2 O film surface by metallization by the method of the present invention, it is possible to form a conductor circuit of any shape.

本発明の金属銅層の形成方法によれば、還元剤を含有する水溶液にCuO膜を接触させるという非常に簡単な方法によって、複雑な処理工程や大規模な装置を用いることなく、CuO膜の表面に金属Cu層を形成することができる。 According to the method for forming a metallic copper layer of the present invention, Cu can be obtained by using a very simple method of bringing a Cu 2 O film into contact with an aqueous solution containing a reducing agent without using complicated processing steps and large-scale equipment. A metal Cu layer can be formed on the surface of the 2 O film.

本発明方法は、例えば、Cu2O膜を光電変換材料とする太陽電池のCu2O膜表面にオーミック接合の電極を形成する方法として非常に有用性が高い方法である。更に、その他各種のCuO膜の表面を金属化する方法として幅広い用途に利用可能である。 The method of the present invention is very useful as a method of forming an ohmic junction electrode on the surface of a Cu 2 O film of a solar cell using, for example, a Cu 2 O film as a photoelectric conversion material. Further, it can be used for a wide range of applications as a method for metallizing the surface of various other Cu 2 O films.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜4及び比較例1〜4
乳酸3mol/l及び硫酸銅0.4mol/lを含有するpH12.5の水溶液中に、NESAガラス基板を浸漬し、これをカソードとして、液温45℃、陰極電流密度1.0 mA/cm2、通電電気量1C/cm2で電解を行い、該NESAガラス基板に膜厚約1.3μmのCu2O膜を形成した。
Examples 1-4 and Comparative Examples 1-4
A NESA glass substrate is immersed in an aqueous solution of pH 12.5 containing 3 mol / l of lactic acid and 0.4 mol / l of copper sulfate. Using this as a cathode, the liquid temperature is 45 ° C., the cathode current density is 1.0 mA / cm 2 , and the current is applied. Electrolysis was performed at an electric amount of 1 C / cm 2 to form a Cu 2 O film having a thickness of about 1.3 μm on the NESA glass substrate.

次いで、上記した方法でCuO膜を形成した基板を、下記表1に示す各水溶液に表1に示す条件で浸漬した。処理後の各皮膜を入射角0.5°の薄膜XRD回折で測定して金属化の有無を評価し、更に、Cu層の膜厚を断面SEM観察により求めた。結果を下記表1に示す。 Next, the substrate on which the Cu 2 O film was formed by the above-described method was immersed in each aqueous solution shown in Table 1 under the conditions shown in Table 1. Each film after the treatment was measured by thin film XRD diffraction with an incident angle of 0.5 ° to evaluate the presence or absence of metallization, and the film thickness of the Cu layer was determined by cross-sectional SEM observation. The results are shown in Table 1 below.

Figure 2007235040
Figure 2007235040

Claims (4)

Cu2O膜を形成した被処理物を、還元剤を含有する水溶液に接触させることを特徴とするCu2O膜表面に金属Cu層を形成する方法。 A method for forming a metal Cu layer on the surface of a Cu 2 O film, wherein the object to be treated on which the Cu 2 O film is formed is brought into contact with an aqueous solution containing a reducing agent. 還元剤が、アミンボラン化合物及び水素化ホウ素化合物からなる群から選ばれた少なくとも一種の化合物である請求項1に記載の方法。 The method according to claim 1, wherein the reducing agent is at least one compound selected from the group consisting of an amine borane compound and a borohydride compound. 被処理物が、Cu2O層を光電変換材料とする太陽電池用材料である請求項1又は2に記載の方法。 The method according to claim 1, wherein the object to be processed is a solar cell material having a Cu 2 O layer as a photoelectric conversion material. 被処理物が、光化学反応によって析出したCuO膜を含む材料である請求項1又は2に記載の方法。
The method according to claim 1 or 2, wherein the workpiece is a material containing a Cu 2 O film deposited by a photochemical reaction.
JP2006057773A 2006-03-03 2006-03-03 Method for forming a metallic copper layer on a cuprous oxide film Active JP4803549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057773A JP4803549B2 (en) 2006-03-03 2006-03-03 Method for forming a metallic copper layer on a cuprous oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057773A JP4803549B2 (en) 2006-03-03 2006-03-03 Method for forming a metallic copper layer on a cuprous oxide film

Publications (2)

Publication Number Publication Date
JP2007235040A true JP2007235040A (en) 2007-09-13
JP4803549B2 JP4803549B2 (en) 2011-10-26

Family

ID=38555283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057773A Active JP4803549B2 (en) 2006-03-03 2006-03-03 Method for forming a metallic copper layer on a cuprous oxide film

Country Status (1)

Country Link
JP (1) JP4803549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936005B1 (en) * 2017-11-10 2019-01-07 한국전력공사 Manufacturing method of perovskite solar cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122929A (en) * 1981-12-14 1983-07-21 ローヌ―プーラン・シミ Metallization of plastic electric insulation product and product obtained thereby
JPH05331660A (en) * 1992-06-02 1993-12-14 Toto Ltd Copper metallizing method
JPH07197266A (en) * 1993-12-28 1995-08-01 Nippon Riironaale Kk Direct plating method by metallization of copper oxide (i) colloid
JPH09500174A (en) * 1993-07-16 1997-01-07 トレフイメトー Metallization method for non-conductive substrate
JP2002050873A (en) * 2000-07-27 2002-02-15 Kermel Conductive path, method for manufacturing circuit comprising pad and micro via, and method to manufacturing printed circuit and highly integrate multilayer module
JP2002308620A (en) * 2001-04-05 2002-10-23 Titan Kogyo Kk Method for producing copper suboxide
JP2003289151A (en) * 2002-03-28 2003-10-10 Canon Inc Manufacturing method of photoelectric conversion device
JP2006332373A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Oxide thin film solar cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122929A (en) * 1981-12-14 1983-07-21 ローヌ―プーラン・シミ Metallization of plastic electric insulation product and product obtained thereby
JPH05331660A (en) * 1992-06-02 1993-12-14 Toto Ltd Copper metallizing method
JPH09500174A (en) * 1993-07-16 1997-01-07 トレフイメトー Metallization method for non-conductive substrate
JPH07197266A (en) * 1993-12-28 1995-08-01 Nippon Riironaale Kk Direct plating method by metallization of copper oxide (i) colloid
JP2002050873A (en) * 2000-07-27 2002-02-15 Kermel Conductive path, method for manufacturing circuit comprising pad and micro via, and method to manufacturing printed circuit and highly integrate multilayer module
JP2002308620A (en) * 2001-04-05 2002-10-23 Titan Kogyo Kk Method for producing copper suboxide
JP2003289151A (en) * 2002-03-28 2003-10-10 Canon Inc Manufacturing method of photoelectric conversion device
JP2006332373A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Oxide thin film solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936005B1 (en) * 2017-11-10 2019-01-07 한국전력공사 Manufacturing method of perovskite solar cell

Also Published As

Publication number Publication date
JP4803549B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4803548B2 (en) Oxide thin film solar cell
Dubale et al. Heterostructured Cu 2 O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction
Chen Review of preparation and optoelectronic characteristics of Cu2O-based solar cells with nanostructure
JP5827689B2 (en) Method for forming p-type semiconductor layer of photovoltaic device and method for forming thermal interface
Wang et al. Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis: Preliminary studies of the oxygen-reduction reaction
Hassan et al. Photoelectrochemical water splitting using post-transition metal oxides for hydrogen production: a review
Wang et al. Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting
KR20090085583A (en) Efficient gallium thin film electroplating methods and chemistries
CN103924260A (en) Composite hydrogen evolution electrode with copper and cobalt loaded on three-dimensional foamed nickel and preparation method thereof
WO2006082801A1 (en) Process for producing gas, process for producing acidic water and alkaline water, and apparatus for producing the same
US20100140098A1 (en) Selenium containing electrodeposition solution and methods
JP2011131170A (en) Electrode for photolytic water decomposition reaction using photocatalyst
JP2017054917A (en) Photoelectric conversion layer and manufacturing method of the same
WO2007029744A1 (en) Group iii/v nitride semiconductor, photocatalyst semiconductor element, photocatalytic redox reaction apparatus, and photoelectrochemical reaction execution method
CN101570871B (en) Method for electrodepositing copper indium diselenide or copper indium gallium selenide film by special pulsing power source
KR101223415B1 (en) The method for preparing CIGS thin film by using electrodeposition and CIGS solar cell thereof
Tang et al. Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation
Kurniawan et al. Electrodeposition of cuprous oxide on a porous copper framework for an improved photoelectrochemical performance
Jang et al. Spontaneous phase transition of hexagonal wurtzite CoO: application to electrochemical and photoelectrochemical water splitting
Shet Zinc oxide (ZnO) nanostructures for photoelectrochemical water splitting application
TW201302616A (en) A method for preparing indium sulfide thin film
JP4803549B2 (en) Method for forming a metallic copper layer on a cuprous oxide film
Ueno et al. Electrodeposition of AgInSe2 films from a sulphate bath
CN112442704B (en) Universal preparation method of oxide semiconductor nanowire photo-anode
Sheng et al. Mechanism and growth of flexible ZnO nanostructure arrays in a facile controlled way

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

R150 Certificate of patent or registration of utility model

Ref document number: 4803549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250