[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0531357A - Removing agent for adsorbing low concentration nitrogen oxide - Google Patents

Removing agent for adsorbing low concentration nitrogen oxide

Info

Publication number
JPH0531357A
JPH0531357A JP3194513A JP19451391A JPH0531357A JP H0531357 A JPH0531357 A JP H0531357A JP 3194513 A JP3194513 A JP 3194513A JP 19451391 A JP19451391 A JP 19451391A JP H0531357 A JPH0531357 A JP H0531357A
Authority
JP
Japan
Prior art keywords
concentration
alumina
adsorbent
nox
removing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3194513A
Other languages
Japanese (ja)
Other versions
JP2597252B2 (en
Inventor
Takanobu Watanabe
高延 渡辺
Masayoshi Ichiki
正義 市来
Shigenori Onizuka
重則 鬼塚
Atsushi Fukuju
厚 福寿
Tomonori Saira
友紀 西良
Hideji Kobayashi
秀次 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGAI KENKO HIGAI HOSHIYOU YOB
KOGAI KENKO HIGAI HOSHIYOU YOBOU KYOKAI
Hitachi Zosen Corp
Original Assignee
KOGAI KENKO HIGAI HOSHIYOU YOB
KOGAI KENKO HIGAI HOSHIYOU YOBOU KYOKAI
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGAI KENKO HIGAI HOSHIYOU YOB, KOGAI KENKO HIGAI HOSHIYOU YOBOU KYOKAI, Hitachi Zosen Corp filed Critical KOGAI KENKO HIGAI HOSHIYOU YOB
Priority to JP3194513A priority Critical patent/JP2597252B2/en
Publication of JPH0531357A publication Critical patent/JPH0531357A/en
Application granted granted Critical
Publication of JP2597252B2 publication Critical patent/JP2597252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain the subject adsorptive removing agent capable of omitting or reducing a dehumidifying process required in the front stage of the adsorptive removal of NOx by supporting Ru on a carrier composed of gamma-alumina. CONSTITUTION:Ru is pref. supported on a carrier composed of gamma-alumina in an amount of about 0.1-5% by wt. of a final adsorbent as metal Ru. Ru is supported by a method wherein the alumina carrier is immersed in an aqueous RuCl3 solution and separated from the solution to be washed and subsequently dried in air to be baked at about 300-500 deg.C, if necessary. This adsorptive removing agent is formed into a columnar shape, a spherical shape or a Rashig ring shape having a large contact surface and allowing gas to easily flow. Since this adsorptive removing agent receives no effect of humidity, a dehumidifying process required in the front stage of the adsorptive removal of NOx can be omitted or reduced. Therefore, the much energy required in the dehumidifying process can be reduced and a dehumidifier can be dispensed with or simplifier. As a result, energy and space can be conserved as compared with a conventional process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種道路トンネル、山
岳トンネル、海底トンネル、地下道路、シェルター付道
路等の各種トンネルにおける換気ガス中に含有される低
濃度の窒素酸化物を効率よく除去する吸着除去剤に関す
るものである。
TECHNICAL FIELD The present invention efficiently removes low-concentration nitrogen oxides contained in ventilation gas in various tunnels such as various road tunnels, mountain tunnels, submarine tunnels, underground roads and roads with shelters. The present invention relates to an adsorption remover.

【0002】[0002]

【発明の背景】各種道路トンネル、山岳トンネル、地下
道路、シェルター付道路等(本明細書では、これらのト
ンネルを総称して「道路トンネル等」と呼ぶこととす
る)において、特に長大で自動車交通量の多いものにつ
いては、通行者の健康保護や明視距離の改善を目的に相
当量の換気を行なう必要がある。また、比較的短距離の
トンネルでも都市部あるいはその近郊では、出入口部に
集中する一酸化炭素(CO)、窒素酸化物(NOx )等
による大気汚染を防止する方法として、トンネル内の空
気を吸引排気(換気)する方法がある。
BACKGROUND OF THE INVENTION In various road tunnels, mountain tunnels, underground roads, roads with shelters, etc. (in this specification, these tunnels are collectively referred to as "road tunnels, etc.") For large quantities, it is necessary to provide adequate ventilation for the purpose of protecting the health of passersby and improving the visual distance. In addition, even in the case of relatively short-distance tunnels, in urban areas or in the suburbs, as a method of preventing air pollution due to carbon monoxide (CO), nitrogen oxides (NOx), etc. concentrated at the entrances and exits, the air in the tunnels is sucked in. There is a way to exhaust (ventilate).

【0003】しかしながら、換気ガスをそのまま周囲に
放散したのでは、地域的な環境改善にはならず、特に自
動車排ガスによる汚染が平面的に拡がっている都市部あ
るいはその近郊では高度の汚染地域を拡大させることに
なりかねない。既設道路の公害対策としてトンネル化、
シェルター設置を図る場合も、前述の事情は全く同じで
ある。 本発明は、このような道路トンネル等の換気ガ
ス中に含有される低濃度の窒素酸化物を効率よく除去す
る吸着除去剤に関するものである。
However, if the ventilation gas is diffused to the surroundings as it is, it does not improve the local environment, and in particular, the highly contaminated area is expanded in the urban area where the automobile exhaust gas is spreading in a flat manner or in the suburbs. It can be caused. Tunneling as a measure against pollution of existing roads,
The situation is exactly the same when installing a shelter. The present invention relates to an adsorption / removal agent that efficiently removes low-concentration nitrogen oxides contained in ventilation gas for such road tunnels.

【0004】[0004]

【従来の技術】各種トンネルの換気ガスは、その中に含
有される窒素酸化物の濃度が約5ppmと低く、ガス温度
は常温で、ガス量は交通量に従って大きく変動すること
で特徴付けられる。
2. Description of the Related Art Ventilation gas for various tunnels is characterized in that the concentration of nitrogen oxides contained therein is as low as about 5 ppm, the gas temperature is room temperature, and the amount of gas fluctuates greatly in accordance with traffic.

【0005】従来より各種ボイラー燃焼排ガスの浄化を
目的に検討されてきた、固定発生源からの窒素酸化物の
除去方法は、次の3つに大別される。
The methods for removing nitrogen oxides from fixed sources, which have been studied for the purpose of purifying various boiler combustion exhaust gas, are roughly classified into the following three methods.

【0006】(1) 接触還元法 これは、アンモニアを還元剤とし排ガス中の窒素酸化物
を選択的に還元して無害な窒素と水蒸気にするもので、
ボイラー排ガスの脱硝法として最も一般的な方法であ
る。しかしながら、この方法は、処理ガス温度を200
℃以上にする必要があるため、道路トンネル等の換気ガ
スのように常温でガス量が多い場合には、処理ガスの昇
温に多大のエネルギーを要するため、経済的な処理方法
ではない。
(1) Catalytic reduction method This method uses ammonia as a reducing agent to selectively reduce nitrogen oxides in exhaust gas into harmless nitrogen and water vapor.
It is the most common method for denitration of boiler exhaust gas. However, this method requires a process gas temperature of 200
Since it is necessary to control the temperature to be higher than 0 ° C., when the gas amount is large at room temperature such as ventilation gas for road tunnels, a large amount of energy is required to raise the temperature of the processing gas, which is not an economical processing method.

【0007】(2) 湿式吸収法 これは、二酸化窒素(NO2 )や三酸化窒素(N
2 3 )が水やアルカリ水溶液に吸収されることを利用
したもので、酸化触媒やオゾン注入により一酸化窒素
(NO)を酸化した後に吸収させたり、吸収液に酸化性
を付加する方法が知られている。しかしながら、これら
の方法では窒素酸化物(NOx )が硝酸塩や亜硝酸塩と
して吸収液に蓄積されるため、吸収液の管理や後処理が
必要であり、プロセスが複雑となる。また酸化剤のモル
当りの単価は接触還元法で用いられるアンモニアと比べ
高価であり、プロセスの経済性に問題がある。
(2) Wet absorption method This method uses nitrogen dioxide (NO 2 ) or nitrogen trioxide (N 2 ).
2 O 3 ) is used by being absorbed by water or an alkaline aqueous solution. A method of oxidizing nitric oxide (NO) after it is oxidized by an oxidation catalyst or ozone injection, or adding an oxidizing property to the absorbing solution is available. Are known. However, in these methods, nitrogen oxides (NOx) are accumulated in the absorbing solution as nitrates or nitrites, and therefore the absorbing solution needs to be managed and post-treated, which complicates the process. Further, the unit price per mol of the oxidizing agent is more expensive than ammonia used in the catalytic reduction method, and there is a problem in the economical efficiency of the process.

【0008】(3) 乾式吸着法 これは、適当な吸着剤を用いて排ガス中の窒素酸化物を
吸着除去する方法で、ボイラー排ガスの脱硝法として接
触還元法が定着するまでは数例検討された。しかしなが
ら、ボイラー排ガスは(ア)窒素酸化物の濃度が高い、
(イ)ガス温度が高い、(ウ)水分濃度が高いために、
乾式吸着法は接触還元法と比べ経済性において見劣り
し、現在まで実用化されていない。
(3) Dry adsorption method This is a method of adsorbing and removing nitrogen oxides in exhaust gas using an appropriate adsorbent. Several cases have been studied until the catalytic reduction method has been established as a denitration method for boiler exhaust gas. It was However, the boiler exhaust gas has a high concentration of (a) nitrogen oxides,
(A) Gas temperature is high, and (c) Water concentration is high,
The dry adsorption method is inferior in economic efficiency to the catalytic reduction method and has not been put to practical use until now.

【0009】ところが、道路トンネル等の換気ガスの浄
化方法として乾式吸着法を評価すれば、ボイラー排ガス
の場合とは全く異なり、プロセスが簡単となり経済的な
方法であることが判明した。
However, when the dry adsorption method was evaluated as a method for purifying ventilation gas for road tunnels and the like, it was found that the process is simple and economical, unlike the case of boiler exhaust gas.

【0010】[0010]

【発明が解決しようとする課題】吸着剤による窒素酸化
物の吸着除去に関する研究の中で、低濃度の窒素酸化物
の吸着除去に関する研究としては、(財)工業開発研究
所の研究(「特殊な吸着、酸化触媒を使用する新脱硝シ
ステムの開発に関する研究」、昭和53年5月)があ
る。この中で、空気−H2 O−NO系の模擬ガス(入口
NO濃度:100〜120ppm 、乾燥ガス(露点:−1
7℃)、SV:3270Hr -1)による試験が行なわ
れ、吸着剤としては天然擬灰岩に銅系金属(酸化物)を
担持したものがよいことが報告されている。
Among the researches on the adsorption and removal of nitrogen oxides by the adsorbent, the research on the adsorption and removal of low-concentration nitrogen oxides is conducted by the Industrial Development Research Institute (“Special Research on the development of new denitration system using various adsorption and oxidation catalysts ", May 1978). Among them, air-H 2 O-NO system simulated gas (inlet NO concentration: 100 to 120 ppm, dry gas (dew point: -1
(7 ° C.), SV: 3270 Hr −1 ) and tests have been conducted, and it has been reported that the adsorbent is preferably a natural pseudo-olivine supporting a copper-based metal (oxide).

【0011】しかしながら、道路トンネル等の換気ガス
中に含有される窒素酸化物の濃度は5ppm 以下と想定さ
れているが、上述の研究(NOx 濃度:約100ppm)で
用いられている吸着剤が、5ppm という低濃度の窒素酸
化物を効率よく吸着するかどうかについては、その可能
性も含め示唆されていない。
However, it is assumed that the concentration of nitrogen oxides contained in the ventilation gas for road tunnels is 5 ppm or less, but the adsorbent used in the above research (NOx concentration: about 100 ppm) There is no suggestion as to whether or not nitrogen oxides with a low concentration of 5 ppm are efficiently adsorbed, including the possibility.

【0012】本発明者らは、先に、5ppm という低濃度
の窒素酸化物を効率よく吸着除去することを企図した吸
着剤として、天然または合成ゼオライトに、塩化銅、塩
化銅の複塩および塩化銅のアンミン錯塩から選択される
少なくとも1種の銅塩を担持させて成る、低濃度窒素酸
化物の吸着除去剤(特開平1−299642号公報参
照)、およびアナターゼ型の酸化チタンより成る担体に
バナジウムを担持させて成る吸着除去剤(特願平2−3
40627号公報参照)をそれぞれ提案した。
The inventors of the present invention have previously proposed, as an adsorbent intended to efficiently adsorb and remove a low concentration of 5 ppm of nitrogen oxide, a natural or synthetic zeolite, copper chloride, a double salt of copper chloride and a chloride. A carrier comprising at least one copper salt selected from copper ammine complex salts, which is an adsorption remover for low-concentration nitrogen oxides (see Japanese Patent Laid-Open No. 1-299642), and anatase-type titanium oxide. Adsorption remover supporting vanadium (Japanese Patent Application No. 2-3
No. 40627).

【0013】しかし、これらの吸着剤は、水分(または
湿分)濃度が高くなると、図5に示すように、吸着性能
の低下(劣化現象)が認められた(図5は、上記Cu担
持ゼオライトと上記V担持チタニアの吸着性能に対する
湿分濃度の影響を示しものであり、反応条件は、吸着
剤:5ml、反応ガス量:2.5NL/分、NOx 濃度:3.8 〜
4.1ppm、湿分濃度:〜60ppm と〜500ppm、反応温度:24
〜26℃である)。
However, in these adsorbents, when the water (or moisture) concentration became high, the adsorption performance was deteriorated (deterioration phenomenon) as shown in FIG. 5 (FIG. 5 shows the above Cu-supporting zeolite). And the effect of moisture concentration on the adsorption performance of the above V-supported titania. The reaction conditions were as follows: adsorbent: 5 ml, reaction gas amount: 2.5 NL / min, NOx concentration: 3.8-.
4.1ppm, Moisture concentration: ~ 60ppm and ~ 500ppm, Reaction temperature: 24
~ 26 ℃).

【0014】そのため、これら吸着剤では、良好な吸着
性能を発揮させるには、湿分濃度を露点で約−35℃以
下(約200ppm 以下)にする必要があり、NOx 除去
プロセスとしてNOx 吸着除去の前段に脱湿工程を設
け、脱湿ないし除湿を行う必要があった。
Therefore, in order to exhibit good adsorption performance, it is necessary for these adsorbents to have a moisture concentration of about −35 ° C. or less (about 200 ppm or less) in dew point, which is a NOx removal process. It was necessary to provide a dehumidification process in the previous stage to perform dehumidification or dehumidification.

【0015】本発明は、上記の点に鑑み、湿分による影
響を受けない吸着除去剤を開発し、NOx 除去装置の小
型化、省エネルギー化を達成することを企図したもので
ある。
In view of the above points, the present invention intends to develop an adsorption removing agent that is not affected by moisture, and to achieve downsizing of a NOx removing device and energy saving.

【0016】[0016]

【課題を解決するための手段】本発明者らは種々検討し
た結果、低濃度の窒素酸化物を含有するガスを、γ−ア
ルミナ・ルテニウム系吸着剤に接触させることにより、
窒素酸化物を効率よく吸着除去できることを見出し、本
発明を完成するに至った。
Means for Solving the Problems As a result of various investigations by the present inventors, by contacting a gas containing a low concentration of nitrogen oxide with a γ-alumina-ruthenium-based adsorbent,
The inventors have found that nitrogen oxides can be efficiently adsorbed and removed, and completed the present invention.

【0017】すなわち、本発明による低濃度窒素酸化物
の吸着除去剤(以下単に吸着剤という)は、γ−アルミ
ナより成る担体にルテニウムが担持されていることを特
徴とするものである。
That is, the adsorbent / removal agent for low-concentration nitrogen oxides according to the present invention (hereinafter simply referred to as adsorbent) is characterized in that ruthenium is supported on a carrier made of γ-alumina.

【0018】本発明による吸着剤の第1の特徴は、吸着
剤の担体としてγ−アルミナ(γ−Al2 3 )を使用
することにある。
The first feature of the adsorbent according to the present invention is that γ-alumina (γ-Al 2 O 3 ) is used as a carrier for the adsorbent.

【0019】吸着剤担体は、たとえば、γ−アルミナを
必要に応じてシリカゾル等の成型助剤(バインダーまた
は希釈剤として用いる)やセラミック繊維等の繊維状物
質と共に混練した後、好ましい形状(ペレット、ハニカ
ム等)に成形し、成形物を乾燥、焼成して得られる。
The adsorbent carrier is preferably kneaded with, for example, γ-alumina together with a molding aid (used as a binder or a diluent) such as silica sol or a fibrous substance such as ceramic fiber, and then, in a preferred shape (pellet, It is obtained by molding into a honeycomb, etc., and drying and firing the molded product.

【0020】γ−アルミナ担体としては、市販のアルミ
ナ担体およびアルミナゾルより製造されるアルミナ担体
(セラミックペーパー触媒と同じように、アルミナゾル
を含浸したセラミックペーパーを乾燥、焼成して得られ
るアルミナ担体)のいずれも使用することができる。
As the γ-alumina carrier, any of a commercially available alumina carrier and an alumina carrier produced from alumina sol (alumina carrier obtained by drying and calcining alumina sol-impregnated ceramic paper like a ceramic paper catalyst) is used. Can also be used.

【0021】つぎに、本発明による吸着剤の第2の特徴
は、上記担体にルテニウム(Ru)を担持することにあ
る。
The second characteristic of the adsorbent according to the present invention is that ruthenium (Ru) is supported on the carrier.

【0022】ルテニウムの担持量については、ルテニウ
ム金属として最終吸着剤の約0.01重量%以上が好ま
しく、さらには約0.1〜5重量%が好ましい。
The amount of ruthenium supported on the final adsorbent as the ruthenium metal is preferably about 0.01% by weight or more, and more preferably about 0.1 to 5% by weight.

【0023】ルテニウムの担持は、一般には、塩化ルテ
ニウム(RuCl3)等のルテニウム化合物を適当な溶
媒に溶解させた溶液に、アルミナ担体を浸漬することに
より行なう。ただし、この方法は限定的なものではな
い。
Supporting ruthenium is generally carried out by immersing the alumina carrier in a solution prepared by dissolving a ruthenium compound such as ruthenium chloride (RuCl 3 ) in a suitable solvent. However, this method is not limited.

【0024】ルテニウムの担持量は、一般に、浸漬溶液
中のルテニウム濃度、浸漬温度、浸漬時間等によって調
整する。浸漬後、吸着剤を溶液から分離し、水洗後、空
気中にて約100〜120℃で乾燥する。また、乾燥品
は必要に応じて約300〜500℃で焼成する。なお、
吸着、脱離、再生等の繰返しによる連続使用の際には、
吸着剤の使用最高温度より若干高い温度での処理が必要
な場合もある。
The amount of ruthenium supported is generally adjusted by the concentration of ruthenium in the immersion solution, the immersion temperature, the immersion time and the like. After the immersion, the adsorbent is separated from the solution, washed with water, and then dried in air at about 100 to 120 ° C. Further, the dried product is fired at about 300 to 500 ° C. if necessary. In addition,
For continuous use by repeated adsorption, desorption, regeneration, etc.,
In some cases, treatment at a temperature slightly higher than the maximum operating temperature of the adsorbent is required.

【0025】吸着剤の形状としては、特に限定するもの
ではなく、円柱状、球状、ラシヒリング状またはハニカ
ム状等のように、接触面が多くてガス流通の容易なもの
であればよい。
The shape of the adsorbent is not particularly limited as long as it has a large number of contact surfaces and facilitates gas flow, such as a columnar shape, a spherical shape, a Raschig ring shape, or a honeycomb shape.

【0026】道路トンネル等からの換気ガスのように、
大量のガスを処理する場合においては、流通抵抗が少な
く圧力損失を極力小さくする必要がある。そのため、セ
ラミックペーパー触媒(セラミックペーパーにチタニア
ゾルを含浸した後、バナジウムを担持したもの)のよう
に、吸着剤をハニカム状に成形することが望ましい。
Like ventilation gas from a road tunnel,
When treating a large amount of gas, it is necessary to minimize the pressure loss as the flow resistance is small. Therefore, it is desirable to form the adsorbent into a honeycomb shape like a ceramic paper catalyst (a ceramic paper impregnated with titania sol and then carrying vanadium).

【0027】[0027]

【実施例】つぎに、本発明の実施例およびこれと比較す
べき比較例をそれぞれいくつか挙げる。
EXAMPLES Next, some examples of the present invention and comparative examples to be compared with the examples will be given respectively.

【0028】実施例1 8〜14メッシュに破砕篩分した市販のγ−アルミナ
(触媒化成工業(株)製:サンビード−AN)7mlを塩
化ルテニウム(RuCl3 )水溶液(Ru濃度:0.3
8wt%)10mlに室温で20時間浸漬した。これを水洗
後、約110℃で2時間乾燥してRu担持アルミナ吸着
剤(Ru担持量:0.6wt%)を得た。
Example 1 7 ml of a commercially available γ-alumina (manufactured by Catalysts & Chemicals Industry Co., Ltd .: Sunbead-AN) crushed and sieved to 8 to 14 mesh was added to a ruthenium chloride (RuCl 3 ) aqueous solution (Ru concentration: 0.3).
It was immersed in 10 ml of 8 wt%) for 20 hours at room temperature. This was washed with water and dried at about 110 ° C. for 2 hours to obtain a Ru-supported alumina adsorbent (Ru-supported amount: 0.6 wt%).

【0029】この吸着剤5ml(3.5g)を内径22mm
のステンレス製反応管に充填し、乾燥空気(湿分濃度:
約50ppm )流通中(2.5NL/分)約300℃で1時
間処理した後、室温まで放冷した。放冷後、乾燥空気の
流通を一旦止め、吸着剤層に3.5ppm の酸化窒素物
(NOx )を含む湿分濃度500ppm の調湿空気(2.
5NL/分)を導入し、導入直後から反応管の出口ガス中
のNOx 濃度を化学発光式分析計で測定した。出口ガス
中のNOx 濃度の経時変化を図1に示す。なお、図1中
の縦軸には、出口ガス中のNOx 濃度を入口ガス中のN
Ox濃度で除した値(「破過率」と呼ぶ)が目盛ってあ
る。
5 ml (3.5 g) of this adsorbent is used for an inner diameter of 22 mm.
Filled in a stainless steel reaction tube of and dried air (moisture concentration:
After treatment at about 300.degree. C. for 1 hour under flow (2.5 NL / min), the mixture was allowed to cool to room temperature. After cooling, the flow of dry air was temporarily stopped and the adsorbent layer contained 3.5 ppm of nitric oxide (NOx) and had a humidity concentration of 500 ppm and a conditioned air (2.
(5 NL / min) was introduced, and immediately after the introduction, the NOx concentration in the outlet gas of the reaction tube was measured by a chemiluminescence analyzer. FIG. 1 shows the change with time of the NOx concentration in the outlet gas. The vertical axis in FIG. 1 shows the NOx concentration in the outlet gas as N in the inlet gas.
The value divided by the Ox concentration (called "breakthrough rate") is graduated.

【0030】同図中の実施例1の曲線から明らかなよう
に、出口ガス中のNOx 濃度が入口濃度の10%(破過
率:0.1)、すなわち0.35ppmに到達するまでの
時間(「10%破過時間」と呼ぶ)は、30.0分であ
った。
As is clear from the curve of Example 1 in the figure, the time until the NOx concentration in the outlet gas reaches 10% of the inlet concentration (breakthrough rate: 0.1), that is, 0.35 ppm. (Called "10% breakthrough time") was 30.0 minutes.

【0031】比較例1、2 担体としてチタン酸スラリー(TiO2 含有量:約30
wt%)を空気中にて400℃で5時間焼成して得たアナ
ターゼ型の酸化チタン(チタニア)を用い、これにメタ
バナジン酸アンモニウム(NH4 VO3)を含浸担持し
てバナジウム(V)担持チタニア吸着剤を得た。この吸
着剤を用い、実施例1と同様の条件で出口NOx 濃度を
測定した。このNOx 濃度の経時変化を図1中に比較例
1として示す。
Comparative Examples 1 and 2 Titanic acid slurries as carriers (TiO 2 content: about 30)
wt%) in air at 400 ° C. for 5 hours to obtain anatase-type titanium oxide (titania), which is impregnated with ammonium metavanadate (NH 4 VO 3 ) and supported with vanadium (V). A titania adsorbent was obtained. Using this adsorbent, the NOx concentration at the outlet was measured under the same conditions as in Example 1. The change with time of the NOx concentration is shown as Comparative Example 1 in FIG.

【0032】また、担体として市販のY型ゼオライトを
用い、これに塩化第2銅(CuCl2 )を含浸担持して
Cu担持ゼオライト吸着剤を得た。この吸着剤を用い、
実施例1と同様の条件で出口NOx 濃度を測定した。こ
の時のNOx 濃度の経時変化を図1中に比較例2として
示す。
Further, a commercially available Y-type zeolite was used as a carrier, and cupric chloride (CuCl 2 ) was impregnated and carried on this to obtain a Cu-supporting zeolite adsorbent. With this adsorbent,
The outlet NOx concentration was measured under the same conditions as in Example 1. The change over time in the NOx concentration at this time is shown as Comparative Example 2 in FIG.

【0033】同図中の比較例1および2の曲線から明ら
かなように、500ppm 湿分濃度においては、Ru担持
アルミナ吸着剤(実施例1)は、V担持チタニア吸着剤
(比較例1)やCu担持ゼオライト吸着剤(比較例2)
と比べ、きわめて優れた性能を示すことが判る。
As is clear from the curves of Comparative Examples 1 and 2 in the figure, at 500 ppm moisture concentration, the Ru-supported alumina adsorbent (Example 1) was the same as the V-supported titania adsorbent (Comparative Example 1). Cu-supported zeolite adsorbent (Comparative Example 2)
It can be seen that it shows extremely excellent performance as compared with.

【0034】実施例2 日産化学工業(株)製のコロイダルアルミナ200を約
110℃で44時間乾燥した後、空気中400℃で24
時間焼成して得たγ−アルミナ担体を用い、実施例1と
同様の方法で吸着剤を得た。この吸着剤を用い、実施例
1と同様の条件で出口NOx 濃度を測定した。この時の
NOx 濃度の経時変化を図2中に実施例2として示す。
Example 2 Colloidal alumina 200 manufactured by Nissan Chemical Industries, Ltd. was dried at about 110 ° C. for 44 hours, and then dried in air at 400 ° C. for 24 hours.
An adsorbent was obtained in the same manner as in Example 1 using the γ-alumina carrier obtained by firing for a time. Using this adsorbent, the NOx concentration at the outlet was measured under the same conditions as in Example 1. The change over time in the NOx concentration at this time is shown as Example 2 in FIG.

【0035】同図中の実施例1の曲線との比較により明
らかなように、コロイダルアルミナ(アルミナゾル)を
原料として得たアルミナ担体を用いても、市販のアルミ
ナ担体を用いてもNOx 吸着性能に際だった差異は認め
られず、いずれの担体も使用できることが判る。
As is clear from the comparison with the curve of Example 1 in the figure, NOx adsorption performance was improved by using an alumina carrier obtained from colloidal alumina (alumina sol) as a raw material or a commercially available alumina carrier. No significant difference is observed, indicating that either carrier can be used.

【0036】実施例3 実施例2と同様にして得た吸着剤5ml(3.5g)を内
径22mmのステンレス製反応管に充填し、乾燥空気(湿
分濃度:約50ppm )流通中(2.5NL/分)約300
℃で1時間処理した後、室温まで放冷した。放冷後、乾
燥空気の流通を一旦止め、吸着剤層に3.5ppm の酸化
窒素物(NOx )を含む空気(温度:24.5℃、相対
湿度:49%、湿分濃度:約15,000ppm )2.5
NL/分を導入し、導入直後から反応管の出口ガス中のN
Ox 濃度を測定した。出口ガス中のNOx 濃度の経時変
化を図3中に実施例3として示す。
Example 3 5 ml (3.5 g) of the adsorbent obtained in the same manner as in Example 2 was filled in a stainless steel reaction tube having an inner diameter of 22 mm and was passed through dry air (moisture concentration: about 50 ppm) (2. 5NL / min) About 300
After treating at ℃ for 1 hour, it was allowed to cool to room temperature. After cooling, the flow of dry air is stopped once, and the air containing 3.5 ppm of nitric oxide (NOx) in the adsorbent layer (temperature: 24.5 ° C, relative humidity: 49%, moisture concentration: about 15, 000ppm) 2.5
NL / min was introduced, and immediately after the introduction, N in the outlet gas of the reaction tube
The Ox concentration was measured. The time-dependent change in the NOx concentration in the outlet gas is shown as Example 3 in FIG.

【0037】同図中の実施例2(湿分濃度:500ppm
)の曲線との比較により明らかなように、湿分濃度が
高くなってもNOx 吸着性能は低下せず、大気空気の湿
分濃度でも効率よくNOx を吸着除去できることが判
る。
Example 2 in the figure (moisture concentration: 500 ppm
As is clear from the comparison with the curve of (1), the NOx adsorption performance does not decrease even when the moisture concentration increases, and it is understood that NOx can be efficiently adsorbed and removed even with the moisture concentration of atmospheric air.

【0038】実施例4 実施例2で用いた担体を8〜14メッシュに破砕篩分し
た後、所定濃度の塩化ルテニウム水溶液に室温で20時
間浸漬し、これを水洗ついで乾燥してRu担持量の異な
る吸着剤を得た。
Example 4 The carrier used in Example 2 was crushed and sieved to 8 to 14 mesh, immersed in an aqueous solution of ruthenium chloride having a predetermined concentration at room temperature for 20 hours, washed with water and dried to obtain a Ru-supported amount. Different adsorbents were obtained.

【0039】これらの吸着剤5ml(3.5g)を内径2
2mmのステンレス製反応管に充填し、実施例1と同様の
条件で出口NOx 濃度を測定し、10%破過時間を求め
た。Ru担持量と10%破過時間の関係を図4に示す。
5 ml (3.5 g) of these adsorbents had an inner diameter of 2
It was filled in a 2 mm stainless steel reaction tube and the NOx concentration at the outlet was measured under the same conditions as in Example 1 to obtain a 10% breakthrough time. The relationship between the amount of Ru carried and the 10% breakthrough time is shown in FIG.

【0040】同図に見られるとおり、Ru担持量が増加
するにつれて10%破過時間が長く、すなわちNOx 吸
着性能が良くなるが、Ru担持量が約3wt%以上では1
0%破過時間がほぼ一定になることが判る。
As can be seen from the figure, the 10% breakthrough time increases as the Ru loading increases, that is, the NOx adsorption performance improves, but when the Ru loading is about 3 wt% or more, it becomes 1
It can be seen that the 0% breakthrough time is almost constant.

【0041】[0041]

【発明の効果】本発明による吸着除去剤は湿分の影響を
受けないため、NOx吸着除去の前段で必要とした脱湿
工程が省略あるいは軽減できる。そのため脱湿工程で必
要とする多大なエネルギーが軽減でき、しかも脱湿装置
が不要あるいは簡素化できる。したがって、従来プロセ
スと比べて大幅な省エネルギーおよび省スペース(小型
化)が図れ、経済的効果がきわめて高い。
Since the adsorption / removal agent according to the present invention is not affected by moisture, the dehumidification step required before the NOx adsorption / removal can be omitted or reduced. Therefore, a large amount of energy required in the dehumidifying step can be reduced, and a dehumidifying device can be eliminated or simplified. Therefore, significant energy saving and space saving (miniaturization) can be achieved as compared with the conventional process, and the economical effect is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】時間と破過率の関係を示すグラフである。FIG. 1 is a graph showing the relationship between time and breakthrough rate.

【図2】時間と破過率の関係を示すグラフである。FIG. 2 is a graph showing the relationship between time and breakthrough rate.

【図3】時間と破過率の関係を示すグラフである。FIG. 3 is a graph showing the relationship between time and breakthrough rate.

【図4】Ru担持量と破過時間の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the amount of Ru carried and the breakthrough time.

【図5】時間と破過率の関係を示すグラフである。FIG. 5 is a graph showing the relationship between time and breakthrough rate.

フロントページの続き (72)発明者 鬼塚 重則 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 福寿 厚 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 西良 友紀 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 小林 秀次 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内(72) Inventor Shigenori Onizuka, 5-3-28 Nishikujo, Konohana-ku, Osaka City Hitachi Shipbuilding Co., Ltd. (72) Atsushi Fukuju, 5-28-3 Nishikujo, Konohana-ku, Osaka Hitachi Shipbuilding Co., Ltd. In-house (72) Inventor Yuki Nishira 5-3-28 Nishikujo, Konohana-ku, Osaka City Hitachi Shipbuilding Co., Ltd. (72) Inventor Shuji Kobayashi 5-28 Nishikujo, Konohana-ku, Osaka Hitachi Shipbuilding Co., Ltd. Within

Claims (1)

【特許請求の範囲】 【請求項1】 γ−アルミナより成る担体にルテニウム
が担持されていることを特徴とする、低濃度窒素酸化物
の吸着除去剤。
Claims: 1. An adsorbent / removal agent for low-concentration nitrogen oxides, characterized in that ruthenium is supported on a carrier made of γ-alumina.
JP3194513A 1991-08-02 1991-08-02 Adsorption remover for low concentration nitrogen oxides Expired - Fee Related JP2597252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3194513A JP2597252B2 (en) 1991-08-02 1991-08-02 Adsorption remover for low concentration nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3194513A JP2597252B2 (en) 1991-08-02 1991-08-02 Adsorption remover for low concentration nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH0531357A true JPH0531357A (en) 1993-02-09
JP2597252B2 JP2597252B2 (en) 1997-04-02

Family

ID=16325784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3194513A Expired - Fee Related JP2597252B2 (en) 1991-08-02 1991-08-02 Adsorption remover for low concentration nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2597252B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US20220097026A1 (en) * 2019-01-14 2022-03-31 University Of Leeds Catalytic converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495861A (en) * 1972-03-20 1974-01-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495861A (en) * 1972-03-20 1974-01-19

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US20220097026A1 (en) * 2019-01-14 2022-03-31 University Of Leeds Catalytic converter
US11890593B2 (en) * 2019-01-14 2024-02-06 University Of Leeds Catalytic converter

Also Published As

Publication number Publication date
JP2597252B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JP2557307B2 (en) NOx adsorption removal method
US5068217A (en) Carrier catalysts for oxidizing carbon monoxide and process for their production
EP0540428B1 (en) Adsorbents for removing low-concentration nitrogen oxides
JP2597252B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
JP6345964B2 (en) NOx adsorbent and method for producing the same
JP2563861B2 (en) Adsorption remover for low concentration nitrogen oxides
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3027219B2 (en) How to remove nitrogen oxides
JP2003275583A (en) Nitrogen dioxide absorbent
JPH04200741A (en) Adsorptive removing agent of low concentration nitrogen oxide
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH1128351A (en) Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use
JP2563862B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH05123571A (en) Adsorbent of nitrogen oxide and removal of nitrogen oxide using the same
JPH09248448A (en) Adsorbent of nitrogen oxide and removal apparatus of nitrogen oxide
JP2563861C (en)
JPH10305229A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide
JP3545029B2 (en) Exhaust gas purification method
JPH06210171A (en) Denitration catalyst
JP2000167394A (en) Regeneration of adsorbent for nitrogen oxide and the like
JPH1128352A (en) Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use
JPH0671176A (en) Catalyst for purifying nitrogen oxide
JPH07275695A (en) So2 adsorbent
JP2001038200A (en) Adsorbent for nitrogen oxide or the like, its production and method for removing nitrogen oxide or the like

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960924

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees