[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1128352A - Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use - Google Patents

Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use

Info

Publication number
JPH1128352A
JPH1128352A JP9188643A JP18864397A JPH1128352A JP H1128352 A JPH1128352 A JP H1128352A JP 9188643 A JP9188643 A JP 9188643A JP 18864397 A JP18864397 A JP 18864397A JP H1128352 A JPH1128352 A JP H1128352A
Authority
JP
Japan
Prior art keywords
adsorbent
nitrogen oxides
oxides
group
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9188643A
Other languages
Japanese (ja)
Inventor
Futoshi Kinoshita
太 木下
Nobuyuki Masaki
信之 正木
Hisao Kondo
久雄 近藤
Motonobu Kobayashi
基伸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP9188643A priority Critical patent/JPH1128352A/en
Publication of JPH1128352A publication Critical patent/JPH1128352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent capable or maintaining high performance over a long period of time wherein it is excellent in an adsorption capacity of a nitrogen oxide, and difficult to receive influence of a coexisting gas, and an adsorbent suitable for removal by adsorption of low concentrated nitrogen oxide or the like especially in an exhaust gas. SOLUTION: The absorbent contains at least one kind of an element selected from a group consisting of titanium, zirconium, silicon, and aluminum, an alkali metal element, at least one kind of element selected from a group consisting of vanadium, tungsten, molybdenum, and cerium, and at least one kind of an element selected from a group consisting of manganese, copper, nickel, cobalt, iron, chromium, and lead, and further contains an alkali earth metal element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒素酸化物および
/または硫黄酸化物(以下、「窒素酸化物等」と略すこ
ともある)の吸着除去に関する。詳しくは、本発明は、
排ガス中に含まれる低濃度の窒素酸化物および/または
硫黄酸化物の吸着除去に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to adsorption and removal of nitrogen oxides and / or sulfur oxides (hereinafter sometimes abbreviated as "nitrogen oxides"). Specifically, the present invention
The present invention relates to adsorption and removal of low-concentration nitrogen oxides and / or sulfur oxides contained in exhaust gas.

【0002】[0002]

【従来の技術】ボイラなどの固定式窒素酸化物発生源か
らの窒素酸化物の除去方法に関しては、従来から、アン
モニアを還元剤に用いて窒素酸化物を選択的に還元して
無害な窒素と水とに変換する接触還元法が最も経済的な
方法として広く用いられている。
2. Description of the Related Art With respect to a method of removing nitrogen oxides from a fixed nitrogen oxide source such as a boiler, conventionally, ammonia has been selectively reduced by using ammonia as a reducing agent to remove harmless nitrogen. The catalytic reduction method of converting to water is widely used as the most economical method.

【0003】ところで、道路トンネル、シェルター付道
路、大深度地下空間、道路交差点などにおける換気ガス
もしくは大気、および家庭内で使用される燃焼機器から
排出されるガスなどに含まれる窒素酸化物等の濃度は、
5ppm程度とボイラ排ガス中の窒素酸化物等の濃度に
比べて著しく低く、またガス温度は常温であり、しかも
ガス量は莫大なものである。このため、例えば道路トン
ネルの換気ガスに上記接触還元法を適用して窒素酸化物
等を効率よく除去するためには、この換気ガスの温度を
300℃以上にすることが必要であり、その結果、多大
のエネルギーが必要となることから、上記接触還元法を
そのまま適用することには経済的に問題がある。 この
ような事情から、上記のような道路トンネルの換気ガス
など、窒素酸化物等の濃度が低い、例えば約5ppm以
下の排ガスから窒素酸化物等を効率よく除去することが
望まれている。
Meanwhile, the concentration of nitrogen oxides and the like contained in ventilation gas or air in road tunnels, sheltered roads, deep underground spaces, road intersections, etc., and gas exhausted from combustion equipment used in homes. Is
The concentration is about 5 ppm, which is significantly lower than the concentration of nitrogen oxides and the like in the boiler exhaust gas, the gas temperature is room temperature, and the amount of gas is enormous. For this reason, for example, in order to efficiently remove nitrogen oxides and the like by applying the above-described catalytic reduction method to the ventilation gas of a road tunnel, it is necessary to set the temperature of the ventilation gas to 300 ° C. or more, and as a result, Since a large amount of energy is required, it is economically problematic to apply the above catalytic reduction method as it is. Under such circumstances, it is desired to efficiently remove nitrogen oxides and the like from exhaust gas having a low concentration of the nitrogen oxides and the like, for example, about 5 ppm or less, such as the ventilation gas of the road tunnel as described above.

【0004】そこで、本発明者らは、先に、上記のよう
な低濃度の窒素酸化物含有排ガスから窒素酸化物を吸着
除去するに好適な吸着剤を提案した(特開平7−883
63号公報参照)。
Accordingly, the present inventors have previously proposed an adsorbent suitable for adsorbing and removing nitrogen oxides from the exhaust gas containing low concentrations of nitrogen oxides as described above (Japanese Patent Laid-Open No. 7-883).
No. 63).

【0005】[0005]

【発明が解決しようとする課題】窒素酸化物吸着剤を用
いてトンネルの換気後のガスを処理する場合、トンネル
内で処理する必要があるため、設置スペースに制限があ
り装置自体をコンパクトにする必要がある。このため、
使用する吸着剤は優れた窒素酸化物吸着能を有すること
が望ましい。
When a gas after ventilation of a tunnel is treated using a nitrogen oxide adsorbent, it is necessary to treat the gas in the tunnel, so that the installation space is limited and the apparatus itself is made compact. There is a need. For this reason,
It is desirable that the adsorbent used has excellent nitrogen oxide adsorbing ability.

【0006】また、排ガス中には、上記窒素酸化物等の
他、水蒸気なども含まれていることから、使用する窒素
酸化物等の吸着剤としては、これら共存ガスによる影響
を受けにくいものが望ましい。
Further, since the exhaust gas contains water vapor in addition to the nitrogen oxides, the adsorbents such as nitrogen oxides to be used are those which are hardly affected by these coexisting gases. desirable.

【0007】また、アルカリを含有した吸着剤は、窒素
酸化物とくに二酸化窒素の吸着能に優れることはすでに
知られているが、アルカリを含有した吸着剤は加熱再生
ができず、再生するためには、水洗することにより吸着
物質を除いてからアルカリを再添加する等の複雑な処理
を必要とした。
It is already known that an adsorbent containing an alkali is excellent in adsorbing nitrogen oxides, particularly nitrogen dioxide. However, an adsorbent containing an alkali cannot be heated and regenerated. Required complicated treatment such as removing the adsorbed substance by washing with water and then re-adding the alkali.

【0008】かくして、本発明は、窒素酸化物等の吸着
能に優れ、しかも共存ガスによる影響を受けにくく、長
時間にわたって高性能を維持できる窒素酸化物等の吸着
剤、特に排ガス中の5ppm以下程度の低濃度の窒素酸
化物等を吸着除去するに好適な窒素酸化物等の吸着剤を
提供することを目的としさらに加熱再生可能な吸着剤を
提供するものである。
Thus, the present invention provides an adsorbent, such as nitrogen oxide, which is excellent in the ability to adsorb nitrogen oxides and the like, is not easily affected by coexisting gas, and can maintain high performance for a long time, especially 5 ppm or less in exhaust gas. An object of the present invention is to provide an adsorbent such as a nitrogen oxide suitable for adsorbing and removing a nitrogen oxide or the like having a low concentration.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討の結果、チタン、ジルコニウ
ム、ケイ素、アルミニウムからなる群から選ばれる少な
くとも一種の元素と、アルカリ金属元素の少なくとも一
種と、バナジウム、タングステン、モリブデン、セリウ
ムからなる群から選ばれる少なくとも一種の元素、およ
びマンガン、銅、ニッケル、コバルト、鉄、クロム、鉛
からなる群から選ばれる少なくとも一種の元素とを含有
する窒素酸化物および/または硫黄酸化物の吸着剤であ
り、好ましくは、該吸着剤が、特定の細孔を有するもの
であり、さらに該吸着剤を用いた窒素酸化物等の吸着方
法を見いだし発明を完成するに至ったのである。さらに
詳しくは以下の通りに特定されるものである。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that at least one element selected from the group consisting of titanium, zirconium, silicon, and aluminum and an alkali metal element Contains at least one element and at least one element selected from the group consisting of vanadium, tungsten, molybdenum, and cerium, and at least one element selected from the group consisting of manganese, copper, nickel, cobalt, iron, chromium, and lead The present invention is an adsorbent for nitrogen oxides and / or sulfur oxides, preferably, the adsorbent has specific pores, and a method for adsorbing nitrogen oxides and the like using the adsorbent. Was completed. More specifically, it is specified as follows.

【0010】(1)チタン、ジルコニウム、ケイ素、ア
ルミニウムからなる群から選ばれる少なくとも一種の元
素と、アルカリ金属元素の少なくとも一種と、バナジウ
ム、タングステン、モリブデン、セリウムからなる群か
ら選ばれる少なくとも一種の元素と、マンガン、銅、ニ
ッケル、コバルト、鉄、クロム、鉛からなる群から選ば
れる少なくとも一種の元素とを含有することを特徴とす
る窒素酸化物および/または硫黄酸化物の吸着剤。
(1) At least one element selected from the group consisting of titanium, zirconium, silicon, and aluminum, at least one element of an alkali metal element, and at least one element selected from the group consisting of vanadium, tungsten, molybdenum, and cerium And at least one element selected from the group consisting of manganese, copper, nickel, cobalt, iron, chromium and lead, the adsorbent for nitrogen oxides and / or sulfur oxides.

【0011】(2)さらにアルカリ土類金属元素を含有
するものである上記(1)に記載の吸着剤。
(2) The adsorbent according to the above (1), which further contains an alkaline earth metal element.

【0012】(3)比表面積が10m2/g以上、全細
孔容積が0.15cc/g以上、かつ0.05〜4μm
の範囲の孔径を有する細孔容積が全細孔容積の10%以
上である(1)または(2)に記載の吸着剤。
(3) The specific surface area is 10 m 2 / g or more, the total pore volume is 0.15 cc / g or more, and 0.05 to 4 μm.
The adsorbent according to (1) or (2), wherein the pore volume having a pore size in the range of 10% or more of the total pore volume is not less than 10%.

【0013】(4)上記(1)〜(3)のいずれかに記
載の吸着剤に窒素酸化物および/または硫黄酸化物を含
有するガスを接触させて窒素酸化物および/または硫黄
酸化物を除去することを特徴とする吸着剤の使用方法。
(4) A gas containing nitrogen oxides and / or sulfur oxides is brought into contact with the adsorbent according to any one of the above (1) to (3) to remove the nitrogen oxides and / or sulfur oxides. A method for using an adsorbent, which comprises removing the adsorbent.

【0014】(5)上記(1)に記載の吸着剤を窒素酸
化物および/または硫黄酸化物を含有するガスに接触さ
せて窒素酸化物および/または硫黄酸化物を吸着させる
工程、および該吸着剤を加熱して吸着されていた窒素酸
化物を脱離させ、無害化処理する工程を繰り返し行うこ
とを特徴とする吸着剤の使用方法。
(5) a step of bringing the adsorbent according to (1) into contact with a gas containing nitrogen oxides and / or sulfur oxides to adsorb the nitrogen oxides and / or sulfur oxides, and A method for using an adsorbent, comprising repeating the step of heating the adsorbent to desorb the adsorbed nitrogen oxides and detoxifying it.

【0015】[0015]

【発明の実施の形態】チタン、ジルコニウム、ケイ素、
アルミニウムからなる群から選ばれる少なくとも一種の
元素(以下、「成分(A)」と記載することもある)と
は、通常上記元素を含むものであればいずれのものであ
ってもよいが、好ましくは各元素の酸化物、複合酸化
物、例えば、チタニア、ジルコニア、シリカ、アルミ
ナ、チタニア−ジルコニア、チタニア−シリカ、シリカ
−ジルコニア、チタニア−シリカ−ジルコニア、アルミ
ナ−シリカ、各種ゼオライト等でありさらに好ましく
は、チタニア−シリカである。なお、アルカリ金属元素
またはアルカリ土類金属元素と成分(A)との複合酸化
物または複塩が形成されることもある。
DETAILED DESCRIPTION OF THE INVENTION Titanium, zirconium, silicon,
The at least one element selected from the group consisting of aluminum (hereinafter sometimes referred to as “component (A)”) may be any element as long as it generally contains the above element, but is preferably Is an oxide of each element, a composite oxide, for example, titania, zirconia, silica, alumina, titania-zirconia, titania-silica, silica-zirconia, titania-silica-zirconia, alumina-silica, various zeolites, and more preferably Is titania-silica. Note that a complex oxide or double salt of the alkali metal element or the alkaline earth metal element and the component (A) may be formed.

【0016】チタン源としては、塩化チタン、硫酸チタ
ンなどの無機チタン化合物、蓚酸チタン、テトライソプ
ロピルチタネートなどの有機チタン化合物などから選ば
れる1種または2種以上の化合物を、またジルコニウム
源としては、硝酸ジルコニウム、ジルコニアゾル等を使
用することができる。またケイ素源としては、コロイド
状シリカ、微粒子ケイ酸、水ガラス、四塩化ケイ素など
無機ケイ素化合物、テトラエチルシリケートなどの有機
ケイ素化合物などから選ばれる1種または2種以上の化
合物を使用することができ、さらにアルミニウム源とし
ては、硝酸アルミニウム、硫酸アルミニウム、アルミナ
ゾル等を使用することができる。
As the titanium source, one or more compounds selected from inorganic titanium compounds such as titanium chloride and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate, etc., and as the zirconium source, Zirconium nitrate, zirconia sol and the like can be used. As the silicon source, one or more compounds selected from colloidal silica, fine-particle silicic acid, water glass, inorganic silicon compounds such as silicon tetrachloride, and organic silicon compounds such as tetraethylsilicate can be used. Further, as the aluminum source, aluminum nitrate, aluminum sulfate, alumina sol and the like can be used.

【0017】アルカリ金属元素(以下、「成分(B)」
と記載することもある)は、リチウム、ナトリウム、カ
リウム、ルビジウム、セシウムであることが好ましい。
アルカリ金属元素源としては、水酸化物、炭酸塩、炭酸
水素塩等から適宜選択し使用することができ、例えば、
水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウ
ム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム
などである。
Alkali metal element (hereinafter referred to as “component (B)”
) Is preferably lithium, sodium, potassium, rubidium, or cesium.
As the alkali metal element source, hydroxide, carbonate, bicarbonate and the like can be appropriately selected and used, for example,
Sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate and the like.

【0018】バナジウム、タングステン、モリブデン、
セリウムからなる群から選ばれる少なくとも一種の元素
(以下、「成分(C)と記載することもある)とは通常
上記元素を含むものであればいずれのものであってもよ
いが、好ましくは各元素の酸化物、複合酸化物である。
なお、成分(C)はアルカリ金属元素またはアルカリ土
類金属元素との複合酸化物またはその塩、すなわちバナ
ジウム酸ナトリウム、タングステン酸ナトリウム、モリ
ブデン酸ナトリウム等を形成することもある。
Vanadium, tungsten, molybdenum,
The at least one element selected from the group consisting of cerium (hereinafter sometimes referred to as “component (C)”) may be any element as long as it generally contains the above element, but preferably Element oxides and composite oxides.
The component (C) may form a complex oxide with an alkali metal element or an alkaline earth metal element or a salt thereof, that is, sodium vanadate, sodium tungstate, sodium molybdate, or the like.

【0019】また、成分(C)の原料としては、アンモ
ニウム塩、炭酸塩、酸化物、硝酸塩等が適宜用いられ
る。
As the raw material of the component (C), ammonium salts, carbonates, oxides, nitrates and the like are appropriately used.

【0020】マンガン、銅、ニッケル、コバルト、鉄、
クロム、鉛からなる群から選ばれる少なくとも一種の元
素(以下、「成分(D)」と記載することもある)とは
通常上記元素を含むものであればいずれのものであって
もよいが、好ましくは各元素の酸化物、複合酸化物であ
る。なお、成分(D)はアルカリ金属元素またはアルカ
リ土類金属元素との複合酸化物またはその塩、すなわち
マンガン酸カリウム、鉛酸ナトリウム等を形成すること
もある。成分(D)の原料としては、水酸化物、炭酸
塩、硝酸塩、硫酸塩、塩化物、酸化物、有機金属塩等が
適宜用いることができる。
Manganese, copper, nickel, cobalt, iron,
The at least one element selected from the group consisting of chromium and lead (hereinafter sometimes referred to as “component (D)”) may be any element as long as it generally contains the above element, Preferred are oxides and composite oxides of each element. In addition, the component (D) may form a complex oxide with an alkali metal element or an alkaline earth metal element or a salt thereof, that is, potassium manganate, sodium leadate, or the like. As a raw material of the component (D), a hydroxide, a carbonate, a nitrate, a sulfate, a chloride, an oxide, an organic metal salt, or the like can be appropriately used.

【0021】アルカリ土類金属元素(以下、「成分
(E)」と記載することもある)は、ベリリウム、マグ
ネシウム、カルシウム、ストロンチウム、バリウムであ
ることが好ましい。アルカリ土類金属元素源は、水酸化
物、炭酸塩、硫酸塩、塩化物、酸化物、有機金属塩等で
ある。
The alkaline earth metal element (hereinafter sometimes referred to as “component (E)”) is preferably beryllium, magnesium, calcium, strontium, or barium. Sources of alkaline earth metal elements are hydroxides, carbonates, sulfates, chlorides, oxides, organic metal salts, and the like.

【0022】吸着剤中の成分、(A)成分と(B)成分
と(C)成分と(D)成分と(E)成分の組成比は、特
には制限されないが、いずれも酸化物換算で吸着剤全量
中、成分(A)が10〜98.4重量%、成分(B)が
1〜30重量%、成分(C)が0.1〜10重量%、成
分(D)が0.5〜50重量%、成分(E)が0〜50
重量%であることが好ましい。
The composition ratios of the components in the adsorbent, component (A), component (B), component (C), component (D), and component (E) are not particularly limited, but all are calculated as oxides. In the total amount of the adsorbent, component (A) is 10 to 98.4% by weight, component (B) is 1 to 30% by weight, component (C) is 0.1 to 10% by weight, and component (D) is 0.5%. -50 wt%, component (E) is 0-50
% By weight.

【0023】本発明の吸着剤の調製方法については特に
制限はなく、種々の方法で調製することができる。以下
に、上記成分(A)と成分(B)と成分(C)と成分
(D)からなる吸着剤に関して、その代表的な調製方法
について説明するが本発明はこれに限定されるものでは
ない。
The method for preparing the adsorbent of the present invention is not particularly limited, and can be prepared by various methods. Hereinafter, a typical method for preparing the adsorbent composed of the components (A), (B), (C) and (D) will be described, but the present invention is not limited thereto. .

【0024】上記チタン源およびケイ素源の化合物を、
チタンおよびケイ素の原子百分率がそれぞれ40〜95
%および5〜60%となるようにとり、酸性の水溶液状
態またはゾル状態でチタンおよびケイ素を酸化物に換算
して1〜100g/L(リットル、以下同じ)の濃度と
し10〜100℃に保つ。そこに攪拌下中和剤としてア
ンモニア水を滴下し、チタンおよびケイ素を含む共沈化
合物を生成し、ろ別し、よく洗浄した後、80〜140
℃でl〜10時間乾燥し、さらに450〜700℃で1
〜10時間焼成することによりTiO2−SiO2が得ら
れる。
The compound of the titanium source and the silicon source is
An atomic percentage of titanium and silicon of 40 to 95 respectively
% And 5 to 60%, and titanium and silicon are converted to oxides in an acidic aqueous solution state or sol state to a concentration of 1 to 100 g / L (liter, the same applies hereinafter) and kept at 10 to 100 ° C. Ammonia water was added dropwise thereto as a neutralizing agent under stirring to produce a coprecipitated compound containing titanium and silicon.
And dried at 450-700 ° C for 1-10 hours.
By baking for 10 to 10 hours, TiO 2 —SiO 2 is obtained.

【0025】また、ケイ素に変えてジルコニウムを使用
することによりTiO2−ZrO2を得ることができる。
TiO 2 —ZrO 2 can be obtained by using zirconium instead of silicon.

【0026】成分(B)、成分(C)及び成分(D)の
出発原料の水溶液または粉体を成型助剤と共に上記成分
(A)に加えて、混合、混練し、押し出し成型機で成形
する。得られた成型物は、50〜120℃で乾燥した
後、200〜600℃、好ましくは250〜500℃で
1〜10時間、好ましくは2〜6時間空気中で焼成する
ことにより本発明の吸着剤が得られる。また、成分
(A)と成分(C)と成分(D)を含有する成型体をあ
らかじめ作成し、この成型体に成分(B)を含浸担持さ
せ50〜120℃で乾燥しその後200〜600℃で焼
成することにより本発明の吸着剤が得られる。
An aqueous solution or powder of the starting materials of the components (B), (C) and (D) is added to the above-mentioned component (A) together with a molding aid, mixed, kneaded and molded by an extrusion molding machine. . The obtained molded product is dried at 50 to 120 ° C. and then calcined in air at 200 to 600 ° C., preferably 250 to 500 ° C. for 1 to 10 hours, preferably 2 to 6 hours to obtain the adsorption product of the present invention. Agent is obtained. Further, a molded article containing the component (A), the component (C) and the component (D) is prepared in advance, the component (B) is impregnated and supported on the molded article, dried at 50 to 120 ° C., and then 200 to 600 ° C. The adsorbent of the present invention can be obtained by calcining.

【0027】本発明の吸着剤の好ましい物性としては、
比表面積(BET表面積)が10m2/g以上であり、
全細孔容積が0.15cc/g以上、好ましくは0.3
cc/g以上である。更に、該細孔の内、0.05〜4
μmの範囲の孔径を有する細孔容積が、全細孔容積の1
0%以上、好ましくは15%以上である。更に好ましく
は、該吸着剤が、0.01〜0.03μmの範囲の孔径
を有する細孔群と0.05〜4μmの範囲の孔径を有す
る細孔群とを有することが好ましく、0.01〜0.0
3μmの範囲の孔径を有する細孔群が占める細孔容積が
全細孔容積の50〜80%であり、0.05〜4μmの
範囲の孔径を有する細孔容積が、全細孔容積の10%以
上、好ましくは15%以上であることが好ましい。なお
本発明における細孔径、細孔径分布および細孔容積は水
銀圧入式ポロシメーターを用いて測定した。このような
物性を有する吸着剤が窒素酸化物等の吸着性能に優れる
メカニズムは明らかではないが、ガスの細孔内への拡散
が容易に行われ、その結果、窒素酸化物等の吸着性能が
向上するものと考えられる。
Preferred physical properties of the adsorbent of the present invention include:
A specific surface area (BET surface area) of 10 m 2 / g or more;
The total pore volume is 0.15 cc / g or more, preferably 0.3
cc / g or more. Further, of the pores, 0.05 to 4
The pore volume having a pore size in the range of μm is 1% of the total pore volume.
0% or more, preferably 15% or more. More preferably, the adsorbent preferably has a group of pores having a pore size in the range of 0.01 to 0.03 μm and a group of pores having a pore size in the range of 0.05 to 4 μm. ~ 0.0
The pore volume occupied by the pore group having a pore size in the range of 3 μm is 50 to 80% of the total pore volume, and the pore volume having the pore size in the range of 0.05 to 4 μm is 10% of the total pore volume. %, Preferably 15% or more. The pore size, pore size distribution and pore volume in the present invention were measured using a mercury intrusion porosimeter. The mechanism by which the adsorbent having such properties is excellent in the adsorption performance of nitrogen oxides and the like is not clear, but gas is easily diffused into the pores, and as a result, the adsorption performance of nitrogen oxides and the like is reduced. It is thought to improve.

【0028】特に、上記の物性を有する吸着剤を得るた
めには、上記の吸着剤の調製時に、(1)成形時に焼成
段階で揮発・分解する樹脂、セルロースなどの有機高分
子や硝酸アンモニウムなどの無機塩類を添加、混合する
方法、(2)硅砂、α−アルミナ、コージェライト、ジ
ルコンなどの粉体を添加、混合する方法、(3)原料粉
体の粒子径を適度に調整する方法などによって製造する
ことができる。
In particular, in order to obtain an adsorbent having the above-mentioned physical properties, it is necessary to prepare (1) a resin which volatilizes and decomposes in a firing step at the time of molding, an organic polymer such as cellulose, and an ammonium nitrate. A method of adding and mixing inorganic salts, (2) a method of adding and mixing powders such as silica sand, α-alumina, cordierite, zircon, and the like, and (3) a method of appropriately adjusting the particle diameter of the raw material powder. Can be manufactured.

【0029】上記方法(1)において使用できる有機高
分子の代表例としては、ポリエチレン樹脂、アクリル樹
脂、アセタール樹脂、結晶性セルロースなどを挙げるこ
とができる。また、無機塩類の代表例としては、硝酸ア
ンモニウム、シュウ酸アンモニウム、炭酸アンモニウム
などを挙げることができる。これらの添加量について
は、5〜30重量%の範囲が好ましい。方法(2)にお
ける粉体の平均粒子径および添加量はそれぞれ1〜20
μmおよび5〜30%の範囲が好ましい。方法(3)の
場合、原料粉体の平均粒子径は通常2〜30μmであ
り、あまり粒子径を小さくすると目的とする細孔分布を
有する吸着剤を調製することができない。
Typical examples of the organic polymer which can be used in the above method (1) include polyethylene resin, acrylic resin, acetal resin, crystalline cellulose and the like. Typical examples of the inorganic salts include ammonium nitrate, ammonium oxalate, and ammonium carbonate. The amount of these additives is preferably in the range of 5 to 30% by weight. In the method (2), the average particle diameter and the amount of the powder added are 1 to 20 respectively.
μm and a range of 5-30% are preferred. In the case of the method (3), the average particle diameter of the raw material powder is usually 2 to 30 μm. If the particle diameter is too small, it is not possible to prepare an adsorbent having a target pore distribution.

【0030】本発明の吸着剤の形状は、特に制限はない
が、円柱状、円筒状、球状、板状、ハニカム状、その他
一体に成形されたものを適宜選択することができる。こ
の吸着剤の成形は一般的な成形方法を使用することがで
き、例えば、打錠成形、押出し成形法等を使用すること
ができる。球状の場合は、その平均粒径は、通常、1〜
10mmである。ハニカム状吸着剤の場合は、いわゆる
モノリス担体と同様であり、押出し成形法やシート状素
子を巻き固める方法などにより製造される。そのガス通
過口(セル形状)の形は6角形、4角形、3角形または
コルゲーション形のいずれであってもよい。セル密度
(セル数/単位断面積)は、通常、25〜800セル/
平方インチであり、好ましくは25〜500セル/平方
インチである。
The shape of the adsorbent of the present invention is not particularly limited, but may be appropriately selected from a column, a cylinder, a sphere, a plate, a honeycomb, and other integrally formed ones. For forming the adsorbent, a general molding method can be used, for example, a tableting method, an extrusion method, or the like can be used. In the case of a sphere, the average particle size is usually 1 to
10 mm. In the case of a honeycomb-shaped adsorbent, it is the same as a so-called monolithic carrier, and is manufactured by an extrusion method, a method of winding a sheet-shaped element, or the like. The shape of the gas passage (cell shape) may be any of a hexagon, a quadrangle, a triangle, and a corrugation. The cell density (number of cells / unit cross-sectional area) is usually 25 to 800 cells /
Square inches, preferably 25-500 cells / square inch.

【0031】本発明の窒素酸化物の除去方法によれば、
上記吸着剤に排ガスを接触させて排ガス中の窒素酸化物
等を吸着除去する。ここにいう排ガスとは、窒素酸化物
(一酸化窒素および/または二酸化窒素)および/また
は硫黄酸化物(二酸化硫黄および/または三酸化硫黄)
を含有する、前記の道路トンネルなどからの換気ガスま
たは大気ガスを意味し、本発明の方法は、特に窒素酸化
物等の濃度が5ppm以下という濃度が低い排ガスから
の窒素酸化物、特に二酸化窒素の吸着除去に好適に用い
られる。
According to the method for removing nitrogen oxides of the present invention,
Exhaust gas is brought into contact with the adsorbent to adsorb and remove nitrogen oxides and the like in the exhaust gas. The exhaust gas referred to here is nitrogen oxide (nitrogen monoxide and / or nitrogen dioxide) and / or sulfur oxide (sulfur dioxide and / or sulfur trioxide).
Means a ventilation gas or an atmospheric gas from the above-mentioned road tunnel or the like, and the method of the present invention is particularly applicable to nitrogen oxides, particularly nitrogen dioxide, from exhaust gas having a low concentration of 5 ppm or less. It is suitably used for the adsorption removal of.

【0032】本発明の吸着剤と排ガスとの接触方法につ
いては特に制限はなく、通常、この吸着剤からなる層中
に排ガスを導入して行う。この処理条件については、排
ガスの性状などによって異なるので一概に特定できない
が、供給する排ガスの温度は、通常、0〜100℃であ
り、特に0〜50℃の範囲にあるのが好ましい。また、
供給する排ガスの空間速度(SV)は、通常、500〜
50000hr-1(STP)であり、2000〜300
00hr-1(STP)の範囲が好ましい。
The method for contacting the adsorbent of the present invention with the exhaust gas is not particularly limited, and usually, the exhaust gas is introduced into a layer made of the adsorbent. Since the treatment conditions vary depending on the properties of the exhaust gas and the like, they cannot be specified unconditionally. However, the temperature of the supplied exhaust gas is usually 0 to 100 ° C., and particularly preferably in the range of 0 to 50 ° C. Also,
The space velocity (SV) of the supplied exhaust gas is usually 500 to
50,000 hr -1 (STP), 2000 to 300
A range of 00 hr -1 (STP) is preferred.

【0033】また、本発明の吸着剤は窒素酸化物および
/または硫黄酸化物を含有するガスに接触させて窒素酸
化物および/または硫黄酸化物を吸着させる工程、およ
び該吸着剤を加熱して吸着されていた窒素酸化物を脱離
させ、無害化処理する工程を繰り返し行うことにより、
長期にわたり使用することが可能である。使用可能な期
間は吸着剤の量、使用条件、処理ガス組成およびその濃
度等により変わる。
Further, the adsorbent of the present invention is brought into contact with a gas containing nitrogen oxides and / or sulfur oxides to adsorb the nitrogen oxides and / or sulfur oxides, and by heating the adsorbent. By repeating the process of desorbing the adsorbed nitrogen oxides and detoxifying it,
It can be used for a long time. The usable period varies depending on the amount of the adsorbent, the use conditions, the composition of the processing gas and its concentration, and the like.

【0034】窒素酸化物等を吸着したこの吸着剤の加熱
再生方法は、特に限定されないが、温度としては200
〜600℃であればよく、より好ましくは300〜40
0℃である。
The method of heating and regenerating the adsorbent having adsorbed nitrogen oxides and the like is not particularly limited.
600600 ° C., more preferably 300-40 ° C.
0 ° C.

【0035】また、加熱時にはガスを流通させることが
好ましく、用いるガスとしては空気、窒素、二酸化炭
素、ヘリウム等の不活性ガスが挙げられ、水蒸気を含ん
でいても良い。好ましくは空気である。その際用いるガ
ス量は吸着時のガス量と同等もしくはそれ以下でよく、
好ましくは吸着時のガス量の1/5〜1/100でよ
い。ガス量が少ないほど加熱に要する熱量が少なくてす
み経済的である。
It is preferable to flow a gas at the time of heating. Examples of the gas to be used include an inert gas such as air, nitrogen, carbon dioxide and helium, and may contain water vapor. Preferably it is air. The gas amount used at that time may be equal to or less than the gas amount at the time of adsorption,
Preferably, it is 1/5 to 1/100 of the gas amount at the time of adsorption. The smaller the gas amount, the smaller the amount of heat required for heating and the more economical.

【0036】また、加熱時間は10分〜5時間であれば
よく、好ましくは30分〜1時間である。
The heating time may be 10 minutes to 5 hours, preferably 30 minutes to 1 hour.

【0037】吸着剤を加熱した際、脱離した窒素酸化物
を含有するガスは従来行われている脱硝方法、すなわち
NH3を還元剤として添加し脱硝触媒を用いて、窒素酸
化物を窒素と水まで還元でき、無害化することができ
る。
When the adsorbent is heated, the desorbed nitrogen oxide-containing gas is subjected to a conventional denitration method, that is, NH3 is added as a reducing agent and nitrogen oxide is converted to nitrogen and water using a denitration catalyst. Can be reduced to harmless.

【0038】[0038]

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples.

【0039】実施例1 [成分Aの調製]チタン源として下記組成を有する硫酸
チタニルの硫酸水溶液を用いた。
Example 1 [Preparation of Component A] An aqueous sulfuric acid solution of titanyl sulfate having the following composition was used as a titanium source.

【0040】 TiOSO4:250g/L(TiO2として) 全H2SO4:1,100g/L 別に、水400Lにアンモニア水(NH3、25%)2
86Lを添加し、これにスノーテックスNCS−30
(日産化学(株)製シリカゾル、SiO2を約30重量
%含有)24kgを加えた。得られた溶液中に上記硫酸
チタニルの硫酸水溶液153Lを水300Lに添加して
希釈したチタン含有硫酸水溶液を攪拌下徐々に滴下し、
共沈ゲルを生成した。更にそのまま15時間放置してT
iO2−SiO2ゲルを得た。このゲルをろ過し、水洗し
た後、200℃で10時間乾燥した。次いで、600℃
で6時間空気雰囲気下で焼成し、さらにハンマーミルを
用いて粉砕し、分級機で分級して平均粒子径10μmの
粉体を得た。得られた粉体(以下、「TS−1」とい
う)の組成はTi:Si=4:1(原子比)で、BET
表面積は160m2/gであった。
TiOSO 4 : 250 g / L (as TiO 2 ) Total H 2 SO 4 : 1,100 g / L Separately, ammonia water (NH 3 , 25%) 2 was added to 400 L of water.
86L was added, and Snowtex NCS-30 was added thereto.
24 kg (silica sol manufactured by Nissan Chemical Co., Ltd., containing about 30% by weight of SiO 2 ) was added. To the obtained solution, 153 L of a sulfuric acid aqueous solution of titanyl sulfate was added to 300 L of water and diluted, and a titanium-containing sulfuric acid aqueous solution was gradually added dropwise with stirring,
A co-precipitated gel was produced. Leave it for 15 hours and
It was obtained iO 2 -SiO 2 gel. The gel was filtered, washed with water, and dried at 200 ° C. for 10 hours. Then 600 ° C
For 6 hours in an air atmosphere, further pulverized using a hammer mill, and classified using a classifier to obtain a powder having an average particle diameter of 10 μm. The composition of the obtained powder (hereinafter referred to as “TS-1”) is Ti: Si = 4: 1 (atomic ratio), and the BET
The surface area was 160 m 2 / g.

【0041】[吸着剤の調製]水酸化ナトリウム129
gを水100gに溶解させた溶液と、メタバナジン酸ア
ンモニウム64.3gとシュウ酸77.2gを水200
gに溶かした溶液とを炭酸マンガン198.2gと上記
のTS−1 700gに加え、ニーダーで適量の水を添
加しつつよく混合、混練した後、押出し成型機で、直径
5mmφ、長さ5mmLのペレット状に成形した。次い
で、100℃で10時間乾燥した後、500℃で3時間
空気中で焼成した。このようにして得られた吸着剤の組
成は、TS−1:Na2O:V25:MnO2=70:1
0:5:15 重量%であった。
[Preparation of adsorbent] Sodium hydroxide 129
g in 100 g of water, 64.3 g of ammonium metavanadate and 77.2 g of oxalic acid in 200 ml of water.
g of manganese carbonate and 700 g of the above-mentioned TS-1 were added to the solution, and the mixture was kneaded well while adding an appropriate amount of water with a kneader, and then extruded to a diameter of 5 mmφ and a length of 5 mmL with an extruder. It was formed into a pellet. Next, after drying at 100 ° C. for 10 hours, it was baked at 500 ° C. for 3 hours in air. The composition of the adsorbent obtained in this way, TS-1: Na 2 O : V 2 O 5: MnO 2 = 70: 1
0: 5: 15% by weight.

【0042】また、比表面積が90m2/gであり、全
細孔容積は、0.38cc/gであった。なお、得られ
た吸着剤の細孔径分布は水銀圧入式ポロシメーター(島
津製作所製)により測定した。
The specific surface area was 90 m 2 / g, and the total pore volume was 0.38 cc / g. The pore size distribution of the obtained adsorbent was measured by a mercury intrusion porosimeter (manufactured by Shimadzu Corporation).

【0043】実施例2〜7 実施例1において炭酸マンガンを炭酸銅,炭酸ニッケ
ル,炭酸コバルト,水酸化鉄,水酸化クロム、炭酸鉛に
変えて実施例1同様に吸着剤を調製した。それぞれの組
成、比表面積、全細孔容積を表1に示した。。
Examples 2 to 7 Adsorbents were prepared in the same manner as in Example 1 except that manganese carbonate was changed to copper carbonate, nickel carbonate, cobalt carbonate, iron hydroxide, chromium hydroxide, and lead carbonate. Table 1 shows the composition, specific surface area, and total pore volume. .

【0044】実施例8〜10 実施例1においてメタバナジン酸アンモニウムをパラタ
ングステン酸アンモニウム、モリブデン酸アンモニウ
ム、炭酸セリウムに変えて実施例1同様に吸着剤を調製
した。それぞれの組成、比表面積、全細孔容積を表1に
示した。
Examples 8 to 10 Adsorbents were prepared in the same manner as in Example 1 except that ammonium metavanadate was changed to ammonium paratungstate, ammonium molybdate and cerium carbonate. Table 1 shows the composition, specific surface area, and total pore volume.

【0045】実施例11〜16 実施例1においてTS−1の代わりに酸化チタン(ロ−
ヌプーラン社製アナタース型酸化チタン DT−5
0)、 酸化ジルコニウム(第一希元素化学社製酸化ジ
ルコニウム EP)、 酸化アルミニウム(住友化学製
γ−アルミナ A−11)、 酸化珪素(水沢化学製
AMT−シリカ)、 アルミナ−シリカ(触媒化成製
アルミナ−シリカ LA)、ゼオライト(東ソ−社製モ
ルデナイトTSZ−600)を用いた以外は実施例1同
様に吸着剤を調製した。それぞれの組成、比表面積、全
細孔容積を表1に示した。
Examples 11 to 16 In Example 1, titanium oxide (b) was used instead of TS-1.
Anatase Type Titanium Oxide DT-5 manufactured by Nupoulin
0), zirconium oxide (Zirconium oxide EP manufactured by Daiichi Kagaku Kagaku Co., Ltd.), aluminum oxide (γ-alumina A-11 manufactured by Sumitomo Chemical Co., Ltd.), silicon oxide (manufactured by Mizusawa Chemical
AMT-silica), alumina-silica (Catalyst Chemical Co., Ltd.)
An adsorbent was prepared in the same manner as in Example 1 except that alumina-silica LA) and zeolite (Mordenite TSZ-600 manufactured by Tosoh Corporation) were used. Table 1 shows the composition, specific surface area, and total pore volume.

【0046】実施例17 水酸化ナトリウム129gを水100gに溶解させた溶
液と、メタバナジン酸アンモニウム64.3gとシュウ
酸77.2gを水200gに溶かした溶液とを実施例1
で用いた炭酸マンガン198.2gとTS−1 600
gに加え、更に炭酸バリウム100gを加えて、ニーダ
ーで適量の水を添加しつつよく混合、混練りした後、押
出し成型機で、直径5mmφ、長さ5mmLのペレット
状に成形した。次いで、100℃で10時間乾燥した
後、500℃で3時間空気中で焼成した。このようにし
た得られた吸着剤の組成は、TS−1:Na2O:V2
5:MnO2:BaCO3=60:10:5:15:10
重量%であった。また、比表面積が61m2/gであ
り、全細孔容積は、0.33cc/gであった。
Example 17 A solution in which 129 g of sodium hydroxide was dissolved in 100 g of water and a solution in which 64.3 g of ammonium metavanadate and 77.2 g of oxalic acid were dissolved in 200 g of water were used.
198.2 g of manganese carbonate used in the above and TS-1600
g, and further, barium carbonate (100 g) was added, and the mixture was kneaded and kneaded while adding an appropriate amount of water using a kneader. The mixture was extruded into a pellet having a diameter of 5 mmφ and a length of 5 mmL. Next, after drying at 100 ° C. for 10 hours, it was baked at 500 ° C. for 3 hours in air. The composition of the adsorbent thus obtained is TS-1: Na 2 O: V 2 O
5 : MnO 2 : BaCO 3 = 60: 10: 5: 15: 10
% By weight. Further, the specific surface area was 61 m 2 / g, and the total pore volume was 0.33 cc / g.

【0047】実施例18 水酸化カリウム119gを水100gに溶解させた溶液
と、メタバナジン酸アンモニウム64.3gとシュウ酸
77.2gを水200gに溶かした溶液とを実施例1で
用いた炭酸マンガン198.2gとTS−1 700g
に加え、ニーダーで適量の水を添加しつつよく混合、混
練した後、押出し成型機で、直径5mmφ、長さ5mm
Lのペレット状に成形した。次いで、100℃で10時
間乾燥した後、500℃で3時間空気中で焼成した。こ
のようにした得られた吸着剤の組成は、TS−1:K2
O:V25:MnO2=70:10:5:15 重量%で
あった。
Example 18 Manganese carbonate 198 used in Example 1 was obtained by dissolving 119 g of potassium hydroxide in 100 g of water and a solution of 64.3 g of ammonium metavanadate and 77.2 g of oxalic acid in 200 g of water. .2g and TS-1 700g
In addition to the above, a suitable amount of water is added with a kneader, and the mixture is well mixed and kneaded.
L was pelletized. Next, after drying at 100 ° C. for 10 hours, it was baked at 500 ° C. for 3 hours in air. The composition of the adsorbent thus obtained is TS-1: K 2
O: V 2 O 5 : MnO 2 = 70: 10: 5: 15% by weight.

【0048】また、比表面積が90m2/gであり、全
細孔容積は、0.39cc/gであった。なお、得られ
た吸着剤の細孔容積は、水銀圧入式ポロシメーター(島
津製作所製)により測定した。
The specific surface area was 90 m 2 / g, and the total pore volume was 0.39 cc / g. In addition, the pore volume of the obtained adsorbent was measured by a mercury intrusion porosimeter (manufactured by Shimadzu Corporation).

【0049】比較例1 水酸化ナトリウム129gを水100gに溶解させた溶
液を、実施例11.で用いた酸化チタン 850gに加
え、ニーダーで適量の水を添加しつつよく混合、混練し
た後、押出し成型機で、直径5mmφ、長さ5mmLの
ペレット状に成形した。次いで、100℃で10時間乾
燥した後、350℃で3時間空気中で焼成した。このよ
うにした得られた吸着剤の組成は、TiO2:Na2O=
90:10 重量%であった。また、比表面積が81m2
/gであり、全細孔容積は、0.38cc/gであっ
た。
Comparative Example 1 A solution prepared by dissolving 129 g of sodium hydroxide in 100 g of water was prepared in Example 11. In addition to 850 g of the titanium oxide used in the above, the mixture was well mixed and kneaded while adding an appropriate amount of water using a kneader, and then formed into a pellet having a diameter of 5 mmφ and a length of 5 mmL by an extruder. Next, after drying at 100 ° C. for 10 hours, it was baked at 350 ° C. for 3 hours in air. The composition of the adsorbent thus obtained is TiO 2 : Na 2 O =
90: 10% by weight. In addition, the specific surface area is 81 m 2
/ G, and the total pore volume was 0.38 cc / g.

【0050】実施例19 実施例1〜18および比較例1で得た吸着剤について、
その窒素酸化物吸着能を下記方法により評価した。
Example 19 The adsorbents obtained in Examples 1 to 18 and Comparative Example 1 were
The nitrogen oxide adsorption capacity was evaluated by the following method.

【0051】(評価方法) 性能評価条件 吸着剤46mlを内径30mmのガラス製反応管に充填
した。この吸着剤層に下記組成の合成ガスを下記条件下
に導入した。
(Evaluation Method) Performance Evaluation Conditions 46 ml of the adsorbent was filled in a glass reaction tube having an inner diameter of 30 mm. A synthesis gas having the following composition was introduced into this adsorbent layer under the following conditions.

【0052】合成ガス組成 一酸化窒素(NO):1ppm、二酸化窒素(N
2):0.1ppm、二酸化硫黄(SO2):0.05
ppm、H2O:2.5容量%、残り:空気測定条件 ガス量:15.2NL/min、処理温度:25℃、空
間速度(SV):20000hr-1(STP)、ガス湿
度:85%RH 上記吸着剤層の入口および出口における合成ガス中の窒
素酸化物(NOおよびNO2)濃度を化学発光式NOx
計により、また硫黄酸化物濃度を紫外線蛍光式SO2
で測定し、次式にしたがってNO、NO2およびSO2
去率を算出した。
Synthesis gas composition : Nitric oxide (NO): 1 ppm, nitrogen dioxide (N
O 2 ): 0.1 ppm, sulfur dioxide (SO 2 ): 0.05
ppm, H 2 O: 2.5% by volume, remaining: air measurement conditions Gas amount: 15.2 NL / min, processing temperature: 25 ° C., space velocity (SV): 20000 hr −1 (STP), gas humidity: 85% RH The concentration of nitrogen oxides (NO and NO 2 ) in the synthesis gas at the inlet and outlet of the adsorbent layer was determined by chemiluminescence NOx.
And the sulfur oxide concentration was measured with an ultraviolet fluorescent SO 2 meter, and the NO, NO 2 and SO 2 removal rates were calculated according to the following equation.

【0053】NO除去率(%)=[(入口NO濃度−出
口NO濃度)/(入口NO濃度)]×100 NO2除去率(%)=[(入口NO2濃度−出口NO2
度)/(入口NO2濃度)]×100 SOx除去率(%)=[(入口SOx濃度−出口SOx
濃度)/(入口SOx濃度)]×100 評価試験の結果を表1に示す。
NO removal rate (%) = [(inlet NO concentration-outlet NO concentration) / (inlet NO concentration)] × 100 NO 2 removal rate (%) = [(inlet NO 2 concentration−outlet NO 2 concentration) / (Inlet NO 2 concentration)] × 100 SOx removal rate (%) = [(inlet SOx concentration−outlet SOx
Concentration) / (Inlet SOx concentration)] × 100 The results of the evaluation test are shown in Table 1.

【0054】加速耐久試験 性能評価条件の合成ガス組成を下記の条件に変えて加速
耐久試験を行った。
Accelerated endurance test An accelerated endurance test was performed by changing the synthesis gas composition under the performance evaluation conditions to the following conditions.

【0055】加速耐久合成ガス組成 一酸化窒素(NO):10ppm、二酸化窒素(N
2):1ppm、二酸化硫黄(SO2):0.5pp
m、H2O:2.5容量%、残り:空気 上記加速耐久試験を300時間行った後、前述の性能評
価条件にガス組成を変更して、加速耐久試験後の窒素酸
化物および硫黄酸化物の吸着性能(NO除去率、NO2
除去率およびSOx除去率)を評価した。評価試験結果
を表1示す。
Accelerated endurance synthesis gas composition Nitric oxide (NO): 10 ppm, nitrogen dioxide (N
O 2 ): 1 ppm, sulfur dioxide (SO 2 ): 0.5 pp
m, H 2 O: 2.5% by volume, remaining: air After the accelerated durability test was performed for 300 hours, the gas composition was changed to the above-described performance evaluation conditions, and nitrogen oxides and sulfur oxides after the accelerated durability test were changed. Adsorption performance (NO removal rate, NO 2
(Removal rate and SOx removal rate) were evaluated. Table 1 shows the evaluation test results.

【0056】再生試験 加速耐久試験を行った吸着剤について性能評価試験にお
ける合成ガス組成および測定条件を下記の条件に変えて
再生試験を行った。
Regeneration Test A regeneration test was performed on the adsorbent subjected to the accelerated durability test by changing the composition of synthetic gas and the measurement conditions in the performance evaluation test to the following conditions.

【0057】再生試験条件 H2O:5容量%、残り:空気処理条件 ガス量1.0NL/min、昇温スピード350℃/H
r、処理温度:350℃、処理時間30分 上記再生試験を行った後室温まで充分に冷却した後、性
能評価条件における合成ガスを再び吸着剤に導入して、
再生試験後の吸着剤の窒素酸化物および硫黄酸化物の吸
着性能(NO除去率、NO2除去率およびSOx除去
率)を評価した。評価試験結果を表1に示す。
Regeneration test conditions H 2 O: 5% by volume, remaining: air treatment conditions Gas volume: 1.0 NL / min, heating rate: 350 ° C./H
r, treatment temperature: 350 ° C., treatment time 30 minutes After performing the above regeneration test and sufficiently cooling to room temperature, the synthesis gas under the performance evaluation conditions was again introduced into the adsorbent,
After the regeneration test, the adsorption performance of the adsorbent for nitrogen oxides and sulfur oxides (NO removal rate, NO 2 removal rate, and SOx removal rate) was evaluated. Table 1 shows the evaluation test results.

【0058】表1の結果から、本発明の吸着剤は吸着活
性に優れていることが理解される。
From the results shown in Table 1, it is understood that the adsorbent of the present invention has excellent adsorption activity.

【0059】[0059]

【発明の効果】本発明の吸着剤の窒素酸化物および/ま
たは硫黄酸化物の吸着能は、特定な組成を有することに
より高い吸着性能を示し、良好な耐久性を有する。また
本発明の組成を有する吸着剤は、加熱再生が可能であ
り、水洗処理等の複雑な再処理が必要でない。従って、
本発明の吸着剤は、排ガス中の低濃度の窒素酸化物等を
効率よく安価に除去することができる。
According to the adsorbent of the present invention, the adsorbing ability of the adsorbent for nitrogen oxides and / or sulfur oxides exhibits a high adsorbing performance by having a specific composition, and has good durability. The adsorbent having the composition of the present invention can be heated and regenerated, and does not require complicated reprocessing such as water washing. Therefore,
The adsorbent of the present invention can efficiently and inexpensively remove low-concentration nitrogen oxides and the like in exhaust gas.

【0060】[0060]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 基伸 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Motonobu Kobayashi 1 992 Nishioki, Okihama-shi, Aboshi-ku, Himeji-shi, Hyogo

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 チタン、ジルコニウム、ケイ素、アルミ
ニウムからなる群から選ばれる少なくとも一種の元素
と、アルカリ金属元素の少なくとも一種と、バナジウ
ム、タングステン、モリブデン、セリウムからなる群か
ら選ばれる少なくとも一種の元素と、マンガン、銅、ニ
ッケル、コバルト、鉄、クロム、鉛からなる群から選ば
れる少なくとも一種の元素とを含有することを特徴とす
る窒素酸化物および/または硫黄酸化物の吸着剤。
At least one element selected from the group consisting of titanium, zirconium, silicon, and aluminum, at least one element selected from the group consisting of alkali metal elements, and at least one element selected from the group consisting of vanadium, tungsten, molybdenum, and cerium And at least one element selected from the group consisting of manganese, copper, nickel, cobalt, iron, chromium, and lead, and an adsorbent for nitrogen oxides and / or sulfur oxides.
【請求項2】 さらにアルカリ土類金属元素を含有する
ものである請求項1記載の吸着剤。
2. The adsorbent according to claim 1, further comprising an alkaline earth metal element.
【請求項3】 比表面積が10m2/g以上、全細孔容
積が0.15cc/g以上、かつ0.05〜4μmの範
囲の孔径を有する細孔容積が全細孔容積の10%以上で
ある請求項1または2記載の吸着剤。
3. A pore volume having a specific surface area of at least 10 m 2 / g, a total pore volume of at least 0.15 cc / g, and a pore volume having a pore size in the range of 0.05 to 4 μm is at least 10% of the total pore volume. The adsorbent according to claim 1 or 2, wherein
【請求項4】 請求項1〜3のいずれかに記載の吸着剤
に窒素酸化物および/または硫黄酸化物を含有するガス
を接触させて窒素酸化物および/または硫黄酸化物を除
去することを特徴とする吸着剤の使用方法。
4. A method for removing nitrogen oxides and / or sulfur oxides by contacting the adsorbent according to claim 1 with a gas containing nitrogen oxides and / or sulfur oxides. How to use the characteristic adsorbent.
【請求項5】 請求項1記載の吸着剤を窒素酸化物およ
び/または硫黄酸化物を含有するガスに接触させて窒素
酸化物および/または硫黄酸化物を吸着させる工程、お
よび該吸着剤を加熱して吸着されていた窒素酸化物を脱
離させ、無害化処理する工程を繰り返し行うことを特徴
とする吸着剤の使用方法。
5. A step of contacting the adsorbent according to claim 1 with a gas containing nitrogen oxides and / or sulfur oxides to adsorb the nitrogen oxides and / or sulfur oxides, and heating the adsorbent. A method for using an adsorbent, comprising repeating the step of desorbing the adsorbed nitrogen oxides and detoxifying the nitrogen oxides.
JP9188643A 1997-07-14 1997-07-14 Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use Pending JPH1128352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9188643A JPH1128352A (en) 1997-07-14 1997-07-14 Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9188643A JPH1128352A (en) 1997-07-14 1997-07-14 Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use

Publications (1)

Publication Number Publication Date
JPH1128352A true JPH1128352A (en) 1999-02-02

Family

ID=16227312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9188643A Pending JPH1128352A (en) 1997-07-14 1997-07-14 Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use

Country Status (1)

Country Link
JP (1) JPH1128352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545162A (en) * 2019-02-12 2020-08-18 中国石油天然气股份有限公司 Sulfur dioxide adsorbent and preparation method thereof
CN113117636A (en) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 Nitrogen oxide adsorbing material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545162A (en) * 2019-02-12 2020-08-18 中国石油天然气股份有限公司 Sulfur dioxide adsorbent and preparation method thereof
CN113117636A (en) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 Nitrogen oxide adsorbing material and preparation method thereof
CN113117636B (en) * 2019-12-31 2023-10-10 中国石油化工股份有限公司 Nitrogen oxide adsorption material and preparation method thereof

Similar Documents

Publication Publication Date Title
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
US6068824A (en) Adsorbent for nitrogen oxides and method for removal of nitrogen oxides by use thereof
JP3148155B2 (en) Adsorbent for nitrogen oxides and / or sulfur oxides and method of using the same
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3263406B2 (en) Catalyst for decomposing nitrous oxide and method for purifying exhaust gas containing nitrous oxide
JP3031824B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JPH1128352A (en) Adsorbent of nitrogen oxide and/or sulfur oxide and its method of use
JP3031823B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP3027219B2 (en) How to remove nitrogen oxides
JPH10309435A (en) Adsorbent for nitrogen oxide and/or sulfur oxide and its use method
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP3660080B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide
JP3148165B2 (en) Adsorbent for nitrogen oxide and / or sulfur oxide and method for adsorbing nitrogen oxide and / or sulfur oxide using the adsorbent
JP2012192338A (en) Method of treating exhaust
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
JP3705933B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent and method for removing nitrogen oxide and / or sulfur oxide using the adsorbent
JP4044490B2 (en) Adsorbents such as nitrogen oxides, methods for producing and regenerating them, methods for removing nitrogen oxides, and methods for purifying nitrogen oxide-containing gases
JPH0788363A (en) Adsorbent for nitrogen oxide and removing method of nitrogen oxide using this adsorbent
JP3148203B2 (en) Adsorbent for nitrogen oxides and / or sulfur oxides and removal method using the adsorbent
JP2002320847A (en) Adsorbent for nitrogen oxide and/or sulfur oxide and method for removing nitrogen oxide and/or sulfur oxide
JP2000167394A (en) Regeneration of adsorbent for nitrogen oxide and the like
JPS61230748A (en) Catalyst for purifying nitrogen oxide
JP3705955B2 (en) Regeneration method for adsorbents such as nitrogen oxides
JP2004237140A (en) Adsorbent for nitrogen oxide, method for manufacturing and regenerating the same, method for removing nitrogen oxide and method for cleaning nitrogen oxide-containing gas