[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3643439B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP3643439B2
JP3643439B2 JP15355796A JP15355796A JP3643439B2 JP 3643439 B2 JP3643439 B2 JP 3643439B2 JP 15355796 A JP15355796 A JP 15355796A JP 15355796 A JP15355796 A JP 15355796A JP 3643439 B2 JP3643439 B2 JP 3643439B2
Authority
JP
Japan
Prior art keywords
liquid crystal
optical
crystal cell
axis
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15355796A
Other languages
Japanese (ja)
Other versions
JPH0996810A (en
Inventor
正仁 石川
敦行 真鍋
暢子 福岡
仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15355796A priority Critical patent/JP3643439B2/en
Publication of JPH0996810A publication Critical patent/JPH0996810A/en
Application granted granted Critical
Publication of JP3643439B2 publication Critical patent/JP3643439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子に係わる。
【0002】
【従来の技術】
液晶表示素子は、薄型軽量・低消費電力という大きな利点をもつ為、腕時計や電卓、日本語ワードプロセッサ、パーソナルコンピュータ等のディスプレイとしてだけではなく、液晶表示素子の利点を積極的に活用した新規な構想の製品にも活用されている。中でもパーソナルコンピュータなどに用いられる液晶表示素子は、大面積・大容量表示化しており、表示面の大きさが対角10インチ、640×480画素といったものが主流になってきた。このクラスの液晶表示素子に用いられている表示方式としては、大きく2つに分類できる。1つは、単純マトリクス方式、もう1つはアクティブマトリクス方式である。
【0003】
単純マトリクス方式は、液晶を櫛形の透明電極が付いた2枚のガラス基板で挟んだけの単純な構造をしている。それゆえ、単純マトリクス方式においては、液晶に高い性能が要求される。この性能を説明する前に、液晶表示素子の表示原理について説明する。液晶表示素子の表示は、液晶にかかる電圧を変化させて液晶分子の向き変化させて表示を行っている。一般に、大きなコントラスト比を得るには大きな電圧差が必要である。しかし、640×480画素もの表示を実現するには、暗と明の電圧差は約1Vと小さく、1V差だけで液晶分子の大きな状態変化が要求される。これを実現するため、多くの研究がなされてきたが、1985年、シェーファらの研究グループは液晶分子の配列のねじれ角(ツイスト角)を大きくすることで配列の変化が電圧に対して敏感に変化し、また、大きなねじれ角で安定な配列を得るには、液晶分子はある程度の傾きを持っていることが必要であることを見いだした。この研究報告以来、これを実現するための配向技術が盛んに行われ実用化に成功した。
【0004】
配列640×480画素もの表示を実現するには、一般にツイスト角は180゜以上必要であり、このようにツイスト角が大きいことから、この液晶をスーパーツイストネマティック(STN)と呼ばれた。しかし、初期のSTNディスプレイは背景が黄色で緑の文字表示など表示に色づきがあり、白黒の表示ではなかった。これは、ツイスト角が大きいためで、このような表示の着色を解消する手段として、液晶層の配列が逆の方向にねじれた第2の液晶セルを偏光板と液晶セルの間に配置することによって白黒表示を実現できることが特公昭63−53528号公報にて報告されている。
【0005】
この白黒化の原理は、液晶分子がねじれ配列とされる第1の液晶セルを透過し旋光分散を生じた光を、第1の液晶セルと対象構造の第2の液晶セルに透過させることによって旋光分散を解消した。その結果、光の旋光分散に起因する着色が解消され、白黒表示を実現することができる。このような変換を正確に変換を行うには、光学補償板である第2の液晶セルは、第1の液晶セルとリタデーション値がほぼ同一で、かつねじれ方向が相互間で逆であり、それらの配置は、相互に最近接する液晶分子の配向方位が直交するように構成することが必要である。
【0006】
この他の手段としては、前述した第2の液晶セルの替わりに光学異方性フィルムを用いる手法も種々提案されている。これは、光学異方性フィルムを液晶セル上に積層することにより、第2の液晶セルとほぼ同一な機能をもたせる手法である。
【0007】
以上述べた光学補償によりSTNディスプレイでも白黒表示が可能となり、更にカラーフィルタとの組み合わせにより、より付加価値の高いカラー表示も実現することができる。しかし、単純マルチプレクス方式は、電圧平均化法に基づく時分割駆動を原理としている為、表示容量を増大するために走査線数を増加すると、光を遮断する際の電圧値と、光を透過させるの際の電圧値との差が著しく減少し、その結果コントラスト比が小さくなったり、液晶の応答速度が遅くなる本質的な問題がある。また、この様な従来技術は、液晶表示素子を見る時の方位や角度によって表示画が反転して見えたり、表示画が全く見えなくなったり、あるいは表示が色づくといった現象として観測され、より表示品位の高い液晶表示素子を実現する際、大きく問題となる。
【0008】
一方、アクティブマトリクス方式は、各表示画素ごとに薄膜トランジスタやダイオードからなるスイッチング素子を具備しているため、走査線の数に関係なく各画素の液晶層に任意の電圧比を設定できる。従って、単純マトリクス方式の場合の様な特別な性能は液晶には要求されない。ツイスト角をSTNのように大きくする必要はなく、90゜とされている。
【0009】
ツイスト角が90゜の液晶セル(TN)は、ねじれ角が小さく光がねじれに忠実に追随して旋光するために旋光分散が小さく、無彩色で高コントラストな表示が得られる。また、電圧に対する応答もSTNより速い。アクティブマトリクス方式とTNとを組み合わせることにより、大表示容量でコントラスト比が高く、応答速度が速い液晶表示素子が実現することができる。また、各画素毎にスイッチング素子があるため中間的電圧を印加できこれにより中間調表示も可能である。更に、カラーフィルタと組み合わせることにより、フルカラー表示も実現が容易である。
【0010】
しかし、アクティブマトリクス方式の場合でも、2値表示をした場合にはそれほどでもないが、中間調を表示したときに、見る方向によって表示画が反転して見えたり、表示画が全く見えなくなったり、あるいは表示が色づくといった現象として観測され、より表示品位の高い液晶表示素子を実現する際、大きく問題となる。
【0011】
このような表示の視角依存性を低減させる手段として、特開昭62−21423号公報に、2枚の偏光板の間に液晶セルと光学異方性が厚み方向に負のポリマーフィルムである複屈折層を配置することが開示されている。一方、特開平3−67219号公報に、螺旋ピッチ長と屈折率の積が400nm以下のコレステリック液晶相を示す液晶化合物(または高分子液晶)からなる複屈折層を液晶セル上に配置することが開示されている。これら2つの提案は、垂直配列(配向基板に対して液晶分子が垂直に配列したもの)した液晶セルの場合しか考案されてなく、TN方式やSTN方式のようなねじれた配列をした液晶セルの場合には考えられていない。また、特願平3−121578号公報にツイスト角360゜以上の配列で、チルト角をもつ光学補償素子で液晶表示素子の視野角を制御する提案もあるが、階調表示をした場合には視野角拡大の効果がまだ十分とはいえない。
【0012】
【発明が解決しようとする課題】
以上述べた液晶表示素子の基本的な表示原理は、液晶に印加する電圧により液晶分子の向きを変化させ、液晶セルに光学的な変化を生じさせて光制御を行なうところにある。
【0013】
従って、液晶表示素子を傾けてみると液晶分子の向きが変化して見え方が変わる視角依存性があり、特に微妙な中間調を表示する場合、液晶分子の傾き具合を細かく変化させるのでより視角依存性が顕著である。
【0014】
このような、液晶分子の配列の見え方の視角依存性により、表示画が反転して見えたり全く識別できなかったりするといった現象として観測され、特にカラーフィルターと組み合わせてフルカラー表示を行う際には、表示画の再現性が著しく低下し大きく問題となる。
【0015】
本発明は上記不都合を解決するものであり、コントラスト比および表示色の視角依存性を改善した液晶表示素子およびこれに使用する光学異方素子を得るものである。
【0016】
【課題を解決するための手段】
本発明は、以下に示す特徴をもつ液晶表示素子にある。
【0017】
2枚の偏光板と、これら2枚の偏光板間に配置され、2枚の基板間に挟持されて電圧無印加時にねじれた配向をしている液晶層を有して液晶の旋光性を用いて光制御する駆動用液晶セルとを具備する液晶表示素子において、前記偏光板と前記駆動用液晶セル間に光学異方素子を配置し、前記駆動用液晶セルの基板の法線方向からみたときに前記光学異方素子の光学異方性単位のそれぞれの長軸の向きが単一の軸上に揃って配列し、前記光学異方素子は前記法線に対し傾いた一方向に前記駆動用液晶セルの旋光性を補う旋光性を呈し逆方向に前記駆動用液晶セルの旋光性を抑制する旋光性を呈することを特徴とする液晶表示素子。
【0018】
光学異方性単位の長軸の角度が駆動用液晶セルの基板表面に対して前記光学異方素子の層厚方向に連続的あるいは段階的に変化して、かつ光学異方性単位の光学異方性が正号であることを特徴とする液晶表示素子。
【0019】
光学異方素子の光軸の角度が駆動用液晶セルの基板表面にほぼ平行であり、前記基板から離れた側で前記基板の法線ににほぼ沿うように前記光学異方素子の層内で変化している上記の液晶表示素子。
【0020】
光学異方素子の光軸の角度が駆動用液晶セルの基板の法線にほぼ沿っており、前記基板から離れた側で前記基板表面にほぼ平行になるように前記光学異方素子の層内で変化している上記の液晶表示素子。
【0021】
光学異方素子を形成する光学異方性単位の光軸の光学異方素子の層厚方向の配列が、ベンド配列である液晶表示素子。
【0022】
光学異方素子を形成する光学異方性単位の光軸の光学異方素子の層厚方向の配列が、スプレイ配列である液晶表示素子。
【0023】
駆動用液晶セルの基板の法線方向から見たときに光学異方素子の層内のそれぞれの光軸の向きが単一の軸上に揃って配列した上記の液晶表示素子。
【0024】
層を有し、光軸の角度が駆動用液晶セルの基板の法線にほぼ沿っており、前記基板から離れた側で前記基板表面にほぼ平行になるように層内で変化しており、かつ前記駆動用液晶セルの基板の法線方向から見たときに前記光学異方素子の光軸の向きが単一の軸上にある第1の光学異方素子と、
層を有し、光軸の角度が駆動用液晶セルの基板表面にほぼ平行であり、前記基板から離れた側で前記基板の法線にほぼ沿うように層内で変化しており、かつ前記駆動用液晶セルの基板の法線方向から見たときに前記層内のそれぞれの光軸の向きが単一の軸上に揃って配列した第2の光学異方素子とがそれぞれ少なくとも1つ配置されていることを特徴とする上記の液晶表示素子。
【0025】
単一の軸が偏光板の吸収軸に対して平行または直交して配置されている上記の液晶表示素子。
【0026】
偏光板と光学異方素子との間に厚さ方向に対して光学異方性が負号である第2の光学異方素子を配置してなる上記の液晶表示素子。
【0027】
上記の光学異方性物質層が高分子液晶からなる上記の液晶表示素子。
【0028】
2枚の偏光板と、これら2枚の偏光板間に配置され、2枚の基板間に挟持されて電圧無印加時にねじれた配向をしている液晶層を有して液晶の旋光性を用いて光制御する駆動用液晶セルとを具備する液晶表示素子において、前記駆動用液晶セルが基板法線を基準にして対称的に傾けた2方向において旋光性の大きい第1の方向と旋光性の小さい第2の方向を有するものであり、
前記偏光板と前記駆動用液晶セル間に、前記基板の法線に対して傾けた方向での旋光性が、前記基板の法線の方向での旋光性よりも大きく、前記基板の法線を基準にして対称的に傾けた前記2方向において旋光性の小さい前記第1の方向と旋光性の大きい前記第2の方向を有する光学異方素子を配置して、前記駆動用液晶セルの旋光性の非対称を前記光学異方素子が補償してなる液晶表示素子。
【0037】
ここに、本発明における光学異方性単位とは、厚さのある光学異方素子が一例として複数の層の積層構造である場合、これらの各層をいう。各層はそれぞれが特定の方向を向いた光軸を有している単位であり、これを積層した場合に、光軸が徐々に連続的または段階的にその傾きを変化する構成を有する。本発明においては、光学異方素子が、層構造を有さないが、光軸が厚さ方向に変化する構成も、光学異方性単位の光軸が厚さ方向に連なって変化するものと定義する。
【0038】
【発明の実施の形態】
本発明は、上記により課題を解決するものであり、液晶表示素子のコントラスト比や階調表示時の明るさ・表示色の視角依存性を同時に軽減する、もしくは、液晶表示素子のある特定のコントラスト比が得られる領域をある特定の方位、視角に制御しようとするものであるが、その作用について以下に説明する。
【0039】
TNやSTNなどの液晶表示素子において、光が液晶表示素子の表示面に垂直に入射する場合と斜めに入射する場合とでは、液晶表示素子中を伝搬する光の偏光状態は異なり、この偏光状態の違いが表示画の反転現象や着色現象に直接反映する。この様な現象は、液晶表示素子の表示面を見る角度を表示面法線(正面)から大きく傾けていくと観測され、特に液晶層に電圧を印加する手段を有する液晶セル(以下駆動セルと呼ぶ)の液晶層に電圧が印加されている画素で顕著に見られる。
【0040】
図23(a)、(b)は、従来のTN液晶表示素子の表示面(基板面)法線から左右および上下方向に0゜から60゜まで傾いた時の表示輝度の角度依存性を示す図である。1から8レベルと示されているのは、階調表示の各階調番号で、液晶セルに印加される電圧が順に異なっている。レベル1は0V、レベル8は5Vが液晶セルに印加されている。例えば、上方位の場合、ディスプレイの表示面の法線から傾ける角度(視角)を0゜(正面)から60゜へと大きくなるにつれて、輝度はだんだん大きくなっている。実際の表示では、表示色が白っぽくなる(白抜け)として観測される。
【0041】
一方、図23(b)に示すように、下方位についてみると、視角を正面(0゜)から60゜へと傾けていくと、上方位とは逆に輝度は低下していく。この現象は、実際の表示画においては、表示色が暗くなる(黒つぶれ)として観測される。また、正面において、もっとも明るい表示レベル1とそれより低い階調レベル2は、上方位の視角35゜で大小関係が逆転しており、実際の表示画においては、写真のフィルムのネガの様な反転した表示(反転)として観測される。どの階調レベルに関しても視角変化しても透過率が変化しないのが理想である。しかし、実際のTNの視角特性は図23に示した様に左右方位の特性は比較的良いが、上下方位の特性が悪い。
【0042】
このような現象がおきるのは上述のように液晶表示素子の視角特性は、液晶表示素子を入射する光の入射角度により偏光状態が異なることに起因するからであるが、これについてTN型を例に詳しく説明する。
【0043】
図3にTN−LCD(TN型液晶素子)の動作原理を示す。図3(a)は電極3c、3dに電圧無印加時のTNセル中の液晶分子LMの配列状態を示している。電圧Vが印加されていない時には、液晶分子は基板に対してほぼ平行に液晶層の厚さ方向(図ではZ軸の方向)に液晶分子同士が平行になって連続的にねじれた配列をしている。液晶分子は分子長軸方向に光軸を有しており、液晶分子の並列配列がひとつの光軸面を形成する。この配列に入射光LA のうち偏光子Piにより偏光された光Liが入射すると、偏光面は液晶分子LMのねじれ配列に従って回転し、液晶層をでたところでは偏光面は、液晶層を入る前の偏光面に対し液晶層のツイスト角分回転する。この回転した方向に検光子Poの透過軸Potを合わせると透過光Loが得られる。
【0044】
図3(b)は、電圧印加時のTNセル中の液晶分子の配列状態を示している。電圧Vの印加により液晶分子LMは立ち上がり、セルの中央付近の液晶分子LMcは電極近傍の液晶分子LMsよりも傾く。電極3c、3d近傍の液晶分子LMsの傾きが小さいのは、電極−液晶層界面の配向規制力(液晶を配列させるために必要)があるためである。電圧Vの大きさに応じて液晶分子の傾きが大きくなり、これと同時にねじれ配列も歪み、電圧が更に大きくなるとついにはねじれが解かれる。このような状態に偏光Liが入射すると、ねじれ配列ではないために、すなわち光軸面が単一の軸上にあるために、偏光面Lpは回転せず液晶層を進行し、液晶層を出たところでは偏光面は液晶層に入射する前と変わらない。従って、検光子Poの透過軸Potは偏光面Lpと直交するので偏光は透過できない。また、中間調を表示するには液晶層に印加する電圧の大きさをこれより小さく設定し、配列のねじれ配列を若干残し、液晶層を出射する偏光面を幾分回転させて中間の透過光を得る。
【0045】
以上の原理により、TN素子は透過光をねじれ配列の歪みを利用して制御している。次に、斜め方向の光に対してはどのような現象が起きるのか説明する。
【0046】
図4は中間調を表示する時の分子配列状態に斜めから光が入射する状態を説明する図である。図4(a)は、中間調表示時の分子配列状態LMint と2つの入射光の方向L、Uの関係を示す斜視図で、これをよりわかりやすくするため、Y軸方向から見た図を図4(b)、(c)に示す。ここに駆動用液晶セルの基板の法線方向をZ軸、基板面をXY軸で表している。上下の基板の電極3c、3d付近の液晶分子LMsは基板面に対してやや傾きをもって配列している。この傾きはプレチルトと呼ばれ、一般に、プレチルトとは基板−液晶界面における液晶分子の傾きのことを示し、その傾きの角度をプレチルト角α0という。電圧無印加時には、上下の基板3a、3b間にわたり同一の角度でもって傾いている。電圧Vが印加される領域にわたり所定の傾き(プレチルト)があると、電圧が印加された際の傾き方向がプレチルトの方向に揃うので、その結果均一な表示ができる。もし、プレチルトがない場合には、電圧が印加された時に液晶分子の傾く方向がまちまちとなり、傾き方向の異なる領域の境界に欠陥線が発生し表示品位を著しく低下させる原因となる。従って、均一な表示を得るにはプレチルトは不可欠であり、その角度は1゜から6゜が一般的である。液晶表示素子には、全てプレチルトが付与されている。
【0047】
従って、図4(b)、(c)に示したように、特に中間調を表示した際には、液晶分子の配列状態はZ軸に対して非対称になる。図4(b)の+X軸から+Z軸の方向へ斜めに入射する偏光Lに関しては、図5のLM−Lに示した様に、配列は液晶分子LMに傾きがない状態(あたかも電圧無印加の配列状態)となり偏光面は大きく回転することができる。その結果、透過光は正面からの入射光(Z軸に平行な光)に対する出射光の強度よりも大きくなる。一方、図4(c)のようにこれと反対の基板法線を基準にして対称的な方位から(−X軸から+Z軸の方向へ斜めに)入射する偏光Uに対しては、図5のLM−Uに示した様に、配列は液晶分子LMが大きく傾いた状態(あたかも更に大きな電圧が印加された配列状態)となり偏光面は回転することができなくなる。その結果、透過光は正面からの入射光(Z軸に平行な光)に対する出射光の強度よりも小さくなる。図23との対応関係は、図4のLの方位は図23(b)の上方位に、図4のUの方位は、図23(b)の下方位に相当する。
【0048】
以上説明したように、中間調での透過光の方位依存性は液晶分子の配列の非対称性に起因する。この配列の非対称性は、光が入射する方位により偏光面の回転(旋光性)角度が異なり、その結果透過率に変化を生じる。TN−LCDでは、上方位では旋光性が生じ、下方位では旋光性が減る傾向があるといえる。従って、これを改善するには上方位で旋光性が減り、下方位で旋光性が生じる光学異方素子を加えることにより、液晶表示素子の視角依存性を改善することができる。本発明の主旨は、如何にしてこのような特性をもつ光学異方素子を提供するかというところにある。
【0049】
次に、具体的に本発明の光学異方素子について説明する。
【0050】
まず、光学異方素子に要求される特性をまとめると、求められる特性は「上方位と下方位間で旋光の回転方向が逆」ということになる。図6は、本発明の光学異方素子の光軸の配列状態を示す図で、図6(a)は本発明の実施形態の光学異方素子の断面図であり、楕円で示されているのは光学異方素子を構成する光学異方体LDを示しており楕円の長軸が光軸OL に相当する。下側の基板3dから上側の基板3cにかけて長軸の傾きが連続的に変化しており、下の基板3d付近では基板面に対しほぼ平行で上の基板3c付近ではほぼ垂直である(ハイブリット配向)。この配列を上から見た例が図6(b)に示されている。図中の楕円内の矢印は、光軸の向きを示している。層内のそれぞれの光軸の向きが同一平面上にあり、すなわち単一の軸上に揃って配列している。図6(c)はZ軸から斜めに観測したときの配列図である。傾き方向は図中のXYZ軸で示されている。これと逆の斜め方向から見た図を図6(d)に示した。図6(c)、(d)から分かるように、図6(a)の配列をZ軸より斜めから観測すると、(c)では下から上に進行するに従い進行方向からみて左ねじれ、(d)ではこの逆の右ねじれで配列している。この様に斜め配列している光学異方素子により、先ほど述べた「上方位と下方位間で旋光の回転方向が逆」という性質が実現できる。
【0051】
次に、この様な光学異方素子をどのように駆動用液晶セルと組み合わせると良好な補償効果が得られるかを次に説明する。
【0052】
図7(a)は、図3、4、5に示した駆動用液晶セルを、図6と同様に矢印を加えて示した図で、符号Lipが入射光の偏光軸、符号Lopが出射光の偏光軸を表している。図7(a)は光学異方素子を、(b)は中間調に相当する電圧を印加した駆動用液晶セル(TN)をZ軸から見た図である。(c)はZ軸上から+X側に倒して見たときの光学異方素子の光軸の配列を示した図であり、図中に直線偏光が入射した場合の旋光状態を示した。この方向では光学異方素子は、入射光の偏光面を左方向に回転させる性質(左旋光能)がある。(d)に(c)と同じ方向から見たときの駆動セルの配列状態を示した。液晶分子は中間調に相当する電圧(液晶が動作する臨界電圧(しきい値電圧)よりやや大きい電圧)が印加されているため斜めに傾いていており、この方向から見ると液晶分子の長軸方向の長さと短軸方向の長さがほぼ同じとなる配向部分が生じる。その為、入射偏光はあまり旋光せずに透過し、出射光の偏光軸Lopの方向は入射光の偏光軸Lipとほぼ変わらない。これが表示が暗くなる「黒つぶれ」と呼ばれる表示異常の原因であり、この場合、左回りに偏光を旋光させれば(旋光能を増加させる)これが改善される。それには、先ほど示した図(c)の光学異方素子がこれに適合する。図(c)の光学異方素子には左旋光能があり、駆動用液晶セルで足りない旋光を補う。
【0053】
一方、これと逆方位について、図(e)、(f)を用いて説明する。図(e)(f)は、図(a)の光学異方素子をZ軸の方向から−X軸より観測したときの光軸の配列を示したもので、図の入射光に対して右に旋回させる特性をもつ(右旋光能)。図(f)は、図(d)と同様中間調の電圧が印加された状態であり、この方向からは実際には液晶分子が傾いているのにもかかわらず傾いていないように見え、その為大きな旋光能がでる。これが表示が必要以上に表示が明るくなる「白抜け」と呼ばれる表示異常の原因となり、左回りの旋光を抑制する右旋光を適用すれば余分な旋光を解消でき「白抜け」が改善される。図(e)の光学異方素子は右旋光能があり、これを駆動セルと組み合わせることで特性改善が得られる。
【0054】
以上、光学異方素子表面に法線に対して傾いた方向での旋光性が、前記法線の方向での旋光性よりも大きいハイブリット配向の光学異方素子を例にして視野角拡大の原理説明をしたが、ハイブリット配向でねじれ配向した光学異方素子や、上下基板間で均一にチルト配向した光学異方素子でもハイブリット配向の光学異方素子と類似の特性が得られ、それは液晶表示素子の設計仕様に応じて選択することができる。
【0055】
さらに図8(a)に示すように表裏面2d、2e間の層内て光軸OL がスプレイ配列の光学異方素子を用いると、(b)(c)で矢印TW に示すように、斜め方向から観測される配列のねじれ角は、より大きくなり良好な補償効果が得られる。またベンド配列についても同様である。
【0056】
また、TNを例に説明したが、STNでも同様の原理が適用できるのでSTNの視角を改善する手段として用いることも可能である。
【0057】
上述した光学異方素子は、主に「黒つぶれ」や「白抜け」の表示異常に関し大きな改善効果がある。発明者らは、光軸が光学異方素子の厚み方向で、光学異方性が負号の光学異方素子を更に付加すると、更に良い改良効果を得ることを見いだした。次に、光学異方性が負号の光学異方素子を用いる際に視野角特性が改善される原理について説明する。
【0058】
駆動用液晶セルにしきい値電圧以上の電圧が印加された状態を3次元の屈折率楕円体で表すと図9に示すようになる。Z軸は液晶セルの厚み方向で、XY面は液晶セルの基板面に相当する。複屈折現象は、この屈折率楕円体RA の中心点をある方向からみた時の観測点と、屈折率楕円体RA の中心点とを結ぶ線の屈折率楕円体RA の中心点上の法線面が、屈折率楕円体RA を切断した時に形成される楕円状の切断面の形状(ここでは、2次元面内の屈折率体と呼ぶ)により示される。この2次元面内の屈折率体の長軸と短軸の長さの差が、常光と異常光の位相差に相当し、液晶セルを挟む偏光板の透過軸が互いに直交していれば、その位相差が零のとき液晶セルの透過光は遮断され、位相差が零ではないときにはその位相差と入射光の波長に応じた透過光が生じる。
【0059】
液晶セルの基板面に垂直に光が入射した場合(すなわち液晶セルを真正面から見たとき)には、2次元面内の屈折率体RA4は円となり、常光と異常光の位相差は零となるが、液晶セルの基板面から傾いた方向RA1より光が入射した場合、屈折率体RA5は楕円となり、常光と異常光の位相差が生じ、真正面方向と斜め方向では液晶セルを透過する光の偏光状態は異なる。
【0060】
図9の屈折率楕円体RA を見る角度、すなわち視角RA3を大きくしていくと視軸RA1の2次元面内の屈折率体RA5はnRA1 の長さ方向に大きくなり、視軸RA1の方向から見た時より大きい透過光が観測される。理想的には、どの方位でも視角を変化したとき、2次元面内の屈折率体の形状が変化しないことが望ましい。
【0061】
このような光学的な補償は、図10に示すような円盤状の屈折率楕円体RB を図9の屈折率楕円体RA のZ軸上に配置する(すなわち液晶セルの上あるいは下に隣接して配置する)ことにより実現できる。こうすると、視角RA3を大きくしていったとき、屈折率楕円体RA の2次元面内の屈折率体RA5がnRA1 の長さ方向に大きくなるのに対して、屈折率楕円体RB のnRA2 の長さ方向の屈折率が大きくなり、その結果、合成された2次元面内の屈折率体は円になり、屈折率楕円体RA を光学的に補償することができ、視角特性が向上する。
【0062】
実際の液晶表示素子では駆動用液晶セルの屈折率楕円体は、図9に示したように楕円の長軸は、表示面に対して垂直ではなく、若干傾いている。従って、これを補償する図10の光学異方素子の屈折率楕円体RB はこれに合わせて円盤形状の短軸が傾いているのが好ましい。
【0063】
実際には図10に示すような屈折率楕円体は、光軸が連続的にねじれた配列をした光学異方性物質層からなる光学異方素子や、厚み方向よりも面内方向の屈折率の方が小さい材料で構成することにより実現できる。
【0064】
以下に、光軸が連続的にねじれた配列をした光学異方性物質層からなる光学異方素子で光学異方性が負号の光学異方素子を実現する仕方について説明する。
【0065】
一般に、駆動用液晶セルは、液晶セルに印加する電圧によって可視の波長領域の光(一般には380nmから750nmまでの領域)の偏光方向を積極的に変化させて表示している。
【0066】
一方、本発明の光学補償用の光学異方素子の場合、光学異方性物質層の光軸が連続的にねじれているため、光学異方素子の光学条件によっては旋光性が生じることがある。ここで旋光性とは、光が媒質中を進行するに従ってその光の振動方向が、進行方向を軸として左または右に旋回する性質のことを示す。光軸が連続的にねじれた光学異方素子のリタデーション値を一定とした時、光軸のねじれピッチが長い場合、光はその光軸のねじれに従ってその偏光面を回転させるが、光軸のねじれピッチが短い場合、光はその光軸のねじれに追従できなくなり、旋光現象は起きない。光学異方素子の旋光性が大きいと、素子を透過する光の偏光面を変化させてしまいその結果、コントラスト比を減少させてしまったり、場合によっては光の波長により偏光面が種々変化し、光学異方素子を透過した光が着色するなどの問題が生じる。
【0067】
従って、少なくとも光学異方素子の可視光に対する旋光性は、駆動用液晶セルの可視光に対する旋光性に比べて小さくなるようにすることが必要である。旋光性は、媒質を透過する光の波長と、光が透過する媒質により大きく依存する。旋光性の大小は、光軸の変化に対する媒質のリタデーション値の変化の度合いで表される。
【0068】
従って、駆動用液晶セルの旋光性の大小は、駆動用液晶セルの液晶の常光に対する屈折率noと異常光に対する屈折率neとの差を△n1 (=ne−no:屈折率異方性)、液晶層の厚みをd1 、液晶層のねじれ配列の角度(ツイスト角)をT1 とすると、
△n1 ・d1 /T1 = R1 /T1 [1.1]
但し R1 =△n1 ・d1 (リタデーション値)
で表せる。
【0069】
同様にして補償用光学異方素子の旋光性の大小は、補償用光学異方素子の光学異方性物質層の屈折率異方性を△n2 、積層された光学異方性物質層の厚みをd2 、光学異方性物質層の光軸の総ねじれ角度をT2 とすると、
△n2 ・d2 /T2 = R2 /T2 [1.2])
但し R2 =△n2 ・d2
で表すことができる。
【0070】
従って、補償用光学異方素子の旋光性と駆動用液晶セルの旋光性の大小関係は、(1.1) 、(1.2) 式から
(R1 /T1 )>(R2 /T2 ) [1.3]
となる。
【0071】
光学異方性物質層の光軸が連続的にねじれている光学異方素子中の光の伝搬は、次式によって示されるパラメータで表せる(C.Z.Van Doorn ,Physics Letters 42A, 7(1973) )。
f=λ/(p×△n) [1.4]
但し λは真空中の光の波長(可視の波長範囲)
pは光軸のねじれピッチ長(p=d/T)。
【0072】
f<<1の場合には、光学異方素子中の光は偏光面が光軸のねじれ角に従い変化し、旋光性を持つ。先述したように光学異方素子は旋光性が小さいことが望ましく、光学異方素子はf>>1の条件を満たすことが必要である。よって、光学異方素子は、[1.4] 式から
p×△n<λ [1.5]
が成り立つことが必要である。
【0073】
ところで、ツイスト角が非常に大きい、すなわち螺旋ピッチの長さが短い液晶をコレステリック液晶と一般に称すが、この液晶の螺旋ピッチの長さpとコレステリック液晶の平均屈折率nとの積n×pの値が、可視の波長範囲(条件によって異なり、短波長端は360nmから400nm、長波長端は760nmから830nmの範囲)にあると、選択散乱を生じる(J.L.Fergason ; Molecular Crystals. 1. 293(1966) )。このような現象はコレステリック液晶セルにだけ見られる現象ではなく、光学異方体の光軸が連続的にねじれた光学異方素子でも起こり得る。選択散乱が生じると光学異方素子の着色現象が生じ表示色が変化する。従って、光学異方素子を形成する光学異方性物質層の平均屈折率nと、光軸のねじれピッチpとの積n×pが可視の波長範囲から除くようにすると着色現象が防止できる。
【0074】
また、光学異方素子は、高分子フィルムを延伸することにより光学異方性を生じさせた位相差フィルム(retardation film)を積層したものや、ねじれ配列させた液晶セル、ならびに高分子液晶をねじれ配列させた薄膜により実現できる。この場合、例えば駆動用液晶セルの基板の少なくともどちらか一方にこの高分子層を塗布することにより得られ、製造上容易となりより望ましい液晶表示素子が得られる。例えばポリシロキサン主鎖とし、側鎖にビフェニルベンゾエートとコレステリル基を適当な比で有したような高分子共重合体などを用いることなどができる。又は、アクリロイルオキシ基などを用いた重合性官能基を付与した紫外線により硬化する液晶を用いても本発明の光学異方素子を実現することが可能である。
【0075】
以下本発明の液晶表示素子の実施形態を詳細に説明する。
【0076】
(実施形態1)
図1および図2に本実施形態における液晶表示素子の断面図を示す。液晶表示素子は2枚の偏光板1、4(LLC2-92-18:SANRITZ社製) と、これらの間に視角補償用の光学異方素子である液晶セル2と駆動用液晶セル3とを挟む構成を有している。偏光板1は透明基板1bの内側に偏光膜1aを挟んで付けたものであり、偏光板4も同様に透明基板4bに偏光膜4aをつけて形成される。
【0077】
光学異方素子として視角補償用液晶セル2はこれらの偏光板1、4間に配置され、透明基板2a, 2b間に液晶2cを介在させた液晶セル構造を有する。基板2a, 2bは表面にSiO2 を斜方蒸着し、間にねじれネマティック液晶にカイラル剤S811(E. Merck Co.,ltd 製) を混入した液晶層である光学異方性物質層がねじれ角が270゜で導入され、液晶分子は50°のプレチルト角を保ったまま下側基板2bから上側基板2aへと反時計回りにねじれている(左ねじれ)。視角補償用液晶セル2に用いた光学異方性物質層としての液晶材料の△nは0.189、螺旋ピッチは1 .33μm 、層厚は1μmである。
【0078】
駆動用液晶セル3は視角補償用液晶セル2と偏光板4間に配置される。2枚の上側基板3aと下側基板3bのとはそれぞれ透明電極3c、3dを形成しており、駆動電源3fに接続される。基板3a、3b間に正の誘電異方性をもつねじれネマティック液晶(ZLI−4287、E.Merck Co.Ltd.社製)にカイラル剤S811(商品名、E.Merck Co.Ltd.社製)を混入したものが、ねじれ角が90°で導入され、駆動電源3fからの印加電圧に応じて状態を変化する。電圧無印加時はねじれ配列を維持する。
【0079】
駆動用液晶セル3に用いた液晶のΔnは0.093、液晶層の厚みは5.5μmである。駆動用液晶セル3の液晶分子は下側基板3bから上側基板3bへと反時計回りにねじれている(左ねじれ)。本セル3は90°ツイスト角のにTNセルとして動作し、旋光作用により光制御する。
【0080】
図2(a)は本実施形態における液晶表示素子の構成を示す分解斜視図である。(1.1) 及び(4.1) は2枚の偏光板1および4の透過軸であり、これらは互いに直交し(1.1) はY軸に対し基板の法線方向である+Z方向から見て反時計回りに135°で配置される。(3.1) 、(3.2) は駆動用液晶セル3の上側基板3aと下側基板3bのラビング軸すなわち配向処理方向で、これらは互いに直交し、Y軸に対しラビング軸(3.1) とのなす角は+Z方向から見て反時計回りで45°で配置される。
【0081】
光学異方素子である視角補償用液晶セル2の(2.1) 、(2.2) はそれぞれ上側と下側の基板2a、2bのラビング軸で、これらは互いに直交し、視角補償用液晶セル2はラビング軸(2.2) が駆動用液晶セル3のラビング軸(3.1) と平行になるように配置される。すなわち、液晶分子LMの光軸OL (図6)はこれらラビング軸に沿って配置され、液晶層が基板のラビング処理された面に接する側における液晶層の光軸となる。
【0082】
偏光板1は透過軸(1.1) が視角補償用液晶セル2のラビング軸(2.1) と直交するように配置した。
【0083】
本構成の液晶表示素子を図2(b)の座標系で電気光学特性を測定した。測定時の電圧値(駆動電源3fから駆動用液晶セル3の電極3c−3d間に印加する電圧)は、1Vから5Vまで変化させた。結果を図11に示す。図11は上下左右の4方位の印加電圧−透過率特性がそれぞれ示されており、正面から60゜まで視角を30゜ごと変化させたときの透過率を示している。理想は、どの視角でも正面(視角θ=0゜)の透過率曲線と同一であることである。正面の方向では、ある電圧を越えると電圧の増加と共に透過率が減少する。
【0084】
図12は従来技術の比較例のTN−LCDの印加電圧−透過率特性図であるが、下方位の特性は視角が大きくなるに従い透過率が減少する。これは実際に階調表示をした場合には「黒つぶれ」が生じることに相当する。また、視角60゜での3V付近の透過率の再増加は、実際の表示では「反転」に相当する。上方位についてみれば、3Vの電圧で視角が0゜から60゜へと大きくなるにつれて、透過率は増加してゆく。これは実際の表示では「白ぬけ」に相当する。
【0085】
本実施形態の場合、図11をみると、下方位の透過率の低下および、3V付近の透過率の再増加が改善されている。すなわち、下方位の黒つぶれと反転が改良されている。また上方位の白抜けも若干改良されているのが、3から5V領域の視角30、60゜の透過率の比較からわかる。
【0086】
実際に本構成でカラーフィルターを液晶セル内に具備した画面サイズ対角10インチからなるTFT−LCDを作成したところ、方位や視角を変化させても表示内容が識別できる良好なフルカラー表示が得られた。
【0087】
(比較例1)
実施形態1において、視角補償用液晶セル2が無い場合の電圧−透過率特性を測定した。測定結果を図12に示す。本比較例では角度によって上方位においては表示が白くなり、下方向においては表示が黒くなったり階調が反転したりする現象が見られた。
【0088】
(比較例2)
実施形態1において、視角補償用液晶セル2の配向膜としてチルト角が1゜のポリイミドを用いて作製した。それ以外の条件は、実施形態1と全く同一である。電圧−透過率特性を測定結果を図14に示す。視角補償用液晶セル2のプレチルト角が小さくなることで、正面方向で透過率が完全に下がりきらずコントラスト比の低下が生じる。また、斜め方向の特性も従来例の特性図12と比較すると分かる通り、上方位を除く方位の特性が悪くなった。
【0089】
(実施形態2)
図13は本実施形態における液晶表示素子の構成を示す分解斜視図である。実施形態1において、光学異方素子である視角補償用液晶セル2は下側基板2bの液晶と接する面側にポリイミドAL−1051(日本合成ゴム製)が塗布され、その表面にラビング処理が施されている。プレチルト角は1゜である。一方、上側基板2aの液晶と接する側には、垂直配向処理が施されている。用いた液晶材料の△nは0.039で、液晶層の厚みは4.4μmである。液晶分子の光軸すなわち光学異方素子の光軸は、駆動用液晶セル3側でセルに平行で、層厚方向に連続的に変化して液晶セル3から離れた側でセル基板の法線方向にほぼ沿っている。ツイスト角は0°である。
【0090】
(1.1) 及び(4.1) は偏光板1及び4の透過軸であり、これらは互いに直交し(1.1) はY軸に対し+Z方向から見て反時計回りに135゜で配置される。(3.1) と(3.2) は駆動用液晶セル3の上側と下側の基板3a, 3bのラビング軸で、これらは互いに直交し、Y軸に対しラビング軸(3.1) とのなす角は+Z方向から見て反時計回りで45゜で配置される。
【0091】
視角補償用液晶セル2の光軸(2.2) は下側の基板2bのラビング軸で、駆動用液晶セル3の上側基板のラビング軸(3.1) に直交し、下側基板のラビング軸( 3. 2) と平行になるように配置される。
【0092】
偏光板1の透過軸(1.1) は、駆動用液晶セル3の上側基板のラビング軸( 3. 1) と平行になるように配置した。
【0093】
本構成の液晶表示素子を図2(b)の座標系で電気光学特性を測定した。測定時の電圧値(駆動電源3fから駆動用液晶セル3の電極3c−3d間に印加する電圧)は、1Vから5Vまで変化させた。結果を図15に示す。比較例1の電圧−透過率特性(図12)と比較すると、上下方向、特に下方位において、黒つぶれと階調の反転が減少し視角が拡大した。実際に本構成でカラーフィルターを液晶セル内に具備した画面サイズ対角10インチからなるTFT−LCDを作製したところ、方位や視角を変化させても表示内容が識別できる良好なフルカラー表示が得られた。
【0094】
(実施形態3)
本実施形態の構成図を図16に示す。実施形態1において、第1の光学異方素子である視角補償用液晶セル2と駆動用液晶セル3との間に、光学異方性が厚み方向を光軸としたとき負号となる第2の光学異方素子である光学異方素子5を配置した。光学異方素子5は、光軸(図16中にnz と図示)が厚み方向のZ軸に対しXZ面内で60゜(δ)傾き、この光軸法線面の屈折率が光軸方向の屈折率より大きい。リタデーション値は−140nmである。本構成の液晶表示素子を図2(b)の座標軸で定義される方位により電気光学特性を測定した結果を図17に示す。比較例1の特性図である図12と比較するとわかるように、実施形態1の上方位の特性がさらに改善されている。
【0095】
(実施形態4)
本実施形態の構成を図18に示す。実施形態2において第1の光学異方素子である視角補償用液晶セル2と駆動用液晶セル3との間に、第2の光学異方素子として、負の光学異方性を持つ光学異方素子5を配置した。構成を図18に示す。光学異方素子5は、光軸(図18中にnZと図示)がZ軸と平行で、この光軸法線面の屈折率が光軸方向の屈折率より大きい。リタデーション値は−140nmである。本構成の液晶表示素子を図2(b)の座標系で定義される方位により電気光学特性を測定した結果を、図19に示す。比較例1の特性図12と比較するとわかるように、実施形態2の上方位の特性が更に改良された。
【0096】
(実施形態5)
実施形態2において視角補償用液晶セル2と駆動用液晶セル3との間にねじれ角が720゜の第2の視角補償用液晶セルを配置した。用いた液晶材料の△nは0.039、ピッチ長は3.5μmである。液晶層の厚みは7.0μmで、配向はポリイミド膜を上下基板間で反対方向にラビングすることにより水平に配向されている。第2の補償セルは、補償セルのラビング軸が、駆動用液晶セル3の下側基板のラビング軸と平行になるように配置した。本構成の液晶表示素子を図2(b)の座標系で定義される方位により電気光学特性を測定した結果を、図20に示す。従来例である比較例1の特性図12と比較するとわかるように、実施形態2の上方位の特性が改良された。
【0097】
(実施形態6)
構成を図21に示すように、実施形態2において光学異方性物質層を液晶層で形成した液晶セルからなる光学異方素子である視角補償用液晶セル2と駆動用液晶セル3との間に、負の光学異方性を持つ高分子共重合体でできた光学異方素子6を配置した。光学異方素子6は、光軸(図中にnz と図示)がZ軸と平行で、この光軸法線面の屈折率nx 、ny が光軸方向の屈折率nz より大きい。リタデーション値は−100nmである。視角補償用液晶セル2の液晶層の厚みは3.4μmである
駆動用液晶セル3と偏光板4との間には、光学異方素子6と同一の光学異方素子7が駆動用液晶セル3側に配置され、視角補償用液晶セル5が光学異方素子7と偏光板4との間に配置される。視角補償用液晶セル5は、視角補償用液晶セル2と同一の配向膜で作製され上側の基板が(5.1) の矢印の方向にラビングされている。偏光板4の側の基板の視角補償用液晶セル5の液晶に接する側の基板表面には垂直配向処理が施されている。ラビング軸5.1は、駆動用液晶セル3の上側基板のラビング軸3.1と平行である。
【0098】
本構成の液晶表示素子を図2(b)の座標系で定義される方位により電気光学特性を測定した結果を、図22に示す。従来例の特性を示す図12と比較するとわかるように、上下左右全ての方位に関し、本実施形態の方が実施形態2よりも視角特性が改良された。
【0099】
(実施形態7)
実施形態2において視角補償用液晶セル2と5をポリシロキサン主鎖とし、側鎖にビフェニルベンゾエートとコレステリル基を適当な比で有したような高分子共重合体で作製したところ、実施形態6と同様な特性が得られた。さらに高分子共重合体で光学異方素子を作製することにより、より薄型の液晶表示素子が実現する。
【0100】
【発明の効果】
本発明によれば、液晶表示素子のコントラスト、表示色の視角特性が改善され、視認性にすぐれる高品位表示の液晶表示素子を提供することができる。
【0101】
なお、本発明はTFTを用いたTN−LCDのみについて触れたが、MIMなどを用いたアクティブマトリクスおよびSTNなどのシンプルマトリクス液晶表示素子に応用しても優れた効果が得られることは言うまでもない。
【図面の簡単な説明】
【図1】本発明の実施形態1の構成を示す断面図。
【図2】本発明の実施形態1を説明するもので、(a)は構成を示す分解斜視図、(b)は電気光学特性を測定する座標系を説明する図。
【図3】TN−LCDの動作原理を説明する図。
【図4】TN−LCDの視角特性の発生原理を説明する図。
【図5】TN−LCDの視角特性の発生原理を説明する図。
【図6】本発明の光学異方素子の配列状態を示す図。
【図7】本発明の光学異方素子を用いた場合の光学補償原理を説明する図。
【図8】本発明におけるスプレイ配列の光学異方素子を用いた場合の光学補償原理を説明する図。
【図9】電圧印加時の駆動セルの屈折率楕円体を示す図。
【図10】厚み方向に屈折率異方性が負号の光学異方素子の屈折率楕円体を示した図。
【図11】実施形態1の液晶表示素子の電気光学特性。
【図12】従来例の液晶表示素子の電気光学特性
【図13】実施形態2の構成を説明する図。
【図14】比較例の電気光学特性
【図15】実施形態2の効果を説明する図。
【図16】実施形態3の構成を説明する図。
【図17】実施形態3の効果を説明する図。
【図18】実施形態4の構成を説明する図。
【図19】実施形態4の効果を説明する図。
【図20】実施形態5の効果を説明する図。
【図21】実施形態6の構成を説明する図。
【図22】実施形態6の効果を説明する図。
【図23】従来のTN−LCDの輝度の視角依存性を示す曲線図。
【符号の説明】
1、4…偏光板
2… 光学異方素子
2c… 光学異方性物質層
3… 駆動用液晶セル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display element. For child Involved.
[0002]
[Prior art]
Since the liquid crystal display element has the great advantage of being thin, lightweight and low power consumption, it is not only used as a display for watches, calculators, Japanese word processors, personal computers, etc., but also a new concept that actively utilizes the advantages of liquid crystal display elements. It is also used in other products. In particular, liquid crystal display elements used in personal computers and the like have a large area and large capacity display, and a display surface of 10 inches diagonal and 640 × 480 pixels has become mainstream. The display methods used in this class of liquid crystal display elements can be roughly classified into two types. One is a simple matrix system and the other is an active matrix system.
[0003]
The simple matrix system has a simple structure in which liquid crystal is sandwiched between two glass substrates with comb-shaped transparent electrodes. Therefore, high performance is required for the liquid crystal in the simple matrix system. Before describing this performance, the display principle of the liquid crystal display element will be described. In the display of the liquid crystal display element, the voltage applied to the liquid crystal is changed to change the direction of the liquid crystal molecules. In general, a large voltage difference is required to obtain a large contrast ratio. However, in order to realize a display of 640 × 480 pixels, the voltage difference between dark and light is as small as about 1V, and a large change in the state of liquid crystal molecules is required only by 1V difference. A lot of research has been done to realize this, but in 1985, the research group of Schaefer et al. Made the change in alignment sensitive to voltage by increasing the twist angle of the liquid crystal molecules. It was found that liquid crystal molecules must have a certain degree of inclination in order to change and to obtain a stable alignment with a large twist angle. Since this research report, orientation technology to realize this has been actively performed and successfully put into practical use.
[0004]
In order to realize a display having an array of 640 × 480 pixels, generally, the twist angle is required to be 180 ° or more. Since the twist angle is large as described above, this liquid crystal is called a super twist nematic (STN). However, the initial STN display had a yellow background and a green character display, and was not a monochrome display. This is because the twist angle is large, and as a means for eliminating such display coloring, a second liquid crystal cell in which the alignment of the liquid crystal layer is twisted in the opposite direction is disposed between the polarizing plate and the liquid crystal cell. It has been reported in Japanese Patent Publication No. 63-53528 that black and white display can be realized.
[0005]
The principle of black-and-white conversion is that light transmitted through a first liquid crystal cell in which liquid crystal molecules are arranged in a twisted manner and causing optical rotation dispersion is transmitted through the first liquid crystal cell and the second liquid crystal cell of the target structure. The optical rotation dispersion has been eliminated. As a result, coloring due to optical rotatory dispersion of light is eliminated, and monochrome display can be realized. In order to perform such conversion accurately, the second liquid crystal cell, which is an optical compensator, has substantially the same retardation value as that of the first liquid crystal cell and the twist direction is opposite to each other. It is necessary to configure the arrangement of the liquid crystal molecules so that the orientation directions of the liquid crystal molecules closest to each other are orthogonal to each other.
[0006]
As other means, various methods using an optically anisotropic film instead of the above-described second liquid crystal cell have been proposed. This is a method of providing almost the same function as the second liquid crystal cell by laminating an optically anisotropic film on the liquid crystal cell.
[0007]
With the optical compensation described above, monochrome display is possible even on STN displays, and color display with higher added value can also be realized by combining with color filters. However, since the simple multiplex method is based on time-division driving based on the voltage averaging method, if the number of scanning lines is increased to increase the display capacity, the voltage value when light is blocked and the light is transmitted. There is an essential problem in that the difference from the voltage value at the time of the reduction is remarkably reduced, and as a result, the contrast ratio becomes small and the response speed of the liquid crystal becomes slow. In addition, such a conventional technique is observed as a phenomenon in which the display image appears to be reversed depending on the azimuth and angle when viewing the liquid crystal display element, or the display image is not visible at all, or the display is colored. When a liquid crystal display element having a high level is realized, it becomes a big problem.
[0008]
On the other hand, since the active matrix system includes a switching element formed of a thin film transistor or a diode for each display pixel, an arbitrary voltage ratio can be set in the liquid crystal layer of each pixel regardless of the number of scanning lines. Therefore, special performance as in the case of the simple matrix system is not required for the liquid crystal. There is no need to increase the twist angle as in STN, and it is 90 °.
[0009]
A liquid crystal cell (TN) having a twist angle of 90 ° has a small twist angle, and the light rotates following the twist faithfully. Therefore, the optical rotation dispersion is small, and an achromatic and high-contrast display can be obtained. Also, the response to voltage is faster than STN. By combining the active matrix method and TN, a liquid crystal display element having a large display capacity, a high contrast ratio, and a high response speed can be realized. Further, since there is a switching element for each pixel, an intermediate voltage can be applied, thereby enabling halftone display. Further, by combining with a color filter, full color display can be easily realized.
[0010]
However, even in the case of the active matrix method, it is not so much in the case of binary display, but when displaying a halftone, the display image may be reversed depending on the viewing direction, or the display image may not be visible at all, Alternatively, it is observed as a phenomenon that the display is colored, and it becomes a big problem when realizing a liquid crystal display element with higher display quality.
[0011]
As a means for reducing the viewing angle dependency of such a display, Japanese Patent Application Laid-Open No. 62-21423 discloses a birefringent layer which is a liquid crystal cell and a polymer film having a negative optical anisotropy in the thickness direction between two polarizing plates. Is disclosed. On the other hand, Japanese Patent Laid-Open No. 3-67219 discloses that a birefringent layer made of a liquid crystal compound (or polymer liquid crystal) showing a cholesteric liquid crystal phase having a product of a helical pitch length and a refractive index of 400 nm or less is disposed on a liquid crystal cell. It is disclosed. These two proposals have been devised only in the case of a liquid crystal cell with a vertical alignment (liquid crystal molecules aligned vertically with respect to an alignment substrate), and a liquid crystal cell with a twisted alignment such as the TN mode or STN mode. In case not considered. Japanese Patent Application No. 3-121578 also proposes controlling the viewing angle of a liquid crystal display element with an optical compensation element having a twist angle of 360 ° or more and having a tilt angle. The effect of widening the viewing angle is not yet sufficient.
[0012]
[Problems to be solved by the invention]
The basic display principle of the liquid crystal display element described above is that light is controlled by changing the direction of liquid crystal molecules by a voltage applied to the liquid crystal and causing an optical change in the liquid crystal cell.
[0013]
Therefore, tilting the liquid crystal display element has a viewing angle dependency that changes the direction of the liquid crystal molecules and changes the way it looks.In particular, when displaying a delicate halftone, the tilt angle of the liquid crystal molecules is changed finely, so the viewing angle is increased. The dependency is remarkable.
[0014]
Due to the viewing angle dependence of the appearance of the liquid crystal molecules, it is observed as a phenomenon that the display image appears reversed or cannot be identified at all, especially when full color display is performed in combination with a color filter. As a result, the reproducibility of the display image is significantly reduced, which is a serious problem.
[0015]
The present invention solves the above inconveniences, and provides a liquid crystal display element having improved contrast ratio and viewing angle dependency of display color, and an optical anisotropic element used therefor.
[0016]
[Means for Solving the Problems]
The present invention resides in a liquid crystal display element having the following characteristics.
[0017]
It has two polarizing plates and a liquid crystal layer arranged between these two polarizing plates and sandwiched between two substrates and having a twisted orientation when no voltage is applied. In a liquid crystal display element comprising a driving liquid crystal cell for optical control, between the polarizing plate and the driving liquid crystal cell. An optical anisotropic element is arranged, and when viewed from the normal direction of the substrate of the liquid crystal cell for driving, the directions of the major axes of the optical anisotropic units of the optical anisotropic element are aligned on a single axis. The optically anisotropic element has an optical rotation that suppresses the optical rotation of the driving liquid crystal cell in the opposite direction and exhibits an optical rotation that supplements the optical rotation of the driving liquid crystal cell in one direction inclined with respect to the normal line. It is characterized by presenting Liquid crystal display element.
[0018]
Optical anisotropy unit Long axis Changes continuously or stepwise in the layer thickness direction of the optical anisotropic element with respect to the substrate surface of the driving liquid crystal cell. And an optical anisotropy unit having a positive optical anisotropy Crystal display element.
[0019]
In the layer of the optical anisotropic element, the angle of the optical axis of the optical anisotropic element is substantially parallel to the substrate surface of the driving liquid crystal cell and substantially along the normal line of the substrate on the side away from the substrate. The above-mentioned liquid crystal display element changing.
[0020]
In the layer of the optical anisotropic element, the angle of the optical axis of the optical anisotropic element is substantially along the normal line of the substrate of the driving liquid crystal cell and is substantially parallel to the substrate surface on the side away from the substrate. The above-mentioned liquid crystal display element changing in
[0021]
A liquid crystal display element in which the arrangement in the layer thickness direction of the optical anisotropic element of the optical anisotropy unit forming the optical anisotropic element is a bend arrangement.
[0022]
A liquid crystal display element in which the arrangement of the optical anisotropic elements in the layer thickness direction of the optical anisotropy unit forming the optical anisotropic element is a splay arrangement.
[0023]
The above liquid crystal display element in which the directions of the optical axes in the layer of the optical anisotropic element are aligned on a single axis when viewed from the normal direction of the substrate of the driving liquid crystal cell.
[0024]
And the angle of the optical axis is substantially along the normal line of the substrate of the driving liquid crystal cell, and changes in the layer so as to be substantially parallel to the substrate surface on the side away from the substrate, And a first optical anisotropic element in which the direction of the optical axis of the optical anisotropic element is on a single axis when viewed from the normal direction of the substrate of the liquid crystal cell for driving,
And the angle of the optical axis is substantially parallel to the substrate surface of the driving liquid crystal cell, changes in the layer so as to be substantially along the normal of the substrate on the side away from the substrate, and When viewed from the normal direction of the substrate of the liquid crystal cell for driving, at least one second optical anisotropic element in which the directions of the optical axes in the layer are aligned on a single axis is arranged. Said liquid crystal display element characterized by the above-mentioned.
[0025]
The liquid crystal display element as described above, wherein a single axis is arranged in parallel or perpendicular to the absorption axis of the polarizing plate.
[0026]
The liquid crystal display element as described above, wherein a second optical anisotropic element having a negative optical anisotropy with respect to the thickness direction is disposed between the polarizing plate and the optical anisotropic element.
[0027]
Said liquid crystal display element in which said optically anisotropic substance layer consists of a polymer liquid crystal.
[0028]
It has two polarizing plates and a liquid crystal layer arranged between these two polarizing plates and sandwiched between two substrates and having a twisted orientation when no voltage is applied. In the liquid crystal display device comprising the driving liquid crystal cell for optically controlling the optical liquid crystal, the driving liquid crystal cell has a first optical direction having a large optical rotation and an optical rotation in two directions which are symmetrically inclined with respect to the substrate normal. Having a small second direction,
Between the polarizing plate and the driving liquid crystal cell, the optical rotation in the direction inclined with respect to the normal of the substrate is larger than the optical rotation in the direction of the normal of the substrate, and the normal of the substrate is An optically anisotropic element having the first direction having a small optical rotatory power and the second direction having a large optical rotatory power in the two directions tilted symmetrically with respect to a reference is disposed, and the optical rotatory power of the driving liquid crystal cell is arranged. A liquid crystal display element in which the optically anisotropic element compensates for the asymmetry.
[0037]
Here, the optically anisotropic unit in the present invention refers to each of these layers when the optically anisotropic element having a thickness has a laminated structure of a plurality of layers as an example. Each layer is a unit having an optical axis directed in a specific direction, and when these layers are stacked, the optical axis gradually changes continuously or stepwise. In the present invention, the optical anisotropic element does not have a layer structure, but the configuration in which the optical axis changes in the thickness direction also changes the optical axis of the optical anisotropy unit continuously in the thickness direction. Define.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
The present invention solves the above-described problems, and simultaneously reduces the contrast ratio of the liquid crystal display element, the brightness at the time of gradation display, and the viewing angle dependency of the display color, or a specific contrast of the liquid crystal display element. The region in which the ratio is obtained is to be controlled to a specific direction and viewing angle, and its operation will be described below.
[0039]
In liquid crystal display elements such as TN and STN, the polarization state of light propagating in the liquid crystal display element differs depending on whether light is incident on the display surface of the liquid crystal display element perpendicularly or obliquely. This difference directly reflects the inversion phenomenon and coloring phenomenon of the display image. Such a phenomenon is observed when the viewing angle of the liquid crystal display element is greatly tilted from the normal to the display surface (front), and in particular, a liquid crystal cell (hereinafter referred to as a driving cell) having means for applying a voltage to the liquid crystal layer. This is noticeable in pixels in which a voltage is applied to the liquid crystal layer.
[0040]
23 (a) and 23 (b) show the angle dependency of display luminance when tilted from 0 ° to 60 ° in the horizontal and vertical directions from the normal line of the display surface (substrate surface) of the conventional TN liquid crystal display element. FIG. The levels 1 to 8 are indicated by the gradation numbers of gradation display, and the voltages applied to the liquid crystal cells are sequentially different. Level 1 is 0V and level 8 is 5V applied to the liquid crystal cell. For example, in the case of the upward orientation, the brightness gradually increases as the angle (viewing angle) tilted from the normal line of the display surface of the display increases from 0 ° (front) to 60 °. In the actual display, the display color is observed to become whitish (clear white).
[0041]
On the other hand, as shown in FIG. 23 (b), when viewed from the lower position, when the viewing angle is tilted from the front (0 °) to 60 °, the luminance decreases contrary to the upper direction. This phenomenon is observed in the actual display image as a dark display color (blackout). In the front, the brightest display level 1 and the lower gradation level 2 are reversed in magnitude at an upward viewing angle of 35 °, and in an actual display image, it looks like a photographic film negative. Observed as an inverted display (inverted). Ideally, the transmittance does not change even if the viewing angle changes for any gradation level. However, as shown in FIG. 23, the actual viewing angle characteristics of TN are relatively good in the horizontal direction, but poor in the vertical direction.
[0042]
Such a phenomenon occurs because the viewing angle characteristics of the liquid crystal display element are caused by the polarization state being different depending on the incident angle of light incident on the liquid crystal display element as described above. This will be explained in detail.
[0043]
FIG. 3 shows the operation principle of a TN-LCD (TN type liquid crystal element). FIG. 3A shows the alignment state of the liquid crystal molecules LM in the TN cell when no voltage is applied to the electrodes 3c and 3d. When the voltage V is not applied, the liquid crystal molecules are arranged in a continuously twisted manner with the liquid crystal molecules parallel to the thickness direction of the liquid crystal layer (in the figure, the Z-axis direction) substantially parallel to the substrate. ing. Liquid crystal molecules have an optical axis in the molecular long axis direction, and a parallel arrangement of liquid crystal molecules forms one optical axis plane. When light Li polarized by the polarizer Pi out of the incident light LA is incident on this arrangement, the plane of polarization rotates in accordance with the twisted arrangement of the liquid crystal molecules LM, and the plane of polarization before the liquid crystal layer enters the liquid crystal layer. Is rotated by the twist angle of the liquid crystal layer with respect to the plane of polarization. When the transmission axis Pot of the analyzer Po is aligned with the rotated direction, the transmitted light Lo is obtained.
[0044]
FIG. 3B shows the alignment state of the liquid crystal molecules in the TN cell when a voltage is applied. By applying the voltage V, the liquid crystal molecules LM rise, and the liquid crystal molecules LMc near the center of the cell are tilted more than the liquid crystal molecules LMs near the electrode. The reason why the inclination of the liquid crystal molecules LMs in the vicinity of the electrodes 3c and 3d is small is that there is an alignment regulating force (necessary for aligning the liquid crystal) at the electrode-liquid crystal layer interface. The inclination of the liquid crystal molecules increases according to the magnitude of the voltage V, and at the same time, the twisted arrangement is distorted. When the voltage is further increased, the twist is finally released. When polarized light Li is incident in such a state, the polarization plane Lp does not rotate and travels through the liquid crystal layer because it is not twisted, that is, the optical axis plane is on a single axis, and exits the liquid crystal layer. The polarization plane is not different from that before entering the liquid crystal layer. Therefore, since the transmission axis Pot of the analyzer Po is orthogonal to the polarization plane Lp, polarized light cannot be transmitted. In order to display halftones, the voltage applied to the liquid crystal layer is set smaller than this, the twisted arrangement of the arrangement is left slightly, and the polarization plane that exits the liquid crystal layer is rotated slightly to obtain intermediate transmitted light. Get.
[0045]
Based on the above principle, the TN device controls the transmitted light by using the distortion of the twisted arrangement. Next, what kind of phenomenon occurs with respect to light in an oblique direction will be described.
[0046]
FIG. 4 is a diagram illustrating a state in which light is incident obliquely on the molecular arrangement state when displaying a halftone. FIG. 4A is a perspective view showing the relationship between the molecular arrangement state LMint at the time of halftone display and the directions L and U of the two incident lights. In order to make this easier to understand, FIG. 4A is a view seen from the Y-axis direction. 4 (b) and 4 (c). Here, the normal direction of the substrate of the driving liquid crystal cell is represented by the Z axis, and the substrate surface is represented by the XY axis. The liquid crystal molecules LMs in the vicinity of the electrodes 3c and 3d on the upper and lower substrates are arranged with a slight inclination with respect to the substrate surface. This tilt is called a pretilt. Generally, the pretilt indicates the tilt of liquid crystal molecules at the substrate-liquid crystal interface, and the tilt angle is referred to as a pretilt angle α0. When no voltage is applied, the upper and lower substrates 3a and 3b are inclined at the same angle. If there is a predetermined tilt (pretilt) over the region to which the voltage V is applied, the tilt direction when the voltage is applied is aligned with the pretilt direction, so that uniform display can be achieved. If there is no pretilt, the direction in which the liquid crystal molecules incline varies when a voltage is applied, and a defect line is generated at the boundary between regions having different inclination directions, which causes a significant deterioration in display quality. Therefore, pretilt is indispensable for obtaining a uniform display, and the angle is generally 1 ° to 6 °. All the liquid crystal display elements are given a pretilt.
[0047]
Therefore, as shown in FIGS. 4B and 4C, the alignment state of the liquid crystal molecules is asymmetric with respect to the Z axis, particularly when a halftone is displayed. With respect to the polarized light L obliquely incident in the direction from the + X axis to the + Z axis in FIG. 4B, as shown in LM-L in FIG. 5, the alignment is in a state in which the liquid crystal molecules LM are not inclined (as if no voltage was applied). The polarization plane can be greatly rotated. As a result, the transmitted light becomes larger than the intensity of the outgoing light with respect to the incident light from the front (light parallel to the Z axis). On the other hand, as shown in FIG. 4C, for the polarized light U incident from a symmetric direction (obliquely in the direction of −Z axis to + Z axis) with reference to the opposite substrate normal, FIG. As shown in LM-U, the alignment is in a state where the liquid crystal molecules LM are greatly inclined (as if an even larger voltage was applied), and the polarization plane cannot be rotated. As a result, the transmitted light becomes smaller than the intensity of the outgoing light with respect to the incident light from the front (light parallel to the Z axis). 23 corresponds to the upper direction of FIG. 23B, and the direction of U of FIG. 4 corresponds to the lower direction of FIG. 23B.
[0048]
As described above, the orientation dependency of transmitted light in a halftone is due to the asymmetry of the alignment of liquid crystal molecules. This asymmetry of the arrangement causes the rotation (optical rotation) angle of the polarization plane to be different depending on the direction in which light is incident, resulting in a change in transmittance. In TN-LCD, it can be said that optical rotation occurs in the upper direction and optical rotation tends to decrease in the lower direction. Therefore, in order to improve this, the viewing angle dependency of the liquid crystal display element can be improved by adding an optical anisotropic element in which the optical rotation is reduced in the upper direction and the optical rotation is generated in the lower direction. The gist of the present invention is how to provide an optically anisotropic element having such characteristics.
[0049]
Next, the optical anisotropic element of the present invention will be specifically described.
[0050]
First, when the characteristics required for the optical anisotropic element are summarized, the required characteristics are “the rotation direction of the optical rotation is opposite between the upper direction and the lower direction”. FIG. 6 is a diagram showing an arrangement state of optical axes of the optical anisotropic element of the present invention, and FIG. 6A is a cross-sectional view of the optical anisotropic element of the embodiment of the present invention, which is shown by an ellipse. Indicates an optically anisotropic body LD constituting an optically anisotropic element, and the major axis of the ellipse corresponds to the optical axis OL. The inclination of the major axis continuously changes from the lower substrate 3d to the upper substrate 3c, and is substantially parallel to the substrate surface in the vicinity of the lower substrate 3d and substantially vertical in the vicinity of the upper substrate 3c (hybrid orientation). ). An example of this arrangement as seen from above is shown in FIG. The arrow in the ellipse in the figure indicates the direction of the optical axis. The directions of the optical axes in the layer are on the same plane, that is, they are aligned on a single axis. FIG. 6C is an arrangement diagram when observed obliquely from the Z axis. The tilt direction is indicated by XYZ axes in the figure. FIG. 6D shows a diagram viewed from the opposite oblique direction. As can be seen from FIGS. 6C and 6D, when the array of FIG. 6A is observed obliquely from the Z-axis, in FIG. ) Is arranged with the reverse right twist. By the optically anisotropic elements arranged obliquely in this way, the above-described property that “the rotation direction of the optical rotation is opposite between the upper direction and the lower direction” can be realized.
[0051]
Next, how such an optical anisotropic element is combined with a driving liquid crystal cell to obtain a good compensation effect will be described next.
[0052]
FIG. 7A is a diagram showing the driving liquid crystal cell shown in FIGS. 3, 4 and 5 with an arrow added as in FIG. 6, where the symbol Lip is the polarization axis of the incident light and the symbol Lop is the outgoing light. Represents the polarization axis. FIG. 7A shows an optical anisotropic element, and FIG. 7B shows a driving liquid crystal cell (TN) to which a voltage corresponding to a halftone is applied, as viewed from the Z axis. (C) is the figure which showed the arrangement | sequence of the optical axis of an optical anisotropic element when it sees from the Z-axis to the + X side, and showed the optical rotation state when linearly polarized light injects into the figure. In this direction, the optical anisotropic element has the property of rotating the polarization plane of incident light in the left direction (left rotation ability). (D) shows the arrangement state of the driving cells when viewed from the same direction as (c). The liquid crystal molecules are inclined obliquely because a voltage equivalent to halftone (a voltage slightly higher than the critical voltage (threshold voltage) at which the liquid crystal operates) is applied, and when viewed from this direction, the major axis of the liquid crystal molecules An orientation portion is produced in which the length in the direction and the length in the minor axis direction are substantially the same. Therefore, the incident polarized light is transmitted without rotating much, and the direction of the polarization axis Lop of the outgoing light is almost the same as the polarization axis Lip of the incident light. This is the cause of the display abnormality called “blackout” that darkens the display. In this case, if the polarized light is rotated counterclockwise (increases the optical rotation ability), this is improved. For this purpose, the optically anisotropic element shown in FIG. The optical anisotropic element shown in FIG. 3C has a left optical rotation ability, and the driving liquid crystal cell compensates for the insufficient optical rotation.
[0053]
On the other hand, the opposite direction will be described with reference to FIGS. (E) and (f) show the arrangement of the optical axes when the optical anisotropic element in FIG. (A) is observed from the -X axis from the Z-axis direction. It has the property of turning to the right (right rotation ability). Fig. (F) shows a state in which a halftone voltage is applied as in Fig. (D). From this direction, although the liquid crystal molecules are actually tilted, it does not appear to tilt. For this reason, a large optical rotation is achieved. This causes a display anomaly called “white spot” that makes the display brighter than necessary, and if the right rotation that suppresses counterclockwise rotation is applied, the extra rotation can be eliminated and “white spot” is improved. . The optical anisotropic element shown in FIG. 3E has a right optical rotation ability, and characteristics can be improved by combining this with a drive cell.
[0054]
As described above, the principle of the viewing angle expansion is exemplified by the optically anisotropic element having a hybrid orientation in which the optical rotation in the direction inclined with respect to the normal to the surface of the optical anisotropic element is larger than the optical rotation in the direction of the normal. Although explained, an optical anisotropic element that is twist-aligned by hybrid alignment and an optical anisotropic element that is tilt-aligned uniformly between the upper and lower substrates can obtain characteristics similar to those of the hybrid alignment optical anisotropic element. Can be selected according to the design specifications.
[0055]
Further, as shown in FIG. 8 (a), when an optical anisotropic element having a splay arrangement of the optical axis OL is used in the layer between the front and back surfaces 2d and 2e, as shown by the arrow TW in FIGS. The twist angle of the array observed from the direction becomes larger and a good compensation effect can be obtained. The same applies to the bend arrangement.
[0056]
In addition, although TN has been described as an example, since the same principle can be applied to STN, it can be used as means for improving the viewing angle of STN.
[0057]
The above-described optical anisotropic element has a great improvement effect mainly on display abnormality such as “blackout” and “whiteout”. The inventors have found that when a further optical anisotropic element having an optical axis in the thickness direction of the optical anisotropic element and a negative optical anisotropy is further added, a better improvement effect is obtained. Next, the principle of improving the viewing angle characteristics when using an optical anisotropic element having a negative optical anisotropy will be described.
[0058]
A state in which a voltage higher than the threshold voltage is applied to the driving liquid crystal cell is represented by a three-dimensional refractive index ellipsoid as shown in FIG. The Z axis is the thickness direction of the liquid crystal cell, and the XY plane corresponds to the substrate surface of the liquid crystal cell. The birefringence phenomenon is a normal line on the central point of the refractive index ellipsoid RA, which is a line connecting the observation point when the central point of the refractive index ellipsoid RA is viewed from a certain direction and the central point of the refractive index ellipsoid RA. The surface is indicated by the shape of an elliptical cut surface formed when the refractive index ellipsoid RA is cut (herein referred to as a refractive index body in a two-dimensional plane). If the difference between the major axis and minor axis length of the refractive index body in the two-dimensional plane corresponds to the phase difference between ordinary light and extraordinary light, and the transmission axes of the polarizing plates sandwiching the liquid crystal cell are orthogonal to each other, When the phase difference is zero, the transmitted light of the liquid crystal cell is blocked, and when the phase difference is not zero, transmitted light corresponding to the phase difference and the wavelength of the incident light is generated.
[0059]
When light is incident perpendicularly to the substrate surface of the liquid crystal cell (that is, when the liquid crystal cell is viewed from the front), the refractive index body RA4 in the two-dimensional plane is a circle, and the phase difference between ordinary light and extraordinary light is zero. However, when light is incident from a direction RA1 inclined from the substrate surface of the liquid crystal cell, the refractive index RA5 becomes an ellipse, causing a phase difference between ordinary light and extraordinary light, and light transmitted through the liquid crystal cell in the front direction and the oblique direction. The polarization states of are different.
[0060]
When the angle of viewing the refractive index ellipsoid RA in FIG. 9, ie, the viewing angle RA3 is increased, the refractive index body RA5 in the two-dimensional plane of the visual axis RA1 increases in the length direction of nRA1, and from the direction of the visual axis RA1. Transmitted light larger than when viewed is observed. Ideally, it is desirable that the shape of the refractive index body in the two-dimensional plane does not change when the viewing angle is changed in any orientation.
[0061]
In such optical compensation, a disk-shaped refractive index ellipsoid RB as shown in FIG. 10 is arranged on the Z axis of the refractive index ellipsoid RA in FIG. 9 (that is, adjacent to the upper or lower portion of the liquid crystal cell). Can be realized. In this way, when the viewing angle RA3 is increased, the refractive index body RA5 in the two-dimensional plane of the refractive index ellipsoid RA increases in the length direction of nRA1, whereas the nRA2 of the refractive index ellipsoid RB The refractive index in the lengthwise direction is increased, and as a result, the combined refractive index body in the two-dimensional plane becomes a circle, and the refractive index ellipsoid RA can be optically compensated to improve the viewing angle characteristics.
[0062]
In an actual liquid crystal display element, the refractive index ellipsoid of the driving liquid crystal cell has a long axis of the ellipse that is not perpendicular to the display surface but slightly tilted as shown in FIG. Accordingly, it is preferable that the refractive index ellipsoid RB of the optical anisotropic element shown in FIG.
[0063]
Actually, the refractive index ellipsoid as shown in FIG. 10 has an optical anisotropic element composed of an optically anisotropic material layer in which the optical axis is continuously twisted, and a refractive index in the in-plane direction rather than the thickness direction. This can be realized by using a smaller material.
[0064]
Hereinafter, a description will be given of how to realize an optically anisotropic element having a negative optical anisotropy using an optically anisotropic element made of an optically anisotropic material layer having an optical axis continuously twisted.
[0065]
In general, the liquid crystal cell for driving is displayed by actively changing the polarization direction of light in a visible wavelength region (generally, a region from 380 nm to 750 nm) by a voltage applied to the liquid crystal cell.
[0066]
On the other hand, in the case of the optically anisotropic element for optical compensation of the present invention, the optical axis of the optically anisotropic material layer is continuously twisted, so that optical rotation may occur depending on the optical conditions of the optically anisotropic element. . Here, the optical rotation indicates the property that the vibration direction of the light turns to the left or right around the traveling direction as the light travels in the medium. When the retardation value of an optically anisotropic element whose optical axis is continuously twisted is constant, if the twist pitch of the optical axis is long, the light rotates its polarization plane according to the twist of the optical axis, but the twist of the optical axis When the pitch is short, the light cannot follow the twist of the optical axis, and the optical rotation phenomenon does not occur. If the optical rotatory power of the optical anisotropic element is large, the polarization plane of the light transmitted through the element is changed.As a result, the contrast ratio is decreased, and in some cases, the polarization plane changes variously depending on the wavelength of the light, There arises a problem that light transmitted through the optical anisotropic element is colored.
[0067]
Therefore, at least the optical rotatory power with respect to visible light of the optically anisotropic element needs to be smaller than the optical rotatory power with respect to visible light of the driving liquid crystal cell. The optical rotation depends largely on the wavelength of light transmitted through the medium and the medium through which the light is transmitted. The magnitude of the optical rotation is represented by the degree of change in the retardation value of the medium with respect to the change in the optical axis.
[0068]
Accordingly, the optical rotation of the driving liquid crystal cell is determined by the difference between the refractive index no of the liquid crystal of the driving liquid crystal cell for ordinary light and the refractive index ne for extraordinary light by Δn1 (= ne−no: refractive index anisotropy). When the thickness of the liquid crystal layer is d1, and the angle (twist angle) of the twisted arrangement of the liquid crystal layer is T1,
△ n1 / d1 / T1 = R1 / T1 [1.1]
However, R1 = △ n1 · d1 (retardation value)
It can be expressed as
[0069]
Similarly, the optical rotatory power of the compensating optical anisotropic element is determined by the refractive index anisotropy of the optical anisotropic material layer of the compensating optical anisotropic element being Δn2, and the thickness of the laminated optical anisotropic material layer. Is d2, and the total twist angle of the optical axis of the optically anisotropic material layer is T2.
△ n2 ・ d2 / T2 = R2 / T2 [1.2])
However, R2 = △ n2 ・ d2
Can be expressed as
[0070]
Therefore, the magnitude relationship between the optical rotatory power of the compensating optical anisotropic element and the optical rotatory power of the driving liquid crystal cell is obtained from the equations (1.1) and (1.2).
(R1 / T1)> (R2 / T2) [1.3]
It becomes.
[0071]
The propagation of light in an optical anisotropic element in which the optical axis of the optically anisotropic material layer is continuously twisted can be expressed by a parameter represented by the following equation (CZVan Doorn, Physics Letters 42A, 7 (1973)).
f = λ / (p × Δn) [1.4]
Where λ is the wavelength of light in the vacuum (visible wavelength range)
p is the twist pitch length of the optical axis (p = d / T).
[0072]
In the case of f << 1, the polarization plane of the light in the optical anisotropic element changes according to the twist angle of the optical axis and has optical rotation. As described above, it is desirable that the optical anisotropic element has a small optical rotation, and the optical anisotropic element needs to satisfy the condition of f >> 1. Therefore, the optical anisotropic element is obtained from the equation [1.4]
p × △ n <λ [1.5]
It is necessary to hold.
[0073]
By the way, a liquid crystal having a very large twist angle, that is, a liquid crystal having a short helical pitch is generally referred to as a cholesteric liquid crystal. The product of the length p of the helical pitch of the liquid crystal and the average refractive index n of the cholesteric liquid crystal is n × p. When the value is in the visible wavelength range (depending on conditions, the short wavelength end is 360 nm to 400 nm and the long wavelength end is 760 nm to 830 nm), selective scattering occurs (JLFergason; Molecular Crystals. 1. 293 (1966) ). Such a phenomenon is not only observed in the cholesteric liquid crystal cell, but can also occur in an optical anisotropic element in which the optical axis of the optical anisotropic body is continuously twisted. When selective scattering occurs, a coloring phenomenon of the optical anisotropic element occurs and the display color changes. Accordingly, if the product n × p of the average refractive index n of the optically anisotropic material layer forming the optically anisotropic element and the twist pitch p of the optical axis is excluded from the visible wavelength range, the coloring phenomenon can be prevented.
[0074]
An optically anisotropic element is a laminate of retardation films in which optical anisotropy is produced by stretching a polymer film, a twisted alignment liquid crystal cell, and a polymer liquid crystal. This can be realized by an arrayed thin film. In this case, for example, the polymer layer is obtained by applying the polymer layer to at least one of the substrates of the driving liquid crystal cell, which facilitates manufacturing and provides a more desirable liquid crystal display element. For example, a polymer copolymer having a polysiloxane main chain and biphenylbenzoate and cholesteryl groups in an appropriate ratio in the side chain can be used. Alternatively, the optical anisotropic element of the present invention can also be realized by using a liquid crystal that is cured by ultraviolet rays to which a polymerizable functional group using an acryloyloxy group or the like is added.
[0075]
Hereinafter, embodiments of the liquid crystal display element of the present invention will be described in detail.
[0076]
(Embodiment 1)
1 and 2 are cross-sectional views of the liquid crystal display element according to this embodiment. The liquid crystal display element includes two polarizing plates 1 and 4 (LLC2-92-18: manufactured by SANRITZ), and a liquid crystal cell 2 and a driving liquid crystal cell 3 which are optical anisotropic elements for viewing angle compensation between them. It has a sandwiching structure. The polarizing plate 1 is formed by sandwiching the polarizing film 1a inside the transparent substrate 1b, and the polarizing plate 4 is similarly formed by attaching the polarizing film 4a to the transparent substrate 4b.
[0077]
A viewing angle compensating liquid crystal cell 2 as an optically anisotropic element is disposed between the polarizing plates 1 and 4 and has a liquid crystal cell structure in which a liquid crystal 2c is interposed between the transparent substrates 2a and 2b. Substrates 2a and 2b have SiO2 deposited obliquely on the surface, and an optically anisotropic material layer which is a liquid crystal layer in which a chiral agent S811 (manufactured by E. Merck Co., Ltd.) is mixed in a twisted nematic liquid crystal has a twist angle. Introduced at 270 °, the liquid crystal molecules are twisted counterclockwise from the lower substrate 2b to the upper substrate 2a while maintaining a pretilt angle of 50 ° (left twist). The Δn of the liquid crystal material as the optically anisotropic material layer used in the viewing angle compensation liquid crystal cell 2 is 0.189, the helical pitch is 1. The thickness is 33 μm and the layer thickness is 1 μm.
[0078]
The driving liquid crystal cell 3 is disposed between the viewing angle compensation liquid crystal cell 2 and the polarizing plate 4. The two upper substrates 3a and the lower substrate 3b form transparent electrodes 3c and 3d, respectively, and are connected to the drive power supply 3f. Twisted nematic liquid crystal (ZLI-4287, manufactured by E. Merck Co. Ltd.) having a positive dielectric anisotropy between the substrates 3a and 3b and a chiral agent S811 (trade name, manufactured by E. Merck Co. Ltd.) Is introduced at a twist angle of 90 °, and the state changes in accordance with the applied voltage from the drive power supply 3f. The torsional arrangement is maintained when no voltage is applied.
[0079]
The Δn of the liquid crystal used in the driving liquid crystal cell 3 is 0.093, and the thickness of the liquid crystal layer is 5.5 μm. The liquid crystal molecules of the driving liquid crystal cell 3 are twisted counterclockwise from the lower substrate 3b to the upper substrate 3b (left twist). The cell 3 operates as a TN cell with a 90 ° twist angle, and performs light control by an optical rotation action.
[0080]
FIG. 2A is an exploded perspective view showing the configuration of the liquid crystal display element in the present embodiment. (1.1) and (4.1) are the transmission axes of the two polarizing plates 1 and 4, which are orthogonal to each other. (1.1) is counterclockwise when viewed from the + Z direction, which is the normal direction of the substrate with respect to the Y axis. Arranged at 135 °. (3.1) and (3.2) are the rubbing axes of the upper substrate 3a and the lower substrate 3b of the driving liquid crystal cell 3, that is, the alignment treatment direction, which are orthogonal to each other and formed by the rubbing axis (3.1) with respect to the Y axis. Are arranged at 45 ° counterclockwise as viewed from the + Z direction.
[0081]
(2.1) and (2.2) of the viewing angle compensation liquid crystal cell 2 which is an optically anisotropic element are the rubbing axes of the upper and lower substrates 2a and 2b, respectively, which are orthogonal to each other, and the viewing angle compensation liquid crystal cell 2 is rubbed. The axis (2.2) is arranged so as to be parallel to the rubbing axis (3.1) of the driving liquid crystal cell 3. In other words, the optical axis OL (FIG. 6) of the liquid crystal molecules LM is arranged along these rubbing axes, and becomes the optical axis of the liquid crystal layer on the side where the liquid crystal layer is in contact with the rubbed surface of the substrate.
[0082]
The polarizing plate 1 was arranged so that the transmission axis (1.1) was orthogonal to the rubbing axis (2.1) of the viewing angle compensation liquid crystal cell 2.
[0083]
The liquid crystal display element of this configuration was measured for electro-optical characteristics in the coordinate system of FIG. The voltage value at the time of measurement (voltage applied between the driving power supply 3f and the electrodes 3c-3d of the driving liquid crystal cell 3) was changed from 1V to 5V. The results are shown in FIG. FIG. 11 shows applied voltage-transmittance characteristics in four directions, top, bottom, left and right, respectively, and shows the transmittance when the viewing angle is changed by 30 ° from the front to 60 °. Ideally, any viewing angle should be identical to the transmittance curve of the front (viewing angle θ = 0 °). In the front direction, when a certain voltage is exceeded, the transmittance decreases as the voltage increases.
[0084]
FIG. 12 is a graph showing applied voltage-transmittance characteristics of a TN-LCD of a comparative example of the prior art. In the lower characteristics, the transmittance decreases as the viewing angle increases. This corresponds to the occurrence of “blackout” when the gradation is actually displayed. Further, the re-increase of the transmittance near 3 V at a viewing angle of 60 ° corresponds to “inversion” in actual display. Looking at the upper direction, the transmittance increases as the viewing angle increases from 0 ° to 60 ° at a voltage of 3V. This corresponds to “whitening” in actual display.
[0085]
In the case of this embodiment, when FIG. 11 is seen, the fall of the transmittance | permeability of a lower rank and the reincrease of the transmittance | permeability of 3V vicinity are improved. That is, the blackening and inversion of the lower order are improved. Further, it can be seen from the comparison of transmittance at viewing angles of 30 and 60 degrees in the 3 to 5 V region that the white spots in the upper direction are slightly improved.
[0086]
When a TFT-LCD with a screen size diagonal of 10 inches with a color filter in the liquid crystal cell was actually created with this configuration, a good full-color display was obtained that could distinguish the display contents even when the orientation and viewing angle were changed. It was.
[0087]
(Comparative Example 1)
In the first embodiment, voltage-transmittance characteristics were measured when the viewing angle compensation liquid crystal cell 2 was not provided. The measurement results are shown in FIG. In this comparative example, depending on the angle, a phenomenon that the display turned white in the upper direction and the display turned black or the gradation was reversed in the lower direction was observed.
[0088]
(Comparative Example 2)
In the first embodiment, the alignment film of the viewing angle compensating liquid crystal cell 2 was prepared using polyimide having a tilt angle of 1 °. The other conditions are exactly the same as in the first embodiment. FIG. 14 shows the measurement results of the voltage-transmittance characteristics. By reducing the pretilt angle of the viewing angle compensation liquid crystal cell 2, the transmittance cannot be completely lowered in the front direction, and the contrast ratio is lowered. Further, as can be seen from the characteristics in the oblique direction as compared with the characteristic diagram 12 of the conventional example, the characteristics of the azimuth other than the upper azimuth deteriorated.
[0089]
(Embodiment 2)
FIG. 13 is an exploded perspective view showing the configuration of the liquid crystal display element in the present embodiment. In the first embodiment, the viewing angle compensation liquid crystal cell 2 which is an optically anisotropic element is coated with polyimide AL-1051 (manufactured by Nippon Synthetic Rubber) on the side of the lower substrate 2b in contact with the liquid crystal, and the surface is subjected to rubbing treatment. Has been. The pretilt angle is 1 °. On the other hand, a vertical alignment process is performed on the side of the upper substrate 2a in contact with the liquid crystal. The Δn of the liquid crystal material used is 0.039, and the thickness of the liquid crystal layer is 4.4 μm. The optical axis of the liquid crystal molecules, that is, the optical axis of the optical anisotropic element is parallel to the cell on the driving liquid crystal cell 3 side, and continuously changes in the layer thickness direction and is normal to the cell substrate on the side away from the liquid crystal cell 3. It is almost along the direction. The twist angle is 0 °.
[0090]
(1.1) and (4.1) are the transmission axes of the polarizing plates 1 and 4, which are orthogonal to each other, and (1.1) is arranged at 135 ° counterclockwise when viewed from the + Z direction with respect to the Y axis. (3.1) and (3.2) are the rubbing axes of the upper and lower substrates 3a, 3b of the driving liquid crystal cell 3, which are orthogonal to each other, and the angle formed by the rubbing axis (3.1) with respect to the Y axis is the + Z direction. It is arranged at 45 ° counterclockwise when viewed from the side.
[0091]
The optical axis (2.2) of the viewing angle compensation liquid crystal cell 2 is the rubbing axis of the lower substrate 2b, which is perpendicular to the rubbing axis (3.1) of the upper substrate of the driving liquid crystal cell 3, and the rubbing axis (3. 2) Arranged to be parallel to
[0092]
The transmission axis (1.1) of the polarizing plate 1 is arranged so as to be parallel to the rubbing axis (3.1) of the upper substrate of the driving liquid crystal cell 3.
[0093]
The liquid crystal display element of this configuration was measured for electro-optical characteristics in the coordinate system of FIG. The voltage value at the time of measurement (voltage applied between the driving power supply 3f and the electrodes 3c-3d of the driving liquid crystal cell 3) was changed from 1V to 5V. The results are shown in FIG. Compared with the voltage-transmittance characteristics of Comparative Example 1 (FIG. 12), the darkness and the inversion of gradation decreased and the viewing angle expanded in the vertical direction, particularly in the lower direction. A TFT-LCD with a 10 inch diagonal screen size with a color filter in the liquid crystal cell in this configuration was actually manufactured, and a good full-color display that can distinguish the display contents even when the orientation and viewing angle were changed was obtained. It was.
[0094]
(Embodiment 3)
FIG. 16 shows a configuration diagram of this embodiment. In the first embodiment, the optical anisotropy between the viewing angle compensation liquid crystal cell 2 and the driving liquid crystal cell 3 which is the first optical anisotropic element becomes negative when the thickness direction is the optical axis. An optical anisotropic element 5 which is an optical anisotropic element of FIG. The optical anisotropic element 5 has an optical axis (shown as nz in FIG. 16) inclined by 60 ° (δ) in the XZ plane with respect to the Z axis in the thickness direction, and the refractive index of this optical axis normal plane is the optical axis direction. Greater than the refractive index of. The retardation value is -140 nm. FIG. 17 shows the result of measuring the electro-optical characteristics of the liquid crystal display element of this configuration according to the orientation defined by the coordinate axes in FIG. As can be seen from comparison with FIG. 12, which is the characteristic diagram of Comparative Example 1, the upper azimuth characteristics of Embodiment 1 are further improved.
[0095]
(Embodiment 4)
The configuration of this embodiment is shown in FIG. An optical anisotropy having negative optical anisotropy as a second optical anisotropic element between the viewing angle compensating liquid crystal cell 2 and the driving liquid crystal cell 3 which is the first optical anisotropic element in the second embodiment. Element 5 was arranged. The configuration is shown in FIG. The optical anisotropic element 5 has an optical axis (shown as nZ in FIG. 18) parallel to the Z axis, and the refractive index of this optical axis normal surface is larger than the refractive index in the optical axis direction. The retardation value is -140 nm. FIG. 19 shows the result of measuring the electro-optical characteristics of the liquid crystal display element of this configuration in the orientation defined by the coordinate system of FIG. As can be seen from comparison with the characteristic diagram 12 of Comparative Example 1, the upper direction characteristic of the second embodiment was further improved.
[0096]
(Embodiment 5)
In the second embodiment, a second viewing angle compensation liquid crystal cell having a twist angle of 720 ° is arranged between the viewing angle compensation liquid crystal cell 2 and the driving liquid crystal cell 3. The liquid crystal material used had a Δn of 0.039 and a pitch length of 3.5 μm. The thickness of the liquid crystal layer is 7.0 μm, and the alignment is horizontally aligned by rubbing the polyimide film in the opposite direction between the upper and lower substrates. The second compensation cell was arranged so that the rubbing axis of the compensation cell was parallel to the rubbing axis of the lower substrate of the driving liquid crystal cell 3. FIG. 20 shows the result of measuring the electro-optical characteristics of the liquid crystal display element of this configuration in the orientation defined by the coordinate system of FIG. As can be seen from comparison with the characteristic diagram 12 of the comparative example 1 which is a conventional example, the upper azimuth characteristic of the second embodiment is improved.
[0097]
(Embodiment 6)
As shown in FIG. 21, between the viewing angle compensation liquid crystal cell 2 and the driving liquid crystal cell 3, which is an optical anisotropic element composed of a liquid crystal cell in which the optically anisotropic material layer is formed of a liquid crystal layer in the second embodiment. The optically anisotropic element 6 made of a polymer copolymer having negative optical anisotropy was disposed. The optical anisotropic element 6 has an optical axis (shown as nz in the figure) parallel to the Z axis, and the refractive indexes nx and ny of the normal surface of the optical axis are larger than the refractive index nz in the optical axis direction. The retardation value is −100 nm. The thickness of the liquid crystal layer of the viewing angle compensating liquid crystal cell 2 is 3.4 μm.
Between the driving liquid crystal cell 3 and the polarizing plate 4, an optical anisotropic element 7 identical to the optical anisotropic element 6 is disposed on the driving liquid crystal cell 3 side, and the viewing angle compensation liquid crystal cell 5 is the optical anisotropic element. 7 and the polarizing plate 4. The viewing angle compensation liquid crystal cell 5 is made of the same alignment film as the viewing angle compensation liquid crystal cell 2, and the upper substrate is rubbed in the direction of the arrow (5.1). A vertical alignment treatment is performed on the surface of the substrate on the side of the polarizing plate 4 that is in contact with the liquid crystal of the viewing angle compensating liquid crystal cell 5. The rubbing axis 5.1 is parallel to the rubbing axis 3.1 of the upper substrate of the driving liquid crystal cell 3.
[0098]
FIG. 22 shows the result of measuring the electro-optical characteristics of the liquid crystal display element of this configuration in the orientation defined by the coordinate system of FIG. As can be seen from comparison with FIG. 12 showing the characteristics of the conventional example, the viewing angle characteristics of the present embodiment are improved over those of the second embodiment with respect to all the vertical and horizontal directions.
[0099]
(Embodiment 7)
In the second embodiment, the viewing angle compensating liquid crystal cells 2 and 5 were made of a polymer copolymer having a polysiloxane main chain and biphenylbenzoate and cholesteryl groups in an appropriate ratio in the side chain. Similar characteristics were obtained. Furthermore, a thinner liquid crystal display element is realized by producing an optically anisotropic element with a polymer copolymer.
[0100]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the contrast of a liquid crystal display element and the viewing angle characteristic of a display color can be improved, and the liquid crystal display element of a high quality display which is excellent in visibility can be provided.
[0101]
In the present invention, only the TN-LCD using the TFT has been described, but it goes without saying that an excellent effect can be obtained even when applied to an active matrix using an MIM or the like and a simple matrix liquid crystal display element such as an STN.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a first embodiment of the present invention.
FIGS. 2A and 2B are diagrams illustrating Embodiment 1 of the present invention, in which FIG. 2A is an exploded perspective view illustrating a configuration, and FIG. 2B is a diagram illustrating a coordinate system for measuring electro-optical characteristics;
FIG. 3 is a diagram for explaining the operating principle of a TN-LCD.
FIG. 4 is a diagram for explaining a generation principle of a viewing angle characteristic of a TN-LCD.
FIG. 5 is a diagram for explaining a generation principle of viewing angle characteristics of a TN-LCD.
FIG. 6 is a view showing an arrangement state of the optical anisotropic elements of the present invention.
FIG. 7 is a view for explaining the principle of optical compensation when the optical anisotropic element of the present invention is used.
FIG. 8 is a diagram for explaining the principle of optical compensation when an optical anisotropic element having a splay arrangement according to the present invention is used.
FIG. 9 is a diagram showing a refractive index ellipsoid of a driving cell when a voltage is applied.
FIG. 10 is a diagram showing a refractive index ellipsoid of an optically anisotropic element having a negative refractive index anisotropy in the thickness direction.
11 shows electro-optical characteristics of the liquid crystal display element of Embodiment 1. FIG.
FIG. 12 shows electro-optical characteristics of a conventional liquid crystal display element.
FIG. 13 is a diagram illustrating a configuration of a second embodiment.
FIG. 14 shows electro-optical characteristics of a comparative example.
FIG. 15 is a diagram for explaining the effect of the second embodiment.
FIG. 16 is a diagram illustrating a configuration of a third embodiment.
FIG. 17 is a diagram for explaining the effect of the third embodiment.
FIG. 18 is a diagram illustrating a configuration of a fourth embodiment.
FIG. 19 is a diagram illustrating the effect of the fourth embodiment.
FIG. 20 is a diagram for explaining the effect of the fifth embodiment.
FIG. 21 is a diagram illustrating a configuration of a sixth embodiment.
FIG. 22 is a diagram for explaining the effect of the sixth embodiment.
FIG. 23 is a curve diagram showing the viewing angle dependence of the luminance of a conventional TN-LCD.
[Explanation of symbols]
1, 4 ... Polarizing plate
2 ... Optical anisotropic element
2c ... Optically anisotropic material layer
3. Liquid crystal cell for driving

Claims (5)

2枚の偏光板と、これら2枚の偏光板間に配置され、2枚の基板間に挟持されて電圧無印加時にねじれた配向をしている液晶層を有して液晶の旋光性を用いて光制御する駆動用液晶セルとを具備する液晶表示素子において、前記偏光板と前記駆動用液晶セル間に光学異方素子を配置し、前記駆動用液晶セルの基板の法線方向からみたときに前記光学異方素子の光学異方性単位のそれぞれの長軸の向きが単一の軸上に揃って配列し、前記光学異方素子は前記法線に対し傾いた一方向に前記駆動用液晶セルの旋光性を補う旋光性を呈し逆方向に前記駆動用液晶セルの旋光性を抑制する旋光性を呈することを特徴とする液晶表示素子。It has two polarizing plates and a liquid crystal layer arranged between these two polarizing plates and sandwiched between two substrates and having a twisted orientation when no voltage is applied. In a liquid crystal display element comprising a driving liquid crystal cell for controlling light in an optical direction , an optical anisotropic element is disposed between the polarizing plate and the driving liquid crystal cell, and viewed from the normal direction of the substrate of the driving liquid crystal cell. The optical anisotropic units of the optical anisotropic element are arranged so that their major axes are aligned on a single axis, and the optical anisotropic element is used for driving in one direction inclined with respect to the normal line. A liquid crystal display element characterized by exhibiting optical rotation that supplements the optical rotation of the liquid crystal cell and exhibiting optical rotation that suppresses the optical rotation of the driving liquid crystal cell in the reverse direction . 前記光学異方性単位の長軸の角度が駆動用液晶セルの基板表面に対して前記光学異方素子の層厚方向に連続的あるいは段階的に変化して、かつ光学異方性単位の光学異方性が正号であることを特徴とする請求項1記載の液晶表示素子。 The optically anisotropic angle of the major axis of the unit is continuously or stepwise changed in the layer thickness direction of the optically anisotropic element with respect to the substrate surface of the driving liquid crystal cell, and an optically anisotropic unit optical the liquid crystal display device according to claim 1, wherein the anisotropy is positive No.. 前記光学異方性単位の長軸の角度が駆動用液晶セルの基板表面にほぼ平行であり、前記基板から離れた側で前記基板の法線ほぼ沿うように前記光学異方素子の層内で変化している請求項1または2記載の液晶表示素子。 In the layer of the optical anisotropic element, the major axis angle of the optical anisotropy unit is substantially parallel to the substrate surface of the driving liquid crystal cell and is substantially along the normal line of the substrate on the side away from the substrate. The liquid crystal display element according to claim 1 or 2, wherein 前記光学異方性単位の長軸の角度が駆動用液晶セルの基板の法線にほぼ沿っており、前記基板から離れた側で前記基板表面にほぼ平行になるように前記光学異方素子の層内で変化している請求項1または2記載の液晶表示素子。 Wherein and angle between the long axis of the optically anisotropic units along substantially the normal line of the substrate of the driving liquid crystal cell, the optically anisotropic element so as to be substantially parallel to the substrate surface on the side remote from the substrate The liquid crystal display element according to claim 1, wherein the liquid crystal display element changes in the layer. 前記長軸が偏光板の吸収軸に対して平行または直交して配置されている請求項1記載の液晶表示素子。The liquid crystal display element according to claim 1, wherein the major axis is arranged parallel or orthogonal to the absorption axis of the polarizing plate.
JP15355796A 1995-07-25 1996-06-14 Liquid crystal display element Expired - Fee Related JP3643439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15355796A JP3643439B2 (en) 1995-07-25 1996-06-14 Liquid crystal display element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-189183 1995-07-25
JP18918395 1995-07-25
JP15355796A JP3643439B2 (en) 1995-07-25 1996-06-14 Liquid crystal display element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004320572A Division JP3896135B2 (en) 1995-07-25 2004-11-04 Liquid crystal display element and optical anisotropic element

Publications (2)

Publication Number Publication Date
JPH0996810A JPH0996810A (en) 1997-04-08
JP3643439B2 true JP3643439B2 (en) 2005-04-27

Family

ID=26482140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15355796A Expired - Fee Related JP3643439B2 (en) 1995-07-25 1996-06-14 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP3643439B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161934A (en) * 2001-11-28 2003-06-06 Nec Infrontia Corp Liquid crystal display device and terminal device
KR102002820B1 (en) * 2013-01-21 2019-07-23 엘지디스플레이 주식회사 Beam deflection panel and display using the same

Also Published As

Publication number Publication date
JPH0996810A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
US6411355B1 (en) Liquid crystal display device with compensation for viewing angle dependency and optical anisotropic element used therein
US7209205B2 (en) Liquid crystal display device
KR100239266B1 (en) Optical compensator for liquid crystal display
JP2721284B2 (en) Liquid crystal display element and optically anisotropic element
US5541753A (en) Liquid crystal display and device having a total retardance of (M+1) λ/2 and (Mλ/2) at first and second operating voltages
KR100241815B1 (en) Liquid crystal electronic optical apparatus
US6359671B1 (en) High contrast liquid crystal device
JPH09171177A (en) Twist nematic liquid crystal display and manufacture thereof
KR100228811B1 (en) Lcd device and optical anisotropic device
JPH0349412B2 (en)
JP3776844B2 (en) Liquid crystal display
JP3643439B2 (en) Liquid crystal display element
KR100241816B1 (en) Liquid crystal display device and optical isotropic device
JP2856942B2 (en) Liquid crystal display element and optically anisotropic element
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
JP3628094B2 (en) Liquid crystal display element and optical anisotropic element
JP4266209B2 (en) Liquid crystal display element and optical anisotropic element
JP2779822B2 (en) Liquid crystal electro-optical element
JPH09203895A (en) Liquid crystal display element and optical anisotropic element
JPH08101381A (en) Liquid crystal display element
JP3130686B2 (en) Liquid crystal display device
JPH06235914A (en) Liquid crystal display device
JP2005301315A (en) Liquid crystal display device and optical anisotropic device
JPH0950026A (en) Liquid crystal display device
JPH05107534A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

LAPS Cancellation because of no payment of annual fees