JPH0523885B2 - - Google Patents
Info
- Publication number
- JPH0523885B2 JPH0523885B2 JP24082986A JP24082986A JPH0523885B2 JP H0523885 B2 JPH0523885 B2 JP H0523885B2 JP 24082986 A JP24082986 A JP 24082986A JP 24082986 A JP24082986 A JP 24082986A JP H0523885 B2 JPH0523885 B2 JP H0523885B2
- Authority
- JP
- Japan
- Prior art keywords
- drill
- reamer
- groove
- blade
- heel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005520 cutting process Methods 0.000 description 24
- 238000005553 drilling Methods 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000003754 machining Methods 0.000 description 4
- 230000004323 axial length Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007730 finishing process Methods 0.000 description 2
- 229910001234 light alloy Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 230000000669 biting effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Drilling Tools (AREA)
- Milling, Broaching, Filing, Reaming, And Others (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、ドリル部とリーマ部とを有するリー
マに関し、特に、基本的な穴明け精度及び穴仕上
げ精度がよいドリルリーマに関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a reamer having a drill part and a reamer part, and more particularly to a drill reamer with good basic drilling accuracy and hole finishing accuracy.
従来の技術
従来、一般に、穴明け加工では、ドリルで材料
に穴を明けたのち、コアドリルを使用したのちリ
ーマを使用し、またはコアドリルを使用せずにす
ぐにリーマを使用して、上記穴の仕上げ加工を行
つていた。しかしながら、上記工程では2種類の
工具を使用するので、時間がかかりかつ工具費用
も大きくなるという問題があつた。この問題を解
決するものとして、第8〜10図に示すように、
上記穴明け加工を行うドリル部21aと仕上げ加
工を行うリーマ部21bとを1つの工具に備えた
リーマが開発された。このリーマ21によれば、
上記2種類の加工を1つの工具で行うことがで
き、加工時間も短縮されるとともに、工具費用も
さほど要せず、上記問題を総て解消しえた。Conventional technology In general, in the conventional drilling process, after drilling a hole in the material, a core drill is used and then a reamer is used, or a reamer is used immediately without using a core drill to refill the hole. Finishing work was being done. However, since two types of tools are used in the above process, there are problems in that it takes time and increases tool costs. As a solution to this problem, as shown in Figures 8 to 10,
A reamer has been developed in which a single tool includes a drill part 21a that performs the above-mentioned drilling process and a reamer part 21b that performs finishing process. According to this reamer 21,
The above two types of machining can be performed with one tool, the machining time is shortened, the tool cost is not so high, and all of the above problems can be solved.
発明が解決しようとする問題点
しかしながら、上記構造のリーマ21では、剛
性をもたせるためドリル部21aにおいて心厚が
大きくなつて、刃立を行つたときチゼルエツジ2
2が標準ドリル3(第4図参照)のものよりも大
きくなる結果、ドリル部21aで材料の切削を行
うとき、いわゆる歩行現象が生じてドリル部21
aの回転中心が移動して穴明け精度(例えば、真
円度、真直度、面粗さなど)が悪くなり、リーマ
部21bで仕上げ加工するときドリル部21aで
の穴明け精度が悪いので、リーマ部21bの中心
軸と穴の中心軸とがずれた状態で仕上げ加工を行
うことになり、仕上げられた穴の精度も悪くなる
といつた問題点があつた。なお、ここで上記標準
ドリル3とは、例えば、JIS B 4301のストレー
トシヤクドリルの規格に基づいて市販されている
ドリルであつて、その心厚寸法が一般に(0.15〜
0.18)×D程度となつているドリルのことを意味
する。ただし、Dはドリル径である。Problems to be Solved by the Invention However, in the reamer 21 having the above structure, the core thickness is increased in the drill part 21a in order to provide rigidity, so that when the cutting edge is raised, the chisel edge 2
2 is larger than that of the standard drill 3 (see FIG. 4), and as a result, when cutting material with the drill part 21a, a so-called walking phenomenon occurs, causing the drill part 21
The center of rotation of a moves and the drilling accuracy (for example, roundness, straightness, surface roughness, etc.) deteriorates, and when finishing with the reamer part 21b, the drilling accuracy with the drill part 21a is poor. There was a problem in that the finishing process was performed in a state where the center axis of the reamer portion 21b and the center axis of the hole were misaligned, resulting in poor accuracy of the finished hole. Note that the above-mentioned standard drill 3 is, for example, a drill commercially available based on the JIS B 4301 standard for straight shaft drills, and whose core thickness is generally (0.15~
0.18)×D. However, D is the drill diameter.
したがつて、本発明の目的は、精度良く穴明け
加工並びに穴仕上げ加工を行うことができるリー
マを提供することにある。 Therefore, an object of the present invention is to provide a reamer that can perform hole drilling and hole finishing with high precision.
問題点を解決するための手段
上記目的を達成するために、本発明は、ドリル
部の心厚部分の再研削範囲内に上記チツプ排出用
主溝に連通した副溝を形成するように構成した。
すなわち、ドリル部とリーマ部とからなるリーマ
において、上記ドリル部は、チツプ排出用主溝を
構成するヒール面と刃裏面とがドリル部軸方向断
面において、大略滑らかな曲面をなす標準断面刃
形に対して、該標準断面刃形のヒール面よりヒー
ル面のヒール面外側部分の全部、すなわち外側端
部、または一部、すなわち、例えば外側端部全体
を突出させたのちヒール部のみを切り落として残
りの切落とされていない部分、が上記チツプ排出
用主溝内に突出するとともに、上記標準断面刃形
の刃裏面より刃裏面が上記チツプ排出用主溝に向
けて略三角形状に突出するようにした断面形状を
先端部より軸方向沿いの所定範囲内に有するとと
もに、該所定範囲内でかつ上記先端部より軸方向
沿いの再研削可能範囲内の上記断面形状におい
て、上記標準断面刃形のヒール面より略U字状に
くぼんだ副溝を上記ヒール面のヒール面中心側に
有するように構成した。Means for Solving the Problems In order to achieve the above object, the present invention is configured such that a auxiliary groove communicating with the main groove for chip ejection is formed within the re-grinding range of the thick core portion of the drill part. .
That is, in a reamer consisting of a drill part and a reamer part, the drill part has a standard cross-sectional blade shape in which the heel surface and the back surface of the blade, which constitute the main groove for chip ejection, form a substantially smooth curved surface in the axial cross section of the drill part. In contrast, the entire outer part of the heel surface of the heel surface of the standard cross-sectional blade shape, that is, the outer end, or a part, for example, the entire outer end, is made to protrude from the heel surface, and then only the heel part is cut off. The remaining uncut portion protrudes into the main groove for chip ejection, and the back surface of the blade protrudes in a substantially triangular shape from the back surface of the blade of the standard cross-sectional blade shape toward the main groove for chip ejection. The cross-sectional shape is within a predetermined range along the axial direction from the tip, and within the predetermined range and within the re-grindable range from the tip along the axial direction, the standard cross-sectional blade shape is A sub-groove recessed from the heel surface in a substantially U-shape is provided on the heel surface center side of the heel surface.
発明の作用
上記構成においては、副溝によりチゼルエツジ
が小さくなり、ドリル部での切削時、ドリル部の
先端が被切削材に対していわゆる歩行現象を行こ
さずドリル部の回転中心が移動しないとともに、
切削抵抗も小さくなり、精度良く穴明け加工が行
え、従つて、リーマ部の中心軸と穴の中心軸とが
略一致した状態で該リーマ部で穴内周面の仕上げ
加工を行うことができ、仕上げられた穴の精度が
良くなる。Effect of the Invention In the above configuration, the chisel edge is made smaller by the auxiliary groove, and when cutting with the drill part, the tip of the drill part does not perform a so-called walking phenomenon with respect to the workpiece, and the center of rotation of the drill part does not move. ,
Cutting resistance is also reduced, drilling can be performed with high accuracy, and the inner circumferential surface of the hole can be finished with the reamed part while the central axis of the reamed part and the central axis of the hole are substantially aligned. The accuracy of the finished hole is improved.
実施例
以下、本発明にかかる実施例を第1〜7図に示
す図面に基づいて詳細に説明する。Embodiments Hereinafter, embodiments according to the present invention will be described in detail based on the drawings shown in FIGS. 1 to 7.
第1図は本発明の一実施例に係るリーマ1の側
面図、第2,3図は夫々ドリル部1aの端面及び
リーマ部1bの断面図、第4図はドリル部1aの
刃部の断面図、第5図は刃部の要部断面側面図、
第6図は第5図の−線断面図、第7図は具体
的なドリル部1aの刃先端面図である。なお、上
記第4図中、点線は、チツプ排出溝を構成するヒ
ール面3bと刃裏面3aとがドリル軸方向断面に
おいて大略滑らかな曲面をなした標準断面刃形を
有する従来の標準ドリル3を示し、2点鎖線は従
来の心厚の大きな高剛性ドリル2を示す。また、
第4図中、2bは刃裏面、2cはヒール面であ
る。 Fig. 1 is a side view of a reamer 1 according to an embodiment of the present invention, Figs. 2 and 3 are sectional views of the end face of the drill part 1a and the reamer part 1b, respectively, and Fig. 4 is a sectional view of the blade part of the drill part 1a. Figure 5 is a cross-sectional side view of the main part of the blade,
FIG. 6 is a sectional view taken along the line -- in FIG. 5, and FIG. 7 is a specific front view of the tip of the drill portion 1a. Note that in FIG. 4, the dotted line indicates a conventional standard drill 3 having a standard cross-sectional blade shape in which the heel surface 3b and the blade back surface 3a forming the chip ejection groove form a substantially smooth curved surface in the axial cross section of the drill. The two-dot chain line indicates a conventional high-rigidity drill 2 with a large core thickness. Also,
In FIG. 4, 2b is the back surface of the blade, and 2c is the heel surface.
上記リーマ1は、ドリル部1aとリーマ部1b
とから大略構成する。 The reamer 1 has a drill part 1a and a reamer part 1b.
It is roughly composed of.
上記ドリル部1aについてまず説明する。上記
ドリル部1aはリーマ1の先端部より軸方向沿い
の所定範囲内のリーマ軸方向断面において第4図
中軸心O点を中心に点対称に形成されており、一
対のチツプ排出用主溝6,6を軸方向沿いに螺旋
状に形成するとともに、湾曲した各主溝6の溝壁
面に刃裏面4とヒール面5を夫々備える。 First, the drill portion 1a will be explained. The drill portion 1a is formed symmetrically with respect to the axis O point in FIG. 4 in the axial cross section of the reamer within a predetermined range along the axial direction from the tip of the reamer 1, and has a pair of chip ejection main grooves. 6, 6 are formed spirally along the axial direction, and the groove wall surface of each curved main groove 6 is provided with a blade back surface 4 and a heel surface 5, respectively.
上記刃裏面4は、上記ドリル部軸方向断面にお
いて、標準ドリル3により略三角形状に主溝6内
に突出させて突出部4cを形成して、標準ドリル
3より肉厚にする。すなわち、刃裏面4の外側4
aを従来の高剛性ドリル2と同様に突出させる一
方、中心側4bを上記高剛性ドリル2の中心側よ
りくぼませて心厚が小さくなるようにする。 The back surface 4 of the blade is made thicker than the standard drill 3 by projecting into the main groove 6 in a substantially triangular shape using the standard drill 3 in the axial cross section of the drill portion. That is, the outer side 4 of the back surface 4 of the blade
A is made to protrude like the conventional high-rigidity drill 2, while the center side 4b is depressed from the center side of the high-rigidity drill 2 to reduce the core thickness.
また、上記ヒール面5は、上記ドリル部軸方向
断面において、その外側端部5bを第4図中一点
鎖線で示すように高剛性ドリル2と同様に主溝6
内に突出させるとともに、該外側端部5bより中
心側にかけてU字状にくぼんだ副溝8を軸方向沿
いに螺旋状に形成する。従つて、ヒール面5の外
側部5bにおいては標準ドリル3より肉厚に形成
する一方、中心側においては上記高剛性ドリル2
や標準ドリル3よりもくぼませて心厚を小さくす
る。上記副溝8は第5図に示すようにドリル部先
端側より軸方向沿いの一定範囲l2内に形成し、こ
の範囲を上記ドリル部1aの切刃の再研削しうる
範囲とする。上記この副溝8を形成した再研削可
能範囲l2内において、先端部よりドリル部軸方向
所定範囲L1内の心厚部分に、心厚寸法W1が一定
すなわち平行心厚(0/100)となり溝底面がド
リル部軸方向と平行になる平行部8aを形成する
とともに、該平行部から残りの範囲L2内に一定
角度傾斜した傾斜部8bを形成する。この傾斜部
8bまで再研削を行つた場合でも刃先端面に形成
されるチゼルエツジの大きさは上記標準ドリル3
のチゼルエツジよりも小さく、切削性に優れたも
のとなつている。なお、上記ドリル部1aは、例
えば副溝8を形成する砥石で第4図中実線で示す
ようにヒール部7を削り落として主溝6のスペー
スを大きくし、切削油の浸透をより良くするのが
好ましい。この場合、ヒール部7を削り落として
も、ドリル部1aの剛性が落ちたことによるドリ
ル部1aの寿命低下は起こらなかつた。 Further, in the axial cross section of the drill portion, the heel surface 5 has a main groove 6 at its outer end 5b as shown by the dashed line in FIG.
A sub-groove 8 that protrudes inward and is recessed in a U-shape from the outer end 5b toward the center is formed in a spiral along the axial direction. Therefore, the outside part 5b of the heel surface 5 is made thicker than the standard drill 3, while the center side is made thicker than the high-rigidity drill 2.
The core thickness is made smaller by concave than standard drill 3. As shown in FIG. 5, the auxiliary groove 8 is formed within a certain range l2 along the axial direction from the tip side of the drill part, and this range is defined as the range in which the cutting edge of the drill part 1a can be reground. Within the re-grindable range l2 in which this minor groove 8 is formed, the core thickness dimension W1 is constant, that is, the parallel core thickness (0/100 ), forming a parallel portion 8a whose groove bottom surface is parallel to the axial direction of the drill part, and forming an inclined portion 8b inclined at a constant angle from the parallel portion within the remaining range L2 . Even if re-grinding is performed up to this inclined portion 8b, the size of the chisel edge formed on the tip surface of the blade is the same as that of the standard drill 3 mentioned above.
It is smaller than the chisel edge of the previous model and has excellent cutting performance. Note that the drill portion 1a is formed by, for example, using a grindstone for forming the sub-groove 8 to grind off the heel portion 7 as shown by the solid line in FIG. 4 to enlarge the space of the main groove 6 and improve penetration of the cutting oil. is preferable. In this case, even if the heel portion 7 was shaved off, the life of the drill portion 1a did not decrease due to the decrease in the rigidity of the drill portion 1a.
一方、上記リーマ部1bは、ドリル部1aより
も一段大径に形成され、かつリーマ軸方向断面に
おいて第4図中軸心O点を中心に点対称に形成さ
れており、4個の切刃10,…,10を備えると
ともに、各円周方向沿いに隣接する切刃10,1
0間には、上記ドリル部1aの一対のチツプ排出
用主溝6,6に連続した一対のチツプ排出用螺旋
状第1溝12,12と、リーマ部1bより新たに
形成したチツプ排出用螺旋状第2溝11とを交互
に備える。このリーマ部1bの作用は従来公知の
リーマと同様な作用を行う。 On the other hand, the reamer part 1b is formed to have a diameter one step larger than the drill part 1a, and is formed point-symmetrically in the axial cross section of the reamer with respect to the center axis O point in FIG. 4, and has four cutting edges. 10,..., 10, and adjacent cutting edges 10, 1 along each circumferential direction.
0, a pair of spiral first grooves 12, 12 for chip ejection which are continuous with the pair of main grooves 6, 6 for chip ejection of the drill part 1a, and a spiral for chip ejection newly formed from the reamer part 1b. The second grooves 11 are provided alternately. The action of this reamer portion 1b is similar to that of a conventionally known reamer.
上記リーマ1によれば、材料に対して始めドリ
ル部1aにより穴明け加工が行なわれる。すなわ
ち、穴明けの切削時、ドリル部1aの切削により
生じるチツプは、刃裏面4の略三角形状突出部4
cの外側4aの湾曲面に沿つて主溝6から第1溝
12に案内されて良好に排出されるとともに、チ
ゼルエツジで圧壊された切屑は上記副溝8から上
記主溝6及び第1溝12内に案内されて良好に排
出される。次いで、穴が明けられてリーマ部1b
に穴の内周面が接触するようになると、リーマ部
1bの各切刃10で穴内周面を切削して、真円
度、真直度、面粗さを出して穴内周面を精度良く
仕上げる。上記各切刃10で切削された切屑は第
1溝12または第2溝11から良好に排出され
る。 According to the reamer 1, a hole is initially drilled into the material by the drill portion 1a. That is, when cutting a hole, chips generated by cutting the drill part 1a are removed from the approximately triangular protrusion 4 on the back surface 4 of the blade.
The chips crushed by the chisel edge are guided from the main groove 6 to the first groove 12 along the curved surface of the outer side 4a of c and are well discharged, and the chips crushed by the chisel edge are transferred from the sub groove 8 to the main groove 6 and the first groove 12. It is guided inside and discharged properly. Next, a hole is drilled to form the reamed part 1b.
When the inner circumferential surface of the hole comes into contact with the inner circumferential surface of the hole, the inner circumferential surface of the hole is cut with each cutting blade 10 of the reamer part 1b to obtain roundness, straightness, and surface roughness, and finish the inner circumferential surface of the hole with high precision. . The chips cut by each of the cutting blades 10 are well discharged from the first groove 12 or the second groove 11.
上記実施例にかかるリーマ1であつて、鉄鋼用
リーマのドリル部の具体例を第7図に示す。主溝
部分の心厚寸法W2は(0.25〜0.40)D、溝幅比は
1:1〜0.8:1、ねじれ角は25度、副溝部分の
心厚寸法W1は(0.04〜0.11)Dとし、先端角は
135度とする。但し、Dはドリル部径である。そ
して、両刃裏面4,4の外端を結ぶ線と刃裏面4
の中心側湾曲面の接線とのなす角αは10°〜15°と
し、刃裏面4の中心側湾曲面の曲率半径R1は
(0.1〜0.2)Dとし、刃裏面4からヒール面5に
かけての湾曲面の直径D3はφ(0.1〜0.2)Dとし、
ヒール面5の中心側湾曲面の曲率半径R2は(0.5
〜0.8)Dとし、ヒール面5の外側端部5bと副
溝8との境界部のドリル部中心からの距離すなわ
ち直径D2はφ0.85Dとする。上記副溝8は、その
軸方向長さl2(第5図参照)、すなわち切刃と副溝
8との接点Aからの軸方向長さは(0.5〜1.1)D
とする。この軸方向長さがこれだけあれば、従来
のドリルと同数だけ再研削できるとともに寿命も
従来のドリルと同程度となる。しかし、寿命を延
ばすためには上記長さは短いほうがよい。上記副
溝8の傾斜部8bの心厚寸法W′からW″間での範
囲における心厚テーパは2/100〜6/100程度とし、
心厚寸法W1がφ13.0mm以上の場合には上記心厚テ
ーパは4/100とする。 FIG. 7 shows a specific example of the drill portion of the reamer for steel, which is the reamer 1 according to the above embodiment. The core thickness dimension W 2 of the main groove part is (0.25 to 0.40) D, the groove width ratio is 1:1 to 0.8:1, the helix angle is 25 degrees, and the core thickness dimension W 1 of the minor groove part is (0.04 to 0.11). D, and the tip angle is
The temperature shall be 135 degrees. However, D is the diameter of the drill part. Then, the line connecting the outer ends of the back sides 4 and 4 of the double blade and the back side 4 of the blade.
The angle α between the tangent of the center side curved surface of the blade is 10° to 15°, the radius of curvature R1 of the center side curved surface of the blade back surface 4 is (0.1 to 0.2) D, and the angle α from the blade back surface 4 to the heel surface 5 is The diameter D3 of the curved surface of is φ(0.1~0.2)D,
The radius of curvature R 2 of the curved surface on the center side of the heel surface 5 is (0.5
~0.8)D, and the distance from the center of the drill part of the boundary between the outer end 5b of the heel surface 5 and the sub-groove 8, that is, the diameter D2, is φ0.85D. The axial length of the minor groove 8 is l 2 (see Fig. 5), that is, the axial length from the contact point A between the cutting edge and the minor groove 8 is (0.5 to 1.1)D.
shall be. With this axial length, it is possible to re-grind the same number of times as a conventional drill, and the service life is also comparable to that of a conventional drill. However, in order to extend the service life, the shorter the above length, the better. The core thickness taper in the range between the core thickness dimension W′ and W″ of the inclined portion 8b of the sub-groove 8 is approximately 2/100 to 6/100,
If the core thickness dimension W1 is φ13.0mm or more, the core thickness taper shall be 4/100.
なお、従来の鉄鋼用高剛性ドリルでは、溝幅比
が0.8〜0.9:1、心厚寸法が(0.2〜0.45)Dであ
り、シンニングを行う必要があつた。また、鉄鋼
用標準ドリルでは、溝幅比が1.3:1〜1:1、
心厚寸法が(0.1〜0.20)Dであり、シンニング
が必要であつた。 In addition, in the conventional high-rigidity drill for steel, the groove width ratio is 0.8 to 0.9:1 and the core thickness dimension is (0.2 to 0.45)D, and it is necessary to perform thinning. In addition, standard drills for steel have groove width ratios of 1.3:1 to 1:1,
The core thickness was (0.1 to 0.20)D, and thinning was required.
また、ドリル部1aの溝幅比や心厚寸法など
は、軽合金用、アルミ用のドリルと上記鉄鋼用の
ドリルとは異なり、夫々用途に応じて溝幅比や心
厚寸法などを決めて、シンニングを行わなくても
よいようにする必要がある。この軽合金用、アル
ミ用のドリル部の参考例としては、溝幅比を
1.5:1〜1.6:1として大きくし、ねじれ角を38
〜42度として大きくする一方、心厚寸法は鉄鋼用
ドリルと同じにしたものがある。 In addition, the groove width ratio and core thickness dimensions of the drill part 1a are different between drills for light alloys and aluminum and those for steel, and the groove width ratio and core thickness dimensions are determined depending on the respective applications. , it is necessary to eliminate the need for thinning. As a reference example of the drill part for light alloys and aluminum, the groove width ratio is
Increase the torsion angle to 1.5:1 to 1.6:1 and set the torsion angle to 38
There is a drill with a larger core thickness of ~42 degrees, but with the same core thickness as a steel drill.
上記実施例によれば、ドリル部1aのヒール面
5に副溝8を備えたので、ドリル部1aの心厚が
標準ドリル3や高剛性ドリル2よりも小さくなり
刃立をしたときチゼルエツジも小さくなるととも
に、上記ドリル部中心部の溝底の曲率半径が小さ
くなる結果、ドリル部1aでの切削時、被切削材
に対する食い付き性が良くなり、いわゆる歩行現
象が生じず精度良く穴明け加工を行うことがで
き、ドリル部1aにシンニングを行う必要がなく
なり、かつ切屑のブレイク性が良くなる。また、
ドリル部1aに続いてリーマ部1bで仕上げ加工
を行うとき、上記穴が精度良く明けられて穴の軸
とリーマ部1bの中心軸とが大略一致するので、
穴内周面を均一にリーマ部1bで切削することが
できて精度良く仕上げることができる。従つて、
上記ドリル部1aにおいて、従来の高剛性ドリル
2のようにシンニングの巧拙が穴明け精度に影響
するといつた問題を確実に解消できる。また、再
研削毎にドリル部1aのシンニングを行う必要も
なく、ただ、ドリル部先端の切刃の刃立てを行う
だけで十分に切削できる。また、ドリル部1aの
ヒール面5の中心側に副溝8を備えたので、チツ
プ排出用の溝を従来の高剛性ドリル2や標準ドリ
ル3のチツプ排出用溝よりも大きくすることがで
きるとともに、刃裏面4の突出部4cの外側4a
の湾曲面沿いにチツプをチツプ排出用の上記溝
8,6内に円滑に案内できるので、チツプの排出
性が向上する。また、上記副溝8に平行部8aを
形成したので、刃先部に剛性を持たせることがで
きるとともに、ドリル部の製造段階の品質検査工
程において、上記平行部8aの心厚寸法を測定す
ることにより製品の品質の安定化を図ることがで
きる。すなわち、平行部を形成ぜずに傾斜部のみ
から副溝8を構成すると、該副溝部分において心
厚寸法を測定する場合、例えば、マイクロメータ
の測定子の位置が少しでも狂うと心厚寸法が異な
るため、各ドリル部1aにおいて同一箇所を測定
することが困難であり、製品の品質の安定化が困
難であつたのである。また、上記ヒール面5の外
側端部5bと厚肉にするとともに、刃裏面4に突
出部4cを形成して厚肉にすることにより、心厚
を大きくすることなく、ドリル部の剛性を向上さ
せることができる。さらに、上記のように心厚が
小さくなることに対応してチツプ排出用の溝の断
面積が標準ドリル3や高剛性ドリル2よりも大き
くなり、チツプ排出性能が良くなる。また、上記
ドリル部1aで明けられた穴の精度が良いので、
コアードリルを通した場合と同じ状態となり、従
来のドリル部とリーマ部とを有するリーマと比較
するリーマ部1bにかかる負担が少なくなる。 According to the above embodiment, since the heel surface 5 of the drill part 1a is provided with the sub-groove 8, the core thickness of the drill part 1a is smaller than that of the standard drill 3 or the high-rigidity drill 2, and the chisel edge is also small when the cutting edge is raised. At the same time, the radius of curvature of the groove bottom at the center of the drill part becomes smaller, and as a result, when cutting with the drill part 1a, the biting property against the material to be cut is improved, and the so-called walking phenomenon does not occur and drilling can be performed with high precision. This eliminates the need for thinning the drill portion 1a, and improves the breakability of chips. Also,
When finishing machining is performed with the reamer part 1b following the drill part 1a, the hole is drilled with high accuracy and the axis of the hole and the center axis of the reamer part 1b approximately coincide, so that
The inner circumferential surface of the hole can be uniformly cut by the reamer portion 1b, resulting in a highly accurate finish. Therefore,
In the drill portion 1a, it is possible to reliably solve the problem of the conventional high-rigidity drill 2 in which the skill of thinning affects the drilling accuracy. Further, there is no need to thin the drill portion 1a every time the drill portion is re-grinded, and sufficient cutting can be achieved simply by sharpening the cutting edge at the tip of the drill portion. In addition, since the sub-groove 8 is provided on the center side of the heel surface 5 of the drill part 1a, the chip ejection groove can be made larger than the chip ejection groove of the conventional high-rigidity drill 2 or standard drill 3. , the outer side 4a of the protrusion 4c on the back surface 4 of the blade
Since the chips can be smoothly guided into the chip ejection grooves 8 and 6 along the curved surface, the chip ejection performance is improved. In addition, since the parallel portion 8a is formed in the minor groove 8, the cutting edge portion can be made rigid, and the core thickness dimension of the parallel portion 8a can be measured in the quality inspection process at the manufacturing stage of the drill portion. This makes it possible to stabilize product quality. In other words, if the sub-groove 8 is constructed from only the inclined part without forming a parallel part, when measuring the core thickness dimension in the sub-groove part, for example, if the position of the measuring tip of the micrometer is slightly deviated, the core thickness dimension will be Because of the different values, it was difficult to measure the same location in each drill part 1a, making it difficult to stabilize the quality of the product. In addition, by making the outer end 5b of the heel surface 5 thicker, and by forming a protrusion 4c on the back surface 4 of the blade to make it thicker, the rigidity of the drill part is improved without increasing the core thickness. can be done. Furthermore, in response to the reduced core thickness as described above, the cross-sectional area of the chip ejection groove is larger than that of the standard drill 3 or the high-rigidity drill 2, and the chip ejection performance is improved. In addition, since the hole drilled by the drill part 1a has good accuracy,
The state is the same as when a core drill is passed through, and the load placed on the reamer part 1b is reduced compared to a conventional reamer having a drill part and a reamer part.
なお、上記実施例では、ドリル部1aで穴明け
加工が終了したのち、リーマ部1bで穴の内周面
の仕上げ加工を行うようにしていたが、ドリル部
1aにもリーマ部1bの切刃を備えるようにし
て、ドリル加工とリーマ加工を同時に行えるよう
にしてもよい。また、寿命延長及び仕上げ穴のよ
り精度の向上のために油穴を備えるようにしても
よい。また、リーマ1の表面に硬質被膜、例えば
窒化チタン(TiN)、炭化チタン(TiN)または
立方晶型窒化硼素(CBN)等、をコーテイング
により形成するようにしてもよい。 In the above embodiment, after the drilling process is completed with the drill part 1a, the inner peripheral surface of the hole is finished with the reamer part 1b. It is also possible to provide a drill so that drilling and reaming can be performed at the same time. Further, an oil hole may be provided to extend the life and improve the precision of the finished hole. Further, a hard film such as titanium nitride (TiN), titanium carbide (TiN), cubic boron nitride (CBN), or the like may be formed on the surface of the reamer 1 by coating.
発明の効果
上記構成によれば、ドリル部の刃部のヒール面
の中心側に略U字状にくぼんだ副溝を形成するこ
とにより、心厚が小さくなりチゼルエツジが小さ
くなるとともにドリル部中心部の溝底の曲率半径
が小さくなるので、ドリル部での切削時、被切削
材に対するドリル部の食い付き性が良くなり、い
わゆる歩行現象が生じずドリル部の回転中心が移
動するのを効果的に防止することができるととも
に、切削抵抗が小さくなり切削性が良くなり、か
つ切屑のブレイク性も良くなる。また、ドリル部
に続いてリーマ部で仕上げ加工を行うとき、上記
穴が精度良く明けられて穴の軸とリーマ部の中心
軸とが大略一致するので、穴内周面をリーマ部で
均一に切削することができ精度良く仕上げること
ができ、穴の真円度、真直度、面粗さ、穴の位置
等の精度が向上する。従つて、ドリル部のシンニ
ングが不要となり、シンニングの巧拙が穴明け精
度に影響することがないので、シンニングを行わ
ずとも精度の良い穴明け加工を行うことができ
る。また、ドリル部の再研削毎にシンニングを行
う必要もなく、ただ、ドリル部先端の切刃の刃立
てを行うだけで十分に切削できる。また、ドリル
部のヒール面の中心側に副溝を備えたので、チツ
プ排出用の溝の面積が標準ドリルや高剛性ドリル
より大きくなり、チツプ排出性能が良くなる。ま
た、上記副溝に平行部を形成したので、刃先部に
剛性を持たせることができるとともに、リーマの
ドリル部の製造段階の品質検査工程において、上
記平行部の心厚寸法を測定することにより製品の
品質の安定化を図ることができる。すなわち、平
行部を形成せずに傾斜部のみから副溝を構成する
と、該副溝部分において各ドリル部の心厚寸法を
例えばマイクロメータで測定する場合、マイクロ
メータの測定子の位置が少しでも狂うと心厚部分
の傾斜により心厚寸法が異なつてくるので、各ド
リル部において精確に測定子を同一位置に位置さ
せることが必要となり、この測定子を同一位置に
位置させることが非常に困難であり、製品の品質
の安定化が困難であつたのである。また、ドリル
部軸方向断面において、刃部のヒール面外側端部
がチツプ排出溝内に突出する一方、刃裏面がチツ
プ排出溝に向けて略三角形状に突出して、心厚を
大きくすることなく、ドリル部の剛性を大きくす
ることができて、穴明け加工の高能率化が図れ
る。さらに、上記刃裏面が略三角形状に突出した
ので、切削した切屑すなわちチツプが、上記略三
角形状突出部の外側斜面沿いにチツプ排出溝内に
円滑に案内される。また、上記ドリル部で明けら
れた穴の精度が良いので、コアードリルを通した
場合と同じ状態となり、従来のドリル部とリーマ
部とを有するリーマと比較するとリーマ部にかか
る負担が少なくなる。Effects of the Invention According to the above configuration, by forming the substantially U-shaped sub-groove on the center side of the heel surface of the blade portion of the drill portion, the core thickness is reduced, the chisel edge is reduced, and the center portion of the drill portion is reduced. The radius of curvature of the bottom of the groove is smaller, so when cutting with the drill part, the drill part has better grip on the material to be cut, and the so-called walking phenomenon does not occur, effectively preventing the center of rotation of the drill part from moving. In addition, cutting resistance is reduced, machinability is improved, and chip breakability is also improved. In addition, when finishing machining is performed using the reamer section following the drill section, the above hole is drilled with high precision and the axis of the hole and the center axis of the reamer section roughly match, so the inner peripheral surface of the hole can be cut uniformly with the reamer section. It is possible to finish with high accuracy, and the accuracy of hole roundness, straightness, surface roughness, hole position, etc. is improved. Therefore, it is not necessary to thin the drill part, and the skill of thinning does not affect the accuracy of drilling, so that accurate drilling can be performed without thinning. Further, there is no need to perform thinning every time the drill part is reground, and sufficient cutting can be achieved simply by sharpening the cutting edge at the tip of the drill part. Furthermore, since the sub-groove is provided on the center side of the heel surface of the drill portion, the area of the groove for discharging chips is larger than that of a standard drill or a high-rigidity drill, improving chip discharging performance. In addition, since a parallel portion is formed in the minor groove, it is possible to provide rigidity to the cutting edge. It is possible to stabilize the quality of the product. In other words, if the sub-groove is formed from only the inclined part without forming the parallel part, when measuring the core thickness dimension of each drill part in the sub-groove part using, for example, a micrometer, even if the position of the measuring point of the micrometer is slightly If this happens, the core thickness dimension will differ due to the inclination of the core thickness part, so it is necessary to accurately position the gauge head at the same position in each drill part, and it is extremely difficult to position the gauge head at the same position. Therefore, it was difficult to stabilize the quality of the product. In addition, in the axial cross section of the drill part, the outer end of the heel surface of the blade protrudes into the chip ejection groove, while the back surface of the blade protrudes in a substantially triangular shape toward the chip ejection groove, without increasing the core thickness. , the rigidity of the drill part can be increased, and the efficiency of drilling can be increased. Furthermore, since the back surface of the blade protrudes in a substantially triangular shape, cut chips, that is, chips, are smoothly guided into the chip discharge groove along the outer slope of the substantially triangular protrusion. Furthermore, since the hole drilled by the drill part has good accuracy, the condition is the same as when a core drill is passed through, and the load on the reamer part is reduced compared to a conventional reamer having a drill part and a reamer part.
第1図は本発明の一実施例に係るリーマの側面
図、第2,3図は夫々ドリル部の端面図及び第1
図の−線断面図、第4図はドリル部の刃部の
断面図、第5図は上記ドリル部の刃部の要部断面
側面図、第6図は第5図の−線断面図、第7
図は具体的なドリル部の刃先端面図、第8〜10
図は夫々従来のリーマの側面図、ドリル部の端面
図及び第8図のX−X線断面図である。
1……実施例に係るリーマ、1a……ドリル
部、1b……リーマ部、2……従来のドリル、2
b……刃裏面、2c……ヒール面、3……標準ド
リル、3a……刃裏面、3b……ヒール面、4…
…刃裏面、4a……外側、4b……中心側、4c
……突出部、5……ヒール面、5b……外側端
部、6……チツプ排出用主溝、7……ヒール部、
8……副溝、10……切刃、11……第2溝、1
2……第1溝。
FIG. 1 is a side view of a reamer according to an embodiment of the present invention, and FIGS. 2 and 3 are end views of the drill part and the first reamer.
FIG. 4 is a sectional view of the blade of the drill part, FIG. 5 is a sectional side view of the main part of the blade of the drill part, FIG. 6 is a sectional view taken along the line - of FIG. 5, 7th
The figure is a front view of the blade tip of a specific drill part, Nos. 8 to 10.
The figures are a side view of a conventional reamer, an end view of a drill portion, and a sectional view taken along the line X--X in FIG. 8, respectively. DESCRIPTION OF SYMBOLS 1... Reamer according to the embodiment, 1a... Drill part, 1b... Reamer part, 2... Conventional drill, 2
b... Back side of the blade, 2c... Heel side, 3... Standard drill, 3a... Back side of the blade, 3b... Heel side, 4...
...back side of blade, 4a...outside, 4b...center side, 4c
...Protruding part, 5...Heel surface, 5b...Outside end, 6...Main groove for chip ejection, 7...Heel part,
8... Minor groove, 10... Cutting edge, 11... Second groove, 1
2...First groove.
Claims (1)
るリーマにおいて、 上記ドリル部1aは、チツプ排出用主溝6を構
成するヒール面3bと刃裏面3aとがドリル部軸
方向断面において、大略滑らかな曲面をなす標準
断面刃形に対して、該標準断面刃形のヒール面3
bよりヒール面5のヒール面外側部分の全部また
は一部が上記チツプ排出用主溝6内に突出すると
ともに、上記標準断面刃形の刃裏面3aより刃裏
面4が上記チツプ排出用主溝6に向けて略三角形
状に突出するようにした断面形状を先端部より軸
方向沿いの所定範囲内に有するとともに、該所定
範囲内でかつ上記先端部より軸方向沿いの再研削
可能範囲l2内の上記断面形状において、上記標準
断面刃形のヒール面3bより略U字状にくぼんだ
副溝8を上記ヒール面5のヒール面中心側に要す
るように構成したことを特徴とするリーマ。[Scope of Claims] 1. In a reamer having a drill portion 1a at the tip of the reamer portion 1b, the drill portion 1a has a heel surface 3b forming a chip ejection main groove 6 and a blade back surface 3a in the axial direction of the drill portion. The heel surface 3 of the standard cross-sectional blade shape has a roughly smooth curved surface in cross section.
All or part of the outside portion of the heel surface 5 of the heel surface 5 protrudes into the chip ejection main groove 6 from b, and the blade back surface 4 extends from the blade back surface 3a of the standard cross-sectional blade shape into the chip ejection main groove 6. It has a cross-sectional shape that protrudes in a substantially triangular shape toward the tip within a predetermined range along the axial direction from the tip, and within the predetermined range and within a re-grindable range l2 along the axial direction from the tip. In the above cross-sectional shape, the reamer is characterized in that a sub-groove 8 recessed in a substantially U-shape from the heel face 3b of the standard cross-sectional blade shape is formed on the heel face center side of the heel face 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24082986A JPS6393520A (en) | 1986-10-09 | 1986-10-09 | Reamer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24082986A JPS6393520A (en) | 1986-10-09 | 1986-10-09 | Reamer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6393520A JPS6393520A (en) | 1988-04-23 |
JPH0523885B2 true JPH0523885B2 (en) | 1993-04-06 |
Family
ID=17065310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24082986A Granted JPS6393520A (en) | 1986-10-09 | 1986-10-09 | Reamer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6393520A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7832966B2 (en) | 2003-01-30 | 2010-11-16 | Kennametal Inc. | Drill for making flat bottom hole |
US7140815B2 (en) * | 2003-01-30 | 2006-11-28 | Kennametal Inc. | Drill for making flat bottom hole |
US7871224B2 (en) * | 2007-09-26 | 2011-01-18 | Robert Bosch Gmbh | Drill bit and reamer |
JP6713125B2 (en) * | 2016-03-28 | 2020-06-24 | 株式会社ユニテック | Drills for drilling holes from the side of metal plates having low hardness of stacked metal plates having different hardness, and a drilling method using the drill |
-
1986
- 1986-10-09 JP JP24082986A patent/JPS6393520A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6393520A (en) | 1988-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6132149A (en) | Twist drills | |
JP4848116B2 (en) | Machine tool peeling drill | |
US5486075A (en) | Boring tool | |
EP1666180B1 (en) | Drill | |
KR100853978B1 (en) | Deep-hole drill having back-tapered web and a method of drilling the hole | |
JPS6111729B2 (en) | ||
WO1990008614A1 (en) | Drill | |
JP2005118960A (en) | End mill | |
KR20110109831A (en) | Reamer | |
EP0133366B1 (en) | Rotary cutting tool | |
JPH0740117A (en) | Drilling tool | |
JPH0523885B2 (en) | ||
JPH0532163B2 (en) | ||
CN110461515B (en) | Step drill and method for manufacturing step drill | |
JPH0615512A (en) | Drill and formation of cutting blade of drill | |
JP4401495B2 (en) | Single blade reamer | |
JPH0524218U (en) | Drilling tool | |
JP3166426B2 (en) | Drilling tool | |
JP2532586Y2 (en) | Reamer | |
JPH0632253Y2 (en) | Burnishing drill | |
JPH0146246B2 (en) | ||
JP2601362Y2 (en) | Burnishing drill | |
JPH0533202Y2 (en) | ||
WO2023188007A1 (en) | Cutting tool | |
JPS59187421A (en) | Drill reamer |