[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05203568A - Method of analyzing various material, especially liquid - Google Patents

Method of analyzing various material, especially liquid

Info

Publication number
JPH05203568A
JPH05203568A JP21327392A JP21327392A JPH05203568A JP H05203568 A JPH05203568 A JP H05203568A JP 21327392 A JP21327392 A JP 21327392A JP 21327392 A JP21327392 A JP 21327392A JP H05203568 A JPH05203568 A JP H05203568A
Authority
JP
Japan
Prior art keywords
value
intensity
deflection
calculated
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21327392A
Other languages
Japanese (ja)
Inventor
Wolfgang Nebe
ネーベ ヴォルフガング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik AG
Original Assignee
Jenoptik Jena GmbH
Carl Zeiss Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Jena GmbH, Carl Zeiss Jena GmbH filed Critical Jenoptik Jena GmbH
Publication of JPH05203568A publication Critical patent/JPH05203568A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • G01N2021/4146Differential cell arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N2021/4166Methods effecting a waveguide mode enhancement through the property being measured

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To obtain a real time high data quantity by calculating the magnitude of the deflection, scattering and permeation of a photometer average value by using the respective intensity values depending on the position in the polarizing direction of laser beam and the measuring width in the polarizing direction. CONSTITUTION: The deflection of laser beam formed in a differential cuvette is measured and respective position dependence intensity value Ai in the deflection direction are calculated as follows. With respect to the accuracy thereof, the sum total value of the respective measuring intensity values Ai is formed to calculate synthetic intensity S and S/t in respective partial intensity S/2 and t>2 is calculated as an upper limit value. Next, starting from i=1 from the intensity value Ai, an addition part sum total value(h -1) and S( K-1) are formed. Then, the calculated respective intensity value Ai and the measuring width (b) in a deflection direction of respective dimension substantializing means characterizing position dependence are used and deflection M as a luminous intensity average value can be calculated by formula I and the magnitude Wt of scattering can be calculated by formula II and the magnitude T of permeation can be calculated by formula III. In the formula III, SO is the sum total of the total intensity value Ai of a reference substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は濃度に依存する屈折率に
基づき或る示差キューベットの中で光線ビームの偏向の
測定を行なう、種々の物質、中でも液体を分析する方法
に関する。
FIELD OF THE INVENTION The present invention relates to a method for analyzing various substances, in particular liquids, in which the deflection of a light beam is measured in a differential cuvette on the basis of a concentration-dependent refractive index.

【0002】この方法は中でも、試料が示差キューベッ
トを通って流れている間における汚染物質粒子に基づく
混濁及び/又は光透過率の変化が起こるときに利用する
ことができる。
This method can be used, inter alia, when turbidity and / or changes in light transmission due to contaminant particles occur while the sample is flowing through the differential cuvette.

【0003】[0003]

【従来の技術】屈折率測定において高い測定精度を得る
ため及び外部的な障害の影響を受けないようにするため
には、好ましくは或る示差キューベットの中で光の偏向
の原理に基づき作動する装置が用いられる。この示差キ
ューベットは一方において試料で、そして他方において
参照液体で満たされる。
2. Description of the Prior Art In order to obtain a high measurement accuracy in refractive index measurement and to be free from the influence of external obstacles, it is preferable to operate on the principle of light deflection in a differential cuvette. Device is used. This differential cuvette is filled on the one hand with the sample and on the other hand with the reference liquid.

【0004】このような、光の偏向の原理に基づく屈折
計は殆どの場合に、例えば検出のために2つの光検出器
を用いるか、又は変調された光を受けるただ1個の光検
出器を用いる、特殊な光偏向の補償方法を用いる。この
ような光偏向を測定するためには、位置を分析する光検
出器がよりよく適している。特定の前提条件のもとで振
幅値を比較することによる位置の決定に加えて、透過率
の測定及びその分析信号の拡幅を利用する散乱光の測定
が可能であることが示された。
Such refractometers based on the principle of light deflection almost always use, for example, two photodetectors for detection, or only one photodetector which receives the modulated light. A special method for compensating for optical deflection is used. Position-sensitive photodetectors are better suited for measuring such light deflections. It has been shown that, in addition to determining the position by comparing the amplitude values under certain preconditions, it is possible to measure the transmittance and to measure the scattered light using the widening of its analytical signal.

【0005】デジタル的な各ピクセルステップを越える
解像が可能であるためには公知の方法では各パラメータ
について少なくとも2つの呼び出しサイクルを経過する
必要がある。結果としての多数の呼び出しサイクルは比
較的長時間を必要とし、その間に迅速に通り流れる試料
は既に変わってしまっているかもしれない。もはや実際
の測定パラメータが検出されないことから、測定誤差が
生じる。
In order to be able to resolve beyond each digital pixel step, the known method requires at least two recall cycles for each parameter. The resulting large number of paging cycles requires a relatively long time, during which the rapidly flowing sample may have already changed. A measurement error results because the actual measurement parameter is no longer detected.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、高い
解像度のために必要な測定値把握のための呼び出しサイ
クルの数を、測定されるべきパラメータの数が多い場合
でも少なく保ち、それにより、流れている試料につい
て、中でもリアルタイムの、高められた情報量を得るこ
とである。
SUMMARY OF THE INVENTION The object of the invention is to keep the number of call cycles for the measurement acquisition necessary for high resolution small, even when the number of parameters to be measured is large. , To get an increased amount of information, in real time, about the flowing sample.

【0007】[0007]

【課題を解決するための手段】上記の課題は本発明に従
い、光線ビームの、示差キューベット中で作り出された
偏向を測定することにより種々の物質、中でも液体を分
析するに当り、その偏向の方向に位置に依存する各強度
値Ai を前後に引き続く2つの段階において求め、その
際その第1段階において、その精度について、各測定さ
れた強度値Aiの合計値を作り出すことにより総合強度
Sを、またこれから各部分強度S/2及びt>2におけ
るS/tをそれぞれ上限値として求める方法により解決
される。その第2段階においては、各位置依存性強度値
i から、それぞれi=1より出発して、加算された部
分合計値S(h−1)及びS(k−1)を作り出すが、
その際、これらについての位置指定インデックスi=h
及びi=kは各従属する強度値Ah 及びAk がそれら加
算された部分合計値S(h−1)及びS(k−1)を、
それぞれの限界値S/t及びS/2を超えて高めるよう
に設定されている。上記両段階において求められた各強
度値と、及び位置依存性を特徴づける各寸法実体化手段
の、偏向の方向に測った幅bとを用いて、光度計的平均
値としての各偏向Mが
SUMMARY OF THE INVENTION The above problems are in accordance with the present invention.
Produced in a differential cuvette of a light beam
By measuring the deflection, it is possible to separate various substances, especially liquids.
Each intensity depending on the position in the direction of deflection when analyzing
Value Ai  In two successive stages,
In the first step, the accuracy of each measurement
Strength value AiTotal strength by creating the total value of
S for each partial strength S / 2 and t> 2
Solved by the method of obtaining each S / t as the upper limit
To be done. In the second stage, each position-dependent strength value
Ai  Starting from i = 1, the added parts
Create minute sums S (h-1) and S (k-1),
At this time, the position specification index i = h for these
And i = k is each dependent intensity value Ah  And Ak  But those additions
The calculated partial sum values S (h-1) and S (k-1) are
To increase beyond the respective limit values S / t and S / 2
Is set to. Each strength obtained in both stages above
Degree value and each dimension materialization means that characterizes the position dependence
, The width b measured in the direction of deflection, and a photometric average
Each deflection M as a value

【数4】 により、散乱の大きさWt [Equation 4]Due to the size of the scattering Wt  But

【数5】 により、そして透過の大きさTが[Equation 5] And the magnitude of transmission T

【数6】 により決定され、その際SOは或る基準物質についての
全ての強度値Ai の合計を表わす。
[Equation 6]Is determined by the
All intensity values Ai  Represents the total of.

【0008】[0008]

【実施例】以下、本発明を添付の図面の参照のもとに更
に詳細に説明する。図1の本発明の具体例においては、
光源1に後続してその光路O−Oの中にコンデンサレン
ズ2、入射スリット3、対物レンズ4、示差キューベッ
ト5及び反射鏡5が配置されている。示差キューベット
5を通過した光線ビームは反射鏡6によってほぼ自身の
方向へ反射され、それによって光線ビームは示差キュー
ベット5を2度通過し、そしてスリットの像は入射スリ
ット3の近傍に結像される。反射された光線ビームの中
の反射鏡7が上記スリット像の位置に設けられた位置選
択的に作動する検出器8へ向かう偏向をもたらす。9は
各信号の増幅、それらの評価及び結果の表示のために用
いられる装置を表わす。参照信号を検出するために光フ
ァイバー 10 が設けられており、このものの入口開口は
スリット3の近くに配置されており、そしてその出口開
口は、上記装置9と結合されている検出器 11 へ導かれ
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.
Will be described in detail. In the embodiment of the invention of FIG. 1,
Subsequent to the light source 1, the condenser lens is inserted in the optical path OO.
2, entrance slit 3, objective lens 4, differential cuvet
The mirror 5 and the reflecting mirror 5 are arranged. Differential cuvette
The beam of light passing through 5 is almost reflected by the reflecting mirror 6
Reflected in a direction, which causes the beam of light to have a differential cue.
Bet 5 was passed twice, and the slit image shows the incident slip.
An image is formed near the dot 3. In the reflected beam of light
A reflecting mirror 7 is provided at the position of the slit image to select a position.
It provides a deflection towards the selectively operating detector 8. 9 is
For amplification of each signal, their evaluation and display of results
Indicates a device that can be used. The optical flux is used to detect the reference signal.
Fiber 10 Is provided and the entrance opening of this one is
It is located near the slit 3 and its exit is open.
The mouth is a detector 11 associated with the device 9 above. Be guided to
ing.

【0009】図2には位置選択的に作動する検出器の各
ピクセルによって測定された強度値Ai の偏向方向の変
化を示す。位置についての寸法実体化手段として用いら
れる各ピクセルは順に番号が付されている。インデック
スi(i=1,2・・,z)がこれを表わす。なお、各
ピクセルは光線ビームの想定される偏向方向に端幅bを
有している。
FIG. 2 shows each of the detectors which operate in a position-selective manner.
Intensity value A measured by the pixeli  Change the deflection direction of
Is shown. It is used as a means to materialize the size of the position.
Each pixel shown is numbered in order. Index
The line i (i = 1, 2, ..., Z) represents this. In addition, each
The pixel has an end width b in the expected deflection direction of the light beam.
Have

【0010】図3は個々のピクセル毎の解像を示すこと
なく強度値の変化曲線1を示しているが、これは各部分
強度値Ai から合計として結像されたS=S(z)を包
含する。面積2は部分強度値S/2を、そして面積3は
t>2、すなわち例えばt=8における部分強度値S/
tを表わす。ピクセルによって代表される位置h及びk
は下記式 S(h−1)≦S/t<S(h) 及び S(k−1)≦S/2<S(k) の部分強度値S/2及びS/tに対応している。S(h
−1)、S(k−1)、S(h)及びS(k)はそれぞ
れ、1より出発してそれぞれのピクセルまでに形成され
た各部分強度値Ai の部分和である。
FIG. 3 shows the resolution for each individual pixel.
It shows the change curve 1 of the intensity value, but this is for each part
Strength value Ai  From S = S (z) imaged as a sum from
Including. Area 2 is the partial intensity value S / 2, and Area 3 is
The partial intensity value S / at t> 2, that is, at t = 8, for example.
represents t. The positions h and k represented by the pixel
Corresponds to the partial intensity values S / 2 and S / t of the following formulas S (h-1) ≤S / t <S (h) and S (k-1) ≤S / 2 <S (k). .. S (h
-1), S (k-1), S (h) and S (k) are respectively
Starting from 1 and forming up to each pixel
Each partial strength value Ai  Is the partial sum of.

【0011】屈折率の変化を特徴づける光線ビームの偏
向と、及び散乱並びに透過の大きさとの決定は前にあげ
た数式より与えられる。
The deflection of the light beam, which characterizes the change in the refractive index, and the determination of the scattering and transmission magnitudes are given by the equations given above.

【0012】[0012]

【発明の効果】本発明は、測定値把握のための呼び出し
サイクルの数を、測定されるべきパラメータの数が多い
場合でも少なく保てるのでリアルタイムの高い情報量を
得ることができる。
According to the present invention, the number of calling cycles for grasping the measured value can be kept small even when the number of parameters to be measured is large, so that a high amount of information in real time can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための装置の1具体例
の説明図
FIG. 1 is an illustration of one embodiment of an apparatus for carrying out the method of the present invention.

【図2】各ピクセルについての測定強度値の変化を示す
FIG. 2 is a diagram showing changes in measured intensity values for each pixel.

【図3】一連のピクセル列についての光強度の経過を示
す図
FIG. 3 is a diagram showing the course of light intensity for a series of pixel rows.

【符号の説明】[Explanation of symbols]

2 コンデンサレンズ 3 入射スリット 4 対物レンズ 5 示差キューベット 6 反射鏡 7 反射鏡 8 検出器 9 増幅、評価、表示ようの装置 10 光ファイバー 11 検出器 2 Condenser lens 3 Entrance slit 4 Objective lens 5 Differential cuvette 6 Reflector 7 Reflector 8 Detector 9 Amplification, evaluation and display device 10 Optical fiber 11 Detector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光線ビームの、示差キューベット中で作
り出された偏向を測定することにより種々の物質、中で
も液体を分析する方法において、 その偏向の方向に位置に依存する各強度値Ai を求め、
その際、第1段階において、その精度について、各測定
された強度値Ai の合計値を作り出すことにより総合強
度値Sを、またこれから部分強度値S/2及びt>2に
おける部分強度値S/tをそれぞれ上限値として求める
こと、 その第2段階において、各位置依存性強度値Ai から、
加算された部分合計値S(h−1)及びS(k−1)を
作り出し、その際これらについての位置指定インデック
スi=h及びi=kは各従属する強度値Ah 及びAk
それら加算された部分合計値S(h−1)及びS(k−
1)を、それぞれの限界値S/t及びS/2を超えて高
めるように設定されていること、及び 上記両段階において求められた各強度値と、及び位置依
存性を特徴づける各寸法実体化手段の、偏向の方向に測
った幅bとを用いて、光度計的平均値としての各偏向
M、散乱の大きさWt 及び透過の大きさTを決定するこ
とを特徴とする方法。
1. A light beam produced in a differential cuvette.
In various substances, by measuring the emitted deflection
Also in the method of analyzing a liquid, each intensity value A depending on the position in the direction of its deflectioni  Seeking
At that time, in the first stage, the accuracy of each measurement
Strength value Ai  By creating the total value of
The degree value S, and now also the partial intensity values S / 2 and t> 2
The partial strength value S / t in each is calculated as the upper limit value.
In the second stage, each position-dependent strength value Ai  From
The added partial total values S (h-1) and S (k-1)
Create a location index for these
I = h and i = k are dependent intensity values Ah  And Ak  But
The partial sum values S (h-1) and S (k-
1) is higher than the respective limit values S / t and S / 2.
Are set so that each intensity value obtained in both of the above steps and the position
Measure in the direction of deflection of each dimension materialization means that characterizes existence.
Each deflection as a photometric average value using
M, size of scattering Wt  And the size of the transmission T can be determined.
And a method characterized by.
【請求項2】 光度計的平均値Mを 【数1】 に従って決定する、請求項1の方法。2. A photometric average value M is given by: The method of claim 1 determined according to. 【請求項3】 散乱の大きさWt を 【数2】 に従って決定する、請求項1の方法。3. The magnitude of scattering Wt  [Equation 2]The method of claim 1 determined according to. 【請求項4】 透過の大きさTを 【数3】 に従って決定し、その際SOは或る基準物質についての
全ての強度値Ai の合計を表わす、請求項1の方法。
4. The transmission magnitude T is expressed byAccording to a certain reference substance
All intensity values Ai  The method of claim 1, which represents the sum of
JP21327392A 1991-07-19 1992-07-20 Method of analyzing various material, especially liquid Pending JPH05203568A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914123924 DE4123924C2 (en) 1991-07-19 1991-07-19 Methods for the analysis of substances, in particular liquids
DE4123924.5 1991-07-19

Publications (1)

Publication Number Publication Date
JPH05203568A true JPH05203568A (en) 1993-08-10

Family

ID=6436516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21327392A Pending JPH05203568A (en) 1991-07-19 1992-07-20 Method of analyzing various material, especially liquid

Country Status (2)

Country Link
JP (1) JPH05203568A (en)
DE (1) DE4123924C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105998A (en) * 2004-10-07 2006-04-20 Wyatt Technol Corp Upgraded differential refractometer and measuring method for measuring differential refractive index
US8445075B2 (en) 2006-03-31 2013-05-21 Applied Materials, Inc. Method to minimize wet etch undercuts and provide pore sealing of extreme low k (k<2.5) dielectrics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4329102C2 (en) * 1993-08-30 1997-10-16 Daimler Benz Ag Device for measuring the change in density of gases

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD237085A3 (en) * 1979-08-02 1986-07-02 Peter Eisenhut AUTOMATIC ALTERNATING REFRACTOMETER
US5157454A (en) * 1989-11-30 1992-10-20 Otsuka Electronics Co., Ltd. Differential refractometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105998A (en) * 2004-10-07 2006-04-20 Wyatt Technol Corp Upgraded differential refractometer and measuring method for measuring differential refractive index
US8445075B2 (en) 2006-03-31 2013-05-21 Applied Materials, Inc. Method to minimize wet etch undercuts and provide pore sealing of extreme low k (k<2.5) dielectrics

Also Published As

Publication number Publication date
DE4123924A1 (en) 1993-01-21
DE4123924C2 (en) 1995-03-09

Similar Documents

Publication Publication Date Title
US7623246B2 (en) Optical sensing devices with SPR sensors based on differential phase interrogation and measuring method using the same
US5617201A (en) Method for refractometer measuring using mathematical modelling
JP4594206B2 (en) Improved differential refractometer and measurement method for measuring refractive index differential
US5126569A (en) Apparatus for measuring optical properties of materials
US4167335A (en) Apparatus and method for linearizing a volume loading measurement utilizing particle scattering
US4266874A (en) Apparatus and method for measuring the size of fibers
CN106092967B (en) A kind of detection method and device of bio-molecular interaction
JP2001504592A (en) Distance measuring method and distance measuring device
JPH0579970A (en) Particle analyzer
JPH04157339A (en) Particle diameter and velocity measuring instrument
JPH0224535A (en) Particle analyzing apparatus
JPH05203568A (en) Method of analyzing various material, especially liquid
CN104237169B (en) Detection method of SPR detection system based on external field modulation
JPH0228541A (en) Optical concentration detector
JP2636051B2 (en) Particle measurement method and device
JP3144687B2 (en) Particle measurement device
JP2000046723A (en) Method for inspecting function of platelet
JPS6319560A (en) Method for discriminating prozone in immunoreaction
KR100205532B1 (en) Moisture measuring apparatus
CN109298179A (en) A kind of immunochromatography detection system and its Background Recognition method
JP2821200B2 (en) Particle measurement method and device
RU2281479C1 (en) Fluorometer-turbidimeter
SU593122A1 (en) Method of measuring refractive index of substance
SU913171A1 (en) Particle dispersive analysis method
JPH0495859A (en) Optically inspecting apparatus for printed board