[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05173206A - Oriented non-linear optical element - Google Patents

Oriented non-linear optical element

Info

Publication number
JPH05173206A
JPH05173206A JP35445891A JP35445891A JPH05173206A JP H05173206 A JPH05173206 A JP H05173206A JP 35445891 A JP35445891 A JP 35445891A JP 35445891 A JP35445891 A JP 35445891A JP H05173206 A JPH05173206 A JP H05173206A
Authority
JP
Japan
Prior art keywords
carrier
carboxylic acid
optical element
linear optical
group represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35445891A
Other languages
Japanese (ja)
Inventor
Yutaka Takeya
竹谷  豊
Naomichi Okamoto
尚道 岡本
Okihiro Sugihara
興浩 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP35445891A priority Critical patent/JPH05173206A/en
Publication of JPH05173206A publication Critical patent/JPH05173206A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide film-like non-linear optical material of a carboxylic acid derivative in which dipole orientation in a polymer carrier is uniformed by means of corona discharge by forming the material from the carboxylic acid derivative expressed with a specified formula. CONSTITUTION:A compound, being capable of manifesting non-linear optical characteristic, is contained in a film-like carrier, and the compound is contained so that the orientation of dipole moment is arranged in a direction of film thickness in the film-like carrier. The compound is a carboxylic acid derivative expressed by a formula. In a formula I, (n) represents 0, 1, or 2, Ar possesses an aromatic group having carbon number of 5-14, R1 represents a functional group selected out of an amino group expressed by R2R3N- and its halogenated hydrogen salt, an ether group and the like expressed by R4-O-, and B represents a functional group of carboxylic acid, amide, and ester expressed by -OH-, -OR13, -NHR14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報伝送材料、光記
録技術分野における短波長変換、パラメトリック発振、
屈折率変化らを主とした非線形光学素子に関するもので
ある。
The present invention relates to an optical information transmission material, short wavelength conversion in the optical recording technical field, parametric oscillation,
The present invention relates to a non-linear optical element mainly including changes in refractive index.

【0002】[0002]

【従来の技術】有機材料の非線形光学特性が既存の無機
化合物に比べて大きいことが近年知られてきた。非線形
光学効果とは、例えばレーザ光のような強い光電場を物
質に印加した時、その物質の電気分極応答が印加電界の
大きさの一次に比例する関係から、その大きさの二次以
上の高次の効果があらわれることを示す。
2. Description of the Related Art Recently, it has been known that the nonlinear optical characteristics of organic materials are greater than those of existing inorganic compounds. The non-linear optical effect means that when a strong photoelectric field such as laser light is applied to a substance, the electric polarization response of the substance is proportional to the magnitude of the applied electric field. It shows that higher-order effects appear.

【0003】二次の非線形光学には、入射光の波長を1
/2の波長に変換する第二高調波発生、1種類の波長の
光を2種類の光に変換させるパラメトリック発振、逆に
2種類の波長の光から1種類の波長の光を発現させる二
次光混合などがある。
For second-order nonlinear optics, the wavelength of the incident light is 1
Second harmonic generation that converts to / 2 wavelength, parametric oscillation that converts light of one kind of wavelength into two kinds of light, conversely secondary that expresses light of one kind of wavelength from light of two kinds of wavelength There is light mixing.

【0004】これらの諸特性から、大きな技術発展が期
待される光データ/光情報処理や、光通信に用いられる
光スイッチ、光メモリー、あるいは、光情報記憶素子と
して使用される可能性が高い。特に近年光記録分野で
は、記録符号の読み取り、あるいは書き込みの波長の短
波長化が、高密度の記録を行う上で強く要望されるよう
になってきた。操作性、簡便性の観点から半導体レーザ
が主として用いられてきているが、既存の半導体材料の
組合せでは、一般に630nmより短い波長の発光を生
起することは困難であると言われている。この観点か
ら、ここに述べた二次の非線形光学特性を利用して、第
二高調波発生により、紫外領域に近い青色発光の材料が
詳しく検討され、ニオブ酸リチウム、KTP、BBOに
代表される無機材料での応用が積極的に研究されてい
る。しかしながら、このような状態での波長変換の機作
は、結晶の複屈折を利用した位相整合条件を満足した時
にのみ、活性が高くなるという現象であり、この条件を
揃えるための、空間配置の決定など、非常に煩雑な操作
が必要であり、かつ外部温度、湿度により複屈折の挙動
が変化することも多く、実用上問題が多い。
Due to these characteristics, there is a high possibility that it will be used as an optical data / optical information processing, which is expected to undergo significant technological development, an optical switch used for optical communication, an optical memory, or an optical information storage element. Particularly in recent years in the optical recording field, there has been a strong demand for shortening the wavelength of reading or writing the recording code in order to perform high density recording. Although semiconductor lasers have been mainly used from the viewpoints of operability and simplicity, it is generally said that it is difficult to cause emission of light having a wavelength shorter than 630 nm with existing semiconductor material combinations. From this point of view, by utilizing the second-order nonlinear optical characteristic described here, blue emission materials close to the ultraviolet region due to the generation of the second harmonic are studied in detail, and are typified by lithium niobate, KTP, and BBO. Applications in inorganic materials are being actively researched. However, the mechanism of wavelength conversion in such a state is that the activity becomes high only when the phase matching condition using the birefringence of the crystal is satisfied, and the spatial arrangement for aligning this condition is Very complicated operations such as determination are required, and the behavior of birefringence often changes depending on the external temperature and humidity, which is a practical problem.

【0005】本発明で問題とする二次の非線形光学特性
は3階のテンソルであるので、分子または結晶で対称中
心が存在すると顕在化しない。この理由のために、有機
物の分子レベルでは大きな非線形光学効果を発現する構
造を有している場合でも、実用形態として第2高調波発
生を用いるために結晶、あるいは、固体状にしたとき
に、固体化の段階で反転対称性の構造が優先的に形成さ
れるために光学素子として非線形光学効果が発現されな
いという問題が発生することが多かった。
Since the second-order nonlinear optical property which is a problem in the present invention is a tensor of the third order, it does not become apparent when a symmetry center exists in a molecule or a crystal. For this reason, even if the organic substance has a structure that exhibits a large nonlinear optical effect at the molecular level, when it is made into a crystal or solid state to use the second harmonic generation as a practical form, In many cases, a non-linear optical effect is not exhibited as an optical element because an inversion symmetric structure is preferentially formed at the solidification stage.

【0006】一般に第2高調波発生能は、分子内での分
極が大きくかつその分極の寄与が大きくなる長い共役系
ほど大きくなるが、このように分極を増大させると固体
化の際に分子の配向がその分極を打ち消し合うように空
間的に安定化し、結果として二次の非線形光学特性が発
現しない。かかる観点から、分子1ケの双極子モーメン
トの活性を固体状の集合体でも残存させるために各種の
工夫がなされているが、この高次の結晶構造の配向を人
為的に制御することは難しく、非線形光学材料として過
去に検討された特殊な材料に限定されるのが実情であ
る。
Generally, the second harmonic generation ability becomes larger in a long conjugated system in which the polarization in the molecule is large and the contribution of the polarization is large. However, if the polarization is increased in this way, the molecule becomes solid during solidification. The orientations are spatially stabilized so that their polarizations cancel each other out, and as a result, second-order nonlinear optical characteristics do not appear. From this point of view, various efforts have been made to keep the activity of the dipole moment of one molecule in the solid aggregate, but it is difficult to artificially control the orientation of this higher-order crystal structure. The reality is that the nonlinear optical materials are limited to the special materials studied in the past.

【0007】特に、分極の大きな働きが期待されるカル
ボン酸は、周知の通り2分子のカルボン酸同士が水素結
合で安定化することが知られており、この配置をとるた
めにカルボン酸類はそのままでは二次の非線形光学活性
になることはなく、高度の分極性を利用した機能素子と
して用いるための大きな障害になることが多かった。こ
のような問題点を克服するために鋭意検討を進めた結
果、電界を印加することでカルボン酸を主成分とする非
線形光学材料分子の配向を制御しうることが認められ、
本発明に到達したものである。
In particular, it is known that carboxylic acids, which are expected to have a large function of polarization, are stabilized by hydrogen bonds between two molecules of carboxylic acids, as is well known. However, the second-order nonlinear optical activity did not occur, and it often became a major obstacle for using it as a functional element utilizing a high degree of polarizability. As a result of intensive studies to overcome such problems, it was confirmed that the orientation of the nonlinear optical material molecule containing carboxylic acid as a main component can be controlled by applying an electric field.
The present invention has been reached.

【0008】即ち本発明は、非線形光学特性を有するカ
ルボン酸の双極子モーメントの方向が、該材料を担持す
る担体の膜厚方向に配向されていることを特徴とする配
向非線形光学素子に関するものである。
That is, the present invention relates to an oriented non-linear optical element characterized in that the dipole moment of a carboxylic acid having non-linear optical characteristics is oriented in the film thickness direction of a carrier carrying the material. is there.

【0009】ここで述べる非線形光学特性を有するカル
ボン酸誘導体としては、下記一般式(1)
The carboxylic acid derivative having nonlinear optical characteristics described here is represented by the following general formula (1)

【0010】[0010]

【化2】 R1 ―Ar―(CH=CH)―CH=C(CN)―COB (1)Embedded image R 1 —Ar— (CH═CH) n —CH═C (CN) —COB (1)

【0011】[但しnは、0,1または2を表す。Ar
は炭素数5〜14の芳香族基を表す。R1 は、R2 3
N―で表されるアミノ基、及び、そのハロゲン化水素
塩、R4 ―O―で表されるエーテル基、R5 ―S―で表
されるチオエーテル基、シアノ基、―COOR6 または
―OCOR7 で表されるエステル基、―CONR
8 9 、―NR10COR11で表されるアミド基、―R12
で表される炭化水素基(R2 ―R12は、同一または異な
る炭素数1〜8の1価の炭化水素基、または水素原子を
表す)から選ばれる官能基であり、Bは、―OH、―O
13、―NHR14で表されるカルボン酸並びに、アミ
ド、エステルの官能基である。(R13、R14はそれぞ
れ、同一または異なり、炭素数1から炭素数12の1価
の炭化水素基を表す)]で表されるカルボン酸誘導体で
ある。
[However, n represents 0, 1 or 2. Ar
Represents an aromatic group having 5 to 14 carbon atoms. R 1 is R 2 R 3
An amino group represented by N-, a hydrogen halide thereof, an ether group represented by R 4 -O-, a thioether group represented by R 5 -S-, a cyano group, -COOR 6 or -OCOR Ester group represented by 7 , —CONR
8 R 9 , an amide group represented by —NR 10 COR 11 , and —R 12
Is a functional group selected from the hydrocarbon groups represented by (R 2 to R 12 are the same or different, monovalent hydrocarbon groups having 1 to 8 carbon atoms, or hydrogen atoms), and B is —OH. , -O
R 13 and —NHR 14 are functional groups of carboxylic acid, amide and ester. (R 13 and R 14 are the same or different and each represents a monovalent hydrocarbon group having 1 to 12 carbon atoms)].

【0012】かかる材料の合成については、例えば、特
開平1―245230号公報(平成1年9月29日公
開)に示されるように、芳香族アルデヒドと活性メチレ
ン化合物との反応で得られるα―シアノアクリル酸化合
物が該当する。カルボン酸誘導体は、酸の水素結合のた
めに結晶化する際に対称に配置した構造となるために、
一般的に結晶化されたものは二次の非線形光学特性は発
現しない。従って、この酸を単純に以下に述べるポリマ
ー担持体に溶解、分子分散させるだけでは、二次の非線
形光学特性を期待できない。
Regarding the synthesis of such a material, for example, as shown in JP-A-1-245230 (published on September 29, 1991), α-obtained by the reaction of an aromatic aldehyde with an active methylene compound is described. A cyanoacrylic acid compound is applicable. The carboxylic acid derivative has a symmetrically arranged structure during crystallization due to hydrogen bonding of an acid,
Generally, the crystallized one does not exhibit the second-order nonlinear optical property. Therefore, the secondary nonlinear optical characteristics cannot be expected simply by dissolving and molecularly dispersing the acid in the polymer carrier described below.

【0013】これらのカルボン酸誘導体類は、一般に高
分子材料に溶解、または分散される。このカルボン酸を
担持する材料としては、そのガラス転移点が40℃以上
200℃以下であることが好ましい。
These carboxylic acid derivatives are generally dissolved or dispersed in a polymer material. The material supporting the carboxylic acid preferably has a glass transition point of 40 ° C. or higher and 200 ° C. or lower.

【0014】かかる温度よりも低いガラス転移点のポリ
マーを用いると、室温でもポリマーが動きやすいため、
溶解されたカルボン酸誘導体も動きやすく、一旦配向さ
れた分子の配向安定性が悪く時間と共に乱雑な配向に戻
り、非線形光学現象の極端な減衰が生起する。一方、2
00℃以上のガラス転移点を有するポリマーを用いる
と、カルボン酸誘導体を溶解、分散させるときに高温度
で実施することが必要となり、その際非線形光学特性を
発現するカルボン酸材料の一部が、分解、科学変性を発
生することがあり、本来的に材料の変質の発生により、
非線形光学特性が顕在化しないことが多く、好ましくな
い。
When a polymer having a glass transition point lower than this temperature is used, the polymer easily moves even at room temperature.
The dissolved carboxylic acid derivative is also easy to move, the orientation stability of the once oriented molecule is poor, and the orientation returns to a disordered orientation with time, causing an extreme attenuation of the nonlinear optical phenomenon. On the other hand, 2
When a polymer having a glass transition point of 00 ° C. or higher is used, it is necessary to dissolve and disperse the carboxylic acid derivative at a high temperature, and at that time, a part of the carboxylic acid material exhibiting nonlinear optical characteristics is Decomposition and chemical modification may occur.
It is not preferable because the non-linear optical characteristics often do not become apparent.

【0015】従って担体として用いられるポリマーは上
記のような熱的物性を有すると共に、担体の機能とし
て、前記カルボン酸誘導体を均一に溶解、分子レベルで
分散させることが可能であることが必須であり、かかる
目的のためには、カルボン酸誘導体を溶解する溶媒にポ
リマーも均一溶解することが好ましい。かかる、担持体
材料としては、ポリメチルメタクリレート、ポリメチル
アクリレート、ポリブチルメタクリレート、ポリブチル
アクリレート、らのポリメタクリレート、ポリアクリレ
ート類、ポリスチレン、ポリスチレン―マレイン酸無水
物共重合体、ポリアルファメチルスチレン等のポリスチ
レン誘導体類、ポリ弗化ビニリデン、ポリ塩化ビニリデ
ン、等のハロゲン含有ポリオレフィン類等を挙げること
ができるが、透明性、製膜安定性の観点から、ポリメチ
ルメタクリレート、ポリメチルアクリレート、ポリブチ
ルメタクリレート、ポリブチルアクリレート、らのポリ
メタクリレート、ポリアクリレート類が好ましく用いら
れる。
Therefore, it is essential that the polymer used as the carrier has the above-mentioned thermal properties and, as a function of the carrier, is capable of uniformly dissolving the carboxylic acid derivative and dispersing it at the molecular level. For such purpose, it is preferable that the polymer is uniformly dissolved in the solvent in which the carboxylic acid derivative is dissolved. Such carrier materials include polymethylmethacrylate, polymethylacrylate, polybutylmethacrylate, polybutylacrylate, polymethacrylates of these, polyacrylates, polystyrene, polystyrene-maleic anhydride copolymers, polyalphamethylstyrene, etc. Examples thereof include halogen-containing polyolefins such as polystyrene derivatives, polyvinylidene fluoride, polyvinylidene chloride, and the like. From the viewpoint of transparency and film-forming stability, polymethyl methacrylate, polymethyl acrylate, polybutyl methacrylate, etc. , Polybutyl acrylate, other polymethacrylates and polyacrylates are preferably used.

【0016】非線形光学活性のカルボン酸誘導体の双極
子モーメントの方向をポリマー担持体の膜厚方向に配向
する方法としては、直流電場の印加が好ましいが、この
高電場の印加方法としては、ポリマー担持体が有効に帯
電すればよく、各種の方法が考えられるが、コロナ放電
による方法を用いると容易に達成することが可能とな
る。コロナ放電とは、図1に示した通り平板状電極15
と針状電極12との間に、直流電源11により高電圧、
例えば1KV以上、好ましくは5〜12KVの電圧を印
加して、コロナ放電を発生させ、該ポリマー担持体13
を帯電させるものである。
As a method for orienting the direction of the dipole moment of the non-linear optically active carboxylic acid derivative in the film thickness direction of the polymer carrier, it is preferable to apply a DC electric field. Various methods are conceivable as long as the body is effectively charged, and the method using corona discharge can be easily achieved. Corona discharge means the flat plate electrode 15 as shown in FIG.
Between the needle electrode 12 and the needle electrode 12, a high voltage by the DC power supply 11,
For example, a voltage of 1 KV or more, preferably 5 to 12 KV is applied to generate corona discharge, and the polymer carrier 13
Is to be charged.

【0017】この時の現象としては、空気中の分子がイ
オン化して、平板電極の方向にイオンが飛翔し、結果的
にポリマー担持体にイオンが多数蓄積され、上部電極と
ポリマー担持体表面とが電位が等しくなるまで放電が継
続することになる。この間、担持体表面13と平板電極
15の間には、印加した電位差が生じており、担持体中
の非線形光学材料のカルボン酸誘導体は電場と平行にそ
の双極子モーメントが保持されることになる。即ち、ポ
リマー担持体膜厚方向に、配向が揃う形になる。
As a phenomenon at this time, the molecules in the air are ionized, and the ions fly toward the plate electrode, so that a large number of ions are accumulated on the polymer carrier, and the upper electrode and the surface of the polymer carrier are accumulated. The discharge will continue until the potentials become equal. During this time, an applied potential difference is generated between the carrier surface 13 and the plate electrode 15, and the carboxylic acid derivative of the nonlinear optical material in the carrier retains its dipole moment parallel to the electric field. .. That is, the orientation is uniform in the film thickness direction of the polymer carrier.

【0018】このようなポリマーを担体として、コロナ
放電により有機分子の配向を揃え、対称中心を崩して第
二高調波発生を行っている例として、デスパースレッド
―1(Disperse Red 1)と呼ばれるアゾ系色素での例、
p―ニトロアニリンの例がある。それらは例えば、雑誌
オプトロニクス(1990年)、3号、128頁に記載
の、妹尾巌らの「高分子非線形光学材料」、あるいは、
雑誌O PLUS E(1990年)12月号、129頁に記
載の佐々木啓介の「ポリマーの光導波路への応用」等に
詳細に解説されている。
As an example in which the orientation of organic molecules is made uniform by corona discharge by using such a polymer as a carrier to break the center of symmetry to generate the second harmonic, an azo called Disperse Red 1 is used. Examples of system dyes,
There is an example of p-nitroaniline. They are, for example, "Polymer Nonlinear Optical Material" by Iwao Senoo, described in Optronics (1990), No. 3, p. 128, or
It is explained in detail in Keisuke Sasaki's “Application of Polymers to Optical Waveguides” and the like, December issue of O PLUS E (1990), p.

【0019】このコロナ放電においては、一方の極は、
必ずしも針状である必要性がなく、線状でもここに示し
た目的に合致するもので、むしろポリマー担持体に均等
な電場の印加が効果的に発現するために、より望ましい
場合もある。
In this corona discharge, one pole is
It is not always necessary to have a needle shape, and a linear shape is also suitable for the purpose shown here, and in some cases it is more desirable because an even electric field is effectively applied to the polymer carrier.

【0020】分子の配向の確認は、上記コロナ放電した
ポリマー担持体を回転させながら、入射光の偏光の方向
を変化させて、二次の高調波を観測することでも確認で
きるし、あるいは、電子スペクトルの測定を偏光の方向
依存性を測定することで、確認できる。
The orientation of the molecules can be confirmed by rotating the corona-discharged polymer carrier while changing the polarization direction of the incident light and observing the second harmonic. The spectrum can be confirmed by measuring the polarization direction dependence.

【0021】以下、実施例により本発明を詳述する。The present invention will be described in detail below with reference to examples.

【0022】[0022]

【実施例1及び比較例1】非線形光学特性を有するカル
ボン酸として、4―ジメチルアミノフェニル―2―シア
ノペンタジエン酸塩酸塩を、ポリメチルメタクリレート
(ジェネラルサイエンス社)(相対重量比2.5:10
0)と共に、メチルイソブチルケトンに溶解させ、これ
を1分間3000回転のスピンコーターで製膜し、膜厚
1ミクロンの薄膜を、パイレックスガラス基板上に作成
した。このガラス基板を、図1に示すような平板電極の
上に置き、片側の線状電極の下8mmのところに静置して
95℃に加熱しながら、10KVの電界を印加した。こ
の状態での電界印加時間は、25分でコロナ放電を行っ
た。冷却後、このガラス基板を回転板に固定し、図2に
示すような評価装置で入射角度を変化しながら、Nd―
YAGレーザの1.06μの波長の基本光を入射して、
ポリマー担持体裏側から発光する波長0.53μの第二
高調波を測定した。この時、基本波の入射角度を回転さ
せながら変化した時の、第二高調波発生の入射角度の依
存性を測定したところ、図3に示すように、入射角度が
大きくなるにつれて、その強度は増大し、90°での第
二高調波発生が最大である傾向を示した。このことか
ら、明らかに非線形光学材料の双極子の方向が、膜面に
垂直に配列されていることが確認できた。
Example 1 and Comparative Example 1 As a carboxylic acid having nonlinear optical characteristics, 4-dimethylaminophenyl-2-cyanopentadienoic acid hydrochloride was added to polymethylmethacrylate (General Science Co.) (relative weight ratio 2.5: 10).
0) and dissolved in methyl isobutyl ketone, and this was formed into a film by a spin coater at 3000 rpm for 1 minute to form a thin film having a film thickness of 1 micron on a Pyrex glass substrate. This glass substrate was placed on a flat plate electrode as shown in FIG. 1 and allowed to stand 8 mm below the linear electrode on one side and heated to 95 ° C. while applying an electric field of 10 KV. The electric field application time in this state was 25 minutes, and corona discharge was performed. After cooling, the glass substrate was fixed to a rotating plate, and the evaluation device as shown in FIG.
Injecting the basic light of the YAG laser with a wavelength of 1.06μ,
The second harmonic having a wavelength of 0.53 μm emitted from the back side of the polymer carrier was measured. At this time, when the incident angle dependence of the second harmonic generation when the incident angle of the fundamental wave is changed while rotating is measured, as shown in FIG. 3, the intensity increases as the incident angle increases. It tended to increase and the second harmonic generation at 90 ° was greatest. From this, it was confirmed that the dipole direction of the nonlinear optical material was clearly arranged perpendicular to the film surface.

【0023】この第二高調波発生強度の大きさは5pm/
Vであった。
The magnitude of this second harmonic generation intensity is 5 pm /
It was V.

【0024】比較例として、ディスパース・レッド―1
を対ポリマー重量比5:100として上記と同様に行っ
たところ、第二高調波発生強度は6pm/Vであった。
As a comparative example, Disperse Red-1
Was carried out in the same manner as above with the weight ratio of polymer to 5: 100, and the second harmonic generation intensity was 6 pm / V.

【0025】[0025]

【実施例2〜6及び比較例2】実施例1と同様の実験を
行い、いずれも第二高調波の発生が観測され、配向が確
認された。
Examples 2 to 6 and Comparative Example 2 The same experiment as in Example 1 was conducted, and in all cases, the generation of the second harmonic was observed and the orientation was confirmed.

【0026】[0026]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】コロナ放電の概略を示す。FIG. 1 shows an outline of corona discharge.

【図2】測定評価装置の概略を示す。FIG. 2 shows an outline of a measurement / evaluation apparatus.

【図3】ポリマーフイルムの第二高調波発生強度の入射
角度依存性を示す。
FIG. 3 shows the incident angle dependence of the second harmonic generation intensity of the polymer film.

【符号の説明】[Explanation of symbols]

11 高電圧電源 12 ワイアー 13 ポリマー 14 基板 15 平板電極 21 入射光源 22 ポリマー基板 23 回転ステージ 24 SHG検知器 11 High Voltage Power Supply 12 Wire 13 Polymer 14 Substrate 15 Plate Electrode 21 Incident Light Source 22 Polymer Substrate 23 Rotating Stage 24 SHG Detector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学特性を発現しうる化合物が膜
状担体中に含有されてなり、かつ当該化合物が該膜状担
体中において双極子モーメントの方向が膜厚方向に配向
されるように含有されている配向非線形光学素子におい
て、当該化合物が下記一般式(1) 【化1】 R1 ―Ar―(CH=CH)―CH=C(CN)―COB (1) [但しnは、0,1または2を表す。Arは炭素数5〜
14の芳香族基を表す。R1 は、R2 3 N―で表され
るアミノ基、及び、そのハロゲン化水素塩、R4 ―O―
で表されるエーテル基、R5 ―S―で表されるチオエー
テル基、シアノ基、―COOR6 または―OCOR7
表されるエステル基、―CONR8 9 、―NR10CO
11で表されるアミド基、―R12で表される炭化水素基
(R2 ―R12は、同一または異なる炭素数1〜8の1価
の炭化水素基、または水素原子を表す)から選ばれる官
能基であり、Bは、―OH、―OR13、―NHR14で表
されるカルボン酸並びに、アミド、エステルの官能基で
ある。(R13、R14はそれぞれ、同一または異なり、炭
素数1から炭素数12の1価の炭化水素基を表す)]で
表されるカルボン酸誘導体であることを特徴とする配向
非線形光学素子。
1. A compound capable of exhibiting nonlinear optical characteristics is contained in a film carrier, and the compound is contained in the film carrier so that the dipole moment is oriented in the film thickness direction. In the oriented non-linear optical element described above, the compound is represented by the following general formula (1): embedded image R 1 —Ar— (CH═CH) n —CH═C (CN) —COB (1) [where n is Represents 0, 1 or 2. Ar has 5 to 5 carbon atoms
Represents 14 aromatic groups. R 1 is an amino group represented by R 2 R 3 N—, a hydrogen halide thereof, R 4 —O—
An ether group represented by, a thioether group represented by R 5 —S—, a cyano group, an ester group represented by —COOR 6 or —OCOR 7 , —CONR 8 R 9 , —NR 10 CO
From an amide group represented by R 11 and a hydrocarbon group represented by —R 12 (R 2 —R 12 represent the same or different monovalent hydrocarbon groups having 1 to 8 carbon atoms, or a hydrogen atom) B is a functional group of carboxylic acid represented by —OH, —OR 13 and —NHR 14 , as well as an amide and an ester. (R 13 and R 14 are the same or different and each represents a monovalent hydrocarbon group having 1 to 12 carbon atoms)], an oriented non-linear optical element.
【請求項2】 前記カルボン酸誘導体を分散する担体
が、40℃以上200℃以下のガラス転移点を有する溶
媒可溶性高分子材料であることを特徴とする請求項1の
非線形光学素子。
2. The non-linear optical element according to claim 1, wherein the carrier in which the carboxylic acid derivative is dispersed is a solvent-soluble polymer material having a glass transition point of 40 ° C. or higher and 200 ° C. or lower.
【請求項3】 上記カルボン酸誘導体を担持する担体の
膜厚方向に双極子モーメントを配向するに際し、担体を
40℃以上200℃以下の温度に維持し、膜厚方向に直
流電界を印加することを特徴とする配向非線形光学素子
の製造方法。
3. When the dipole moment is oriented in the film thickness direction of the carrier carrying the carboxylic acid derivative, the carrier is maintained at a temperature of 40 ° C. or higher and 200 ° C. or lower and a DC electric field is applied in the film thickness direction. And a method for manufacturing an oriented nonlinear optical element.
【請求項4】 上記直流電界の印加が、電極と電極との
間に上記カルボン酸誘導体を含有する担体を置き、両電
極間にコロナ放電を生じさせ、一方の電極に面した担体
側を帯電させることを特徴とする請求項3の非線形光学
素子の製造方法。
4. The direct current electric field is applied to place a carrier containing the carboxylic acid derivative between electrodes to generate corona discharge between both electrodes, and charge the side of the carrier facing one electrode. The method for manufacturing a non-linear optical element according to claim 3, wherein
JP35445891A 1991-12-20 1991-12-20 Oriented non-linear optical element Pending JPH05173206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35445891A JPH05173206A (en) 1991-12-20 1991-12-20 Oriented non-linear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35445891A JPH05173206A (en) 1991-12-20 1991-12-20 Oriented non-linear optical element

Publications (1)

Publication Number Publication Date
JPH05173206A true JPH05173206A (en) 1993-07-13

Family

ID=18437697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35445891A Pending JPH05173206A (en) 1991-12-20 1991-12-20 Oriented non-linear optical element

Country Status (1)

Country Link
JP (1) JPH05173206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800659B2 (en) 2000-04-13 2004-10-05 Hsc Research And Development Limited Partnership Compounds for modulating cell proliferation
US7598419B2 (en) 2004-03-26 2009-10-06 Hsc Research And Development Limited Partnership Compounds for modulating cell proliferation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800659B2 (en) 2000-04-13 2004-10-05 Hsc Research And Development Limited Partnership Compounds for modulating cell proliferation
US7012095B2 (en) 2000-04-13 2006-03-14 Hsc Research And Development Limited Compounds for modulating cell proliferation
US7598419B2 (en) 2004-03-26 2009-10-06 Hsc Research And Development Limited Partnership Compounds for modulating cell proliferation

Similar Documents

Publication Publication Date Title
EP0422724A2 (en) An improved nonlinear optical device
JPS6296930A (en) Non-linear optical material and apparatus
JPS61296332A (en) High performance non-linear type optical substrate
Fiorini et al. Photoinduced non centrosymmetry in azo-dye polymers
JPH03213822A (en) Polarized light nonsensitive linear waveguide photoelectric phase modulator
JPH05173206A (en) Oriented non-linear optical element
Che et al. Fabrication of surface relief grating with second-order nonlinearity using urethane-urea copolymer films
Vannikov et al. Generation of the second harmonic of laser radiation in noncentrosymmetrical polymeric systems
JPH05241213A (en) Oriented nonlinear optical element
Matsuoka et al. Second-order nonlinearity and optical image storage in phenyl-silica hybrid films doped with azo-dye chromophore using optical poling technique
JPH05173211A (en) Wave-guiding channel element
WO1991008510A2 (en) Organic optical elements and nonlinear optical devices
Seniutinas et al. Orientational relaxation of three different dendrimers in polycarbonate matrix investigated by optical poling
JPH06308551A (en) Oriented nonlinear optical element
US5015417A (en) Nonlinear optical devices for derivatives of stilbene and diphenylacetylene
JP2007057941A (en) Organic nonlinear optical material and nonlinear optical element using the same
Li et al. Effects of substrate micropatterning on nonlinear optical properties of polar self-assembling films
JPH06308552A (en) Aromatic polymer type nonlinear optical element
JPH06186599A (en) Nonlinear optical element having orientation stability
Park et al. Photo-isomerization effects on orientations of azobenzene-labeled polymer films measured by second harmonic generation
JPH0695186A (en) Nonlinear optical element having durability
JPH08122836A (en) Pigment for nonlinear optical material and nonlinear optical material containing the pigment
JPH06347843A (en) Method of polarization and orientation containing nonlinear optical chromophore
JPH03209225A (en) nonlinear optical element
Park et al. Stability of Electric Field Induced Ordering in a UV-Curable Polymer System