JPH0516031A - Manufacture of sheathed ceramic tool of high toughess and durability - Google Patents
Manufacture of sheathed ceramic tool of high toughess and durabilityInfo
- Publication number
- JPH0516031A JPH0516031A JP3307214A JP30721491A JPH0516031A JP H0516031 A JPH0516031 A JP H0516031A JP 3307214 A JP3307214 A JP 3307214A JP 30721491 A JP30721491 A JP 30721491A JP H0516031 A JPH0516031 A JP H0516031A
- Authority
- JP
- Japan
- Prior art keywords
- zro
- layer
- base material
- alon
- tic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、Al2O3−ZrO2系
セラミック焼結体を基材とする高靱性高耐久性セラミッ
ク工具の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high toughness and high durability ceramic tool based on an Al 2 O 3 --ZrO 2 system ceramic sintered body.
【0002】[0002]
【従来の技術】従来のAl2O3系およびAl2O3−Ti
C系セラミック工具は、高温における硬さが大きいとい
う利点をもっているが、反面、強度又は靱性については
必ずしも良好ではないため、荒加工する場合に適さず、
また最近の工作機械のNC化が進んでいる状況下では、
工具としての信頼性が乏しいという欠点がある。 2. Description of the Related Art Conventional Al 2 O 3 and Al 2 O 3 --Ti
C-based ceramic tools have the advantage of high hardness at high temperatures, but on the other hand, they are not necessarily good in strength or toughness, so they are not suitable for rough machining,
In addition, in the situation where the recent shift to NC in machine tools is progressing,
There is a drawback that the reliability as a tool is poor.
【0003】これに対して、ZrO2系セラミック工具
は、特開昭55−140762号に開示されるように、
その基材としてのZrO2系セラミックが、抗折力10
0kg/mm2以上、靱性(Kic)30kg/mm3/2以
上を示すように、超硬合金に匹敵する優れた諸特性を備
えており、このような高強度、高靱性のZrO2系セラ
ミックは、主成分としてのZrO2にCaO、MgO、
Y2O3等の酸化物を添加して、高温における正方晶や立
方晶などの高温安定相を常温付近においても部分的に安
定化させることにより得られるものである。On the other hand, a ZrO 2 type ceramic tool is disclosed in Japanese Patent Application Laid-Open No. 55-140762.
ZrO 2 -based ceramic as the base material has a bending strength of 10
As it shows 0 kg / mm 2 or more and toughness (Kic) 30 kg / mm 3/2 or more, it has excellent characteristics comparable to cemented carbide, and has high strength and high toughness ZrO 2 based ceramics. Is CaO, MgO, ZrO 2 as the main component,
It is obtained by adding an oxide such as Y 2 O 3 to partially stabilize a high temperature stable phase such as a tetragonal crystal or a cubic crystal at high temperature even at around room temperature.
【0004】また、Al2O3−ZrO2系セラミックを
開示する特開昭52−86413号、特開昭54−60
308号および特開昭54−61215号公報によれ
ば、Al2O3マトリックス中にZrO2を分散させるこ
とにより、かなり高い靱性を発揮することが知られてい
る。Further, JP-A-52-86413 and JP-A-54-60 which disclose Al 2 O 3 -ZrO 2 -based ceramics.
From 308 and JP-A-54-61215, it is known that by dispersing ZrO 2 in an Al 2 O 3 matrix, considerably high toughness is exhibited.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、かかる
従来のZrO2系セラミックおよびAl2O3−ZrO2系
セラミックを切削工具材として用いた場合には、Al2
O3系セラミックやAl2O3−TiC系セラミックに比
べて強度および靱性の点で優れているために、荒加工す
るときには好適であるが、一方、例えば強靱で切削困難
なダクタイル鋳鉄や鋼材を被切削材とするときには、フ
ランク摩耗、クレータ摩耗ともに顕著となる。このため
従来のZrO2系セラミックやAl2O3−ZrO2系セラ
ミックからなる工具は、対摩耗性が良好でなく切削工具
としての十分な機能を発揮することができなかった。さ
らにこれらの難削材を高速で切削するためには、高度な
耐衝撃性がその耐久性にとって不可欠である。However, when such conventional ZrO 2 -based ceramics and Al 2 O 3 -ZrO 2 -based ceramics are used as cutting tool materials, Al 2
Since it is superior in strength and toughness to O 3 -based ceramics and Al 2 O 3 -TiC-based ceramics, it is suitable for rough machining, but on the other hand, for example, ductile cast iron and steel materials that are tough and difficult to cut are used. When the material to be cut is used, both flank wear and crater wear become remarkable. For this reason, conventional tools made of ZrO 2 -based ceramics or Al 2 O 3 —ZrO 2 -based ceramics are not good in wear resistance and cannot exhibit sufficient functions as cutting tools. Furthermore, in order to cut these difficult-to-cut materials at high speed, high impact resistance is essential for their durability.
【0006】本発明は、このような従来法の問題点を解
消することを基本的目的とし、十分な高強度および高靱
性をもち併せて、とくに難削材に対しても高い耐久性を
もつセラミック工具を提供することを目的とする。The present invention has as its basic purpose to solve the problems of the conventional method, and has a sufficiently high strength and high toughness, and has a high durability especially for difficult-to-cut materials. It is an object to provide a ceramic tool.
【0007】[0007]
【課題を達成するための手段】そのために本発明のセラ
ミック工具の製造方法は、十分な強度及び靱性をもつ基
材に、その基材の本来の特性を劣化させることなく高い
硬度及び付着力をもつ被覆層を設ける。即ち、本発明
は、その第1の視点において、基材としてのAl2O3−
ZrO2系セラミックと、その表面に形成する被覆層
を、TiC、TiN、TiCN、Al2O3、AlONの
うちの少なくとも一種のセラミックによりCVD法によ
り形成することにより、高靱性かつ耐衝撃性の高い高耐
久性セラミック工具を提供する。Therefore, the method of manufacturing a ceramic tool of the present invention provides a base material having sufficient strength and toughness with high hardness and adhesive force without deteriorating the original characteristics of the base material. A coating layer is provided. That is, according to the first aspect of the present invention, the present invention provides Al 2 O 3- as a base material.
By forming the ZrO 2 -based ceramic and the coating layer formed on the surface of the ZrO 2 -based ceramic with at least one ceramic of TiC, TiN, TiCN, Al 2 O 3 and AlON by the CVD method, it is possible to obtain high toughness and impact resistance. Provide a highly durable ceramic tool.
【0008】本発明の第2の視点において、上記目的
は、ZrO21〜50wt%、残部実質的にAl2O3の
組成を有するAl2O3−ZrO2系セラミック焼結体か
ら成る基材の表面に、
(イ) TiC、TiN若しくはTiCN又はこれらの組合
せから成る内層をCVD法により形成する工程、
(ロ) 内層の表面にAlONから成る中間層をCVD法に
より形成する工程、及び
(ハ) 中間層の表面に、Al2O3から成る外層をCVD法
により形成する工程、を含むことを特徴とする高靱性高
耐久性被覆セラミック工具の製造方法によって達成され
る。In a second aspect of the present invention, the above object is based on an Al 2 O 3 -ZrO 2 system ceramic sintered body having a composition of 1 to 50 wt% ZrO 2 and the balance substantially Al 2 O 3. (B) a step of forming an inner layer made of TiC, TiN or TiCN or a combination thereof on the surface of the material by a CVD method, (b) a step of forming an intermediate layer made of AlON on the surface of the inner layer by a CVD method, and ( C) A step of forming an outer layer made of Al 2 O 3 on the surface of the intermediate layer by a CVD method, and a method for producing a high toughness and high durability coated ceramic tool.
【0009】本発明の第3の視点において、上記目的
は、ZrO21〜50wt%、残部実質的にAl2O3の
組成を有するAl2O3−ZrO2系セラミック焼結体か
ら成る基材の表面に、
(イ) AlONから成る内層をCVD法により形成する工
程、
(ロ) 内層の表面に、Al2O3から成る層をCVD法によ
り形成する工程、
を含むことを特徴とする高靱性高耐久性被覆セラミック
工具の製造方法によって達成される。In a third aspect of the present invention, the above object is based on an Al 2 O 3 -ZrO 2 based ceramic sintered body having a composition of 1 to 50 wt% ZrO 2 and the balance substantially Al 2 O 3. And (b) forming an AlON inner layer on the surface of the material by a CVD method, and (b) forming an Al 2 O 3 layer on the surface of the inner layer by a CVD method. This is accomplished by a method of making a high toughness, high durability coated ceramic tool.
【0010】基材としてのAl2O3−ZrO2系セラミ
ック焼結体の組成は、ZrO21〜50wt%、残部実
質的にAl2O3からなり、好ましくはZrO21〜30
wt%、残部実質的にAl2O3がよい。ZrO2を1w
t%以上とすることにより基材の強度、特に靱性が格段
に改善されるからである。また、ZrO2を50wt%
以下(さらに好ましくは30wt%以下)とすると基材
の特性劣化を生ずることなく(特にCVD法の場合必要
である)高温下で被覆層を所定の厚さに形成することが
できる。[0010] The composition of Al 2 O 3 -ZrO 2 ceramic sintered body as a substrate, ZrO 2 1~50wt%, the balance substantially of Al 2 O 3, preferably ZrO 2 1 to 30
wt% and the balance substantially Al 2 O 3 is preferable. 1 w of ZrO 2
This is because when the content is at least t%, the strength of the base material, particularly the toughness, is significantly improved. Also, ZrO 2 is 50 wt%
When it is set to the following (more preferably 30 wt% or less), the coating layer can be formed to a predetermined thickness at a high temperature without causing deterioration of the characteristics of the base material (especially necessary in the CVD method).
【0011】従来ZrO2焼結体を1000℃近くの高
温に保持することは、急激な体積変化を伴う相転移Maintaining a conventional ZrO 2 sintered body at a high temperature near 1000 ° C. causes a phase transition accompanied by a rapid volume change.
【数1】
を招来するため基材の急激な強度劣化をもたらすと考え
られていた。しかし、本発明によれば、ZrO250w
t%以下とすることにより、基材の劣化を生ずることな
く、高温下での被膜形成が可能となったものである。[Equation 1] It has been considered that this causes a rapid deterioration of the strength of the base material. However, according to the invention, ZrO 2 50w
By setting the content to t% or less, it is possible to form a film at high temperature without causing deterioration of the base material.
【0012】[0012]
【好適な実施の態様】このうちZrO2は、好ましく
は、CaO、MgO、Y2O3などの希土類酸化物の安定
化剤を含むが、必ずしも含まなくてもよい。該安定化剤
を含む場合、CaOまたはMgOはトータルでZrO2
に対して15wt%以下、Y2O3は同じくZrO2に対
して9wt%以下が好ましい。この場合のZrO2は、
その総量に対して正方晶ZrO2が5wt%以上を含む
部分安定化構造をもつようにするのがよい。尚、製造に
際し、Al2O3にZrO2を添加する際には、予め部分
安定化したZrO2をAl2O3に添加してもよいし、ま
た単斜晶ZrO2と安定化剤をそれぞれ単独でAl2O3
に添加してもよい。BEST MODE FOR CARRYING OUT THE INVENTION Of these, ZrO 2 preferably contains a stabilizer of a rare earth oxide such as CaO, MgO or Y 2 O 3 , but it is not always necessary to contain it. When the stabilizer is included, CaO or MgO is added to ZrO 2 in total.
15 wt% or less, and Y 2 O 3 is preferably 9 wt% or less with respect to ZrO 2 . ZrO 2 in this case is
It is preferable to have a partially stabilized structure in which tetragonal ZrO 2 contains 5 wt% or more of the total amount. When ZrO 2 is added to Al 2 O 3 in the production, partially stabilized ZrO 2 may be added to Al 2 O 3 in advance, or monoclinic ZrO 2 and a stabilizer may be added. Al 2 O 3 alone
May be added to.
【0013】一方、安定化剤を含まない場合は、平均粒
径0.3μm以下のZrO2を使用するのが好ましい。
ZrO2のAl2O3への添加のさいに、微粒ZrO2がA
l2O3に分散すると、ZrO2が正方晶のまま残留し、
これにより靱性の良好なAl2O3−ZrO2系セラミッ
ク基材が得られるからである。On the other hand, when the stabilizer is not contained, it is preferable to use ZrO 2 having an average particle size of 0.3 μm or less.
During the addition of ZrO 2 to Al 2 O 3 , fine ZrO 2 was
When dispersed in l 2 O 3 , ZrO 2 remains tetragonal,
This is because an Al 2 O 3 —ZrO 2 -based ceramic substrate having good toughness can be obtained.
【0014】Al2O3−ZrO2系セラミック基材の焼
成条件は、酸化雰囲気中、温度1350〜1650℃、
処理時間数分ないし数時間が良い。温度1350℃未満
では焼結が十分に行われず、1650℃を超えると結晶
粒の成長が著しくなって基材の強度および靱性がともに
劣化するからである。このようにして構成される基材
は、抗折強度約60kg/mm2以上、破壊靱性Kic 約
20kg/mm3/2以上のものが得られる。The firing conditions for the Al 2 O 3 -ZrO 2 -based ceramic substrate are as follows: in an oxidizing atmosphere, at a temperature of 1350 to 1650 ° C.
The processing time is a few minutes to a few hours. This is because if the temperature is lower than 1350 ° C., the sintering is not sufficiently performed, and if it exceeds 1650 ° C., the growth of crystal grains is remarkable and the strength and toughness of the base material are deteriorated. The base material thus constructed has a bending strength of about 60 kg / mm 2 or more and a fracture toughness Kic of about 20 kg / mm 3/2 or more.
【0015】次に被覆剤としてのセラミックは、第1の
視点によれば、TiC、TiN、TiCN、Al2O3も
しくはAlON又はこれらの成分の組合せからなり(但
しAlONは外層としては好ましくない)、上記基材の
表面に対して単層被覆してもよいし多層被覆にしてもよ
い。上記成分を組合せて多層被覆した場合の被覆層は、
2層以上とし、例えば第1表に示すような内層、中間
層、外層をもつようにするのがよい(中間層としてはA
lONが好ましい)。第2、第3の視点によれば、外層
としてはAl2O3が最適である(Al2O3はマイクロビ
ッカース硬度2000kg/mm2以上の高い硬度のた
め)。Al2O3層の内側層(内層又は中間層)としては
AlONが最適である(硬いAl2O3層の付着力を高め
ハクリを防止するため)。Next, the ceramic as the coating material, according to the first aspect, consists of TiC, TiN, TiCN, Al 2 O 3 or AlON or a combination of these components (however, AlON is not preferred as the outer layer). The surface of the substrate may be coated with a single layer or multiple layers. The coating layer when the above components are combined to form a multilayer coating,
It is preferable to have two or more layers, for example, an inner layer, an intermediate layer, and an outer layer as shown in Table 1 (the intermediate layer is A
lON is preferred). From the second and third viewpoints, Al 2 O 3 is most suitable as the outer layer (because Al 2 O 3 has a high hardness of micro Vickers hardness of 2000 kg / mm 2 or more). Inner layer of the Al 2 O 3 layer (to prevent peeling enhance the adhesion of the hard the Al 2 O 3 layer) AlON is optimal as (inner or intermediate layer).
【0016】この場合の被覆方法は、一般的にはPVD
法(PhysicalVapor Deposition)とCVD法(Chemical
Vapor Deposition)、その他の物理的ないし化学的析
着被膜形成方法が考えられるが、被覆材の密着性均質性
および被覆速度の点からして、本発明では下記に示す反
応によるCVD法を用いる。The coating method in this case is generally PVD.
Method (Physical Vapor Deposition) and CVD method (Chemical
Vapor Deposition) and other physical or chemical deposition film forming methods are conceivable, but in view of the adhesion homogeneity of the coating material and the coating speed, the CVD method by the reaction shown below is used in the present invention.
【0017】TiCl4+CH4→TiC+4HCl 2TiCl4+N2+4H2→2TiN+3HCl 2TiCl4+2CH4+N2→2TiCN+8HCl 2AlCl3+3CO2+3H2→Al2O3+3CO+6HCl 2AlCl+2CO2+N2+3H2→2AlON+2CO+6HClTiCl 4 + CH 4 → TiC + 4HCl 2TiCl 4 + N 2 + 4H 2 → 2TiN + 3HCl 2TiCl 4 + 2CH 4 + N 2 → 2TiCN + 8HCl 2AlCl 3 + 3CO 2 + 3H 2 → Al 2 O 3 + 3CO + 6HCl 2AlCl + 2CO 2 + N 2 + 3H 2 → 2AlON + 2CO + 6HCl
【0018】特にAl2O3、AlON層については、C
VD法でないと本発明の目的に適う実用的な被膜形成が
(特に膜形成速度、膜安定性上)困難である。TiC、
TiN、TiCN、Al2O3、AlONの被覆方法の詳
細は、それ自体公知のため記述を省くが一般にかなりの
高温が不可欠である(800℃以上好ましくは950〜
1100℃程度)。Particularly for Al 2 O 3 and AlON layers, C
If it is not the VD method, it is difficult to form a practical film suitable for the purpose of the present invention (especially in terms of film forming speed and film stability). TiC,
The details of the coating method of TiN, TiCN, Al 2 O 3 , and AlON are known per se, so description thereof will be omitted, but generally a considerably high temperature is essential (800 ° C. or higher, preferably 950 to 950 ° C.).
1100 ° C).
【0019】超硬合金上へCVD法により各種被覆層を
設ける方法は特公昭42013(TiC)を初めとして
多数有り、TiN、TiCNは特公昭51−2498
2、Al2O3は特開昭48−217、TiC、TiN/
Al2O3やAlON/Al2O3の2重被覆はそれぞれ特
公昭52−13201、特開昭54−29185があ
り、同様な被覆方法を用いることができる。但しこれら
は、いずれも超硬合金を母材としているため、高速切削
には不向きであったものである。なお、従来ZrO2を
含むセラミック基材については、焼結(冷却)後1000℃以
上の高温に保持することは、この温度域でZrO2に大
きな体積変化を伴う相変態There are many methods for forming various coating layers on the cemented carbide by the CVD method, starting from JP-B-42013 (TiC), and TiN and TiCN are JP-B-51-2498.
2, Al 2 O 3 is disclosed in JP-A-48-217, TiC, TiN /
The double coating of Al 2 O 3 and AlON / Al 2 O 3 is disclosed in JP-B-52-13201 and JP-A-54-29185, respectively, and a similar coating method can be used. However, these are not suitable for high-speed cutting because they all use cemented carbide as a base material. Regarding the conventional ceramic base material containing ZrO 2 , it is necessary to maintain the high temperature of 1000 ° C. or higher after sintering (cooling) because the phase transformation accompanied by a large volume change in ZrO 2 in this temperature range.
【数2】
が生じ、強度が著しく劣化するため、禁忌とされていた
ものである。しかしながら、本発明によれば、そのよう
な予期に反し、飛躍的に顕著な特性の改善が達成された
ことは驚くべきことである。[Equation 2] Is caused and the strength is remarkably deteriorated, which is contraindicated. However, according to the present invention, it is surprising that, contrary to such an expectation, a dramatically improved property is achieved.
【0020】被覆層の膜厚は0.3〜15μmとする。
なぜなら、0.3μm未満では被覆材としての機能が薄
れるとともに、15μmを超えると被覆のさいに粒成長
が著しく剥離しやすくなるからである。Al2O3を被覆
する場合のAl2O3層厚は0.3〜5μm程度が好まし
い。The thickness of the coating layer is 0.3 to 15 μm.
This is because if it is less than 0.3 μm, the function as a coating material is weakened, and if it exceeds 15 μm, the grain growth is apt to be easily peeled off during coating. When coating with Al 2 O 3 , the Al 2 O 3 layer thickness is preferably about 0.3 to 5 μm.
【0021】このようにして構成されるセラミック工具
は、靱削材の衝撃的高速切削の反復に十分耐える高強
度、高靱性を備えるうえに、対摩耗性の点においても優
れた特性を発揮する。その結果高度に自動化された切削
機に用いることができる信頼性の高い切削工具が製造で
きる。このことを以下に述べる実施例に基づいて説明す
る。The ceramic tool constructed in this manner has high strength and high toughness sufficient to withstand repeated shocking and high-speed cutting of a tough-cutting material, and exhibits excellent characteristics in terms of wear resistance. . As a result, a highly reliable cutting tool that can be used in a highly automated cutting machine can be manufactured. This will be described based on the embodiments described below.
【0022】[0022]
【実施例】基材に用いた原料は、Al2O3については純
度(wt%)99.9%、平均粒径0.6μm、単斜晶
ZrO2については純度99%以上、平均粒径0.2μ
m、CaCO3については原料CaO純度98%、Mg
Oについては純度97%以上、Y2O3については純度9
9.9%以上であった。 基材の各試料は第2表のよう
な組成とし、所定の原料を湿式混合したあと、乾燥、バ
インダ添加を経て造粒したのち圧力1.5kg/cm2
にてプレス成形した。この圧粉体は、仮焼によりバイン
ダを除去したのち、電気炉内にて1400〜1650℃
で1時間焼成した。この焼成体をサイズ4×8×25m
mに研摩した。EXAMPLES The raw materials used for the base material were Al 2 O 3 having a purity (wt%) of 99.9%, an average particle size of 0.6 μm, and monoclinic ZrO 2 having a purity of 99% or more and an average particle size. 0.2μ
m, CaCO 3 raw material CaO purity 98%, Mg
O has a purity of 97% or more and Y 2 O 3 has a purity of 9% or more.
It was 9.9% or more. Each sample of the base material has the composition as shown in Table 2, and after wet mixing the predetermined raw materials, drying and adding a binder, and granulating, the pressure is 1.5 kg / cm 2
Was press-molded. This green compact has its binder removed by calcination and then placed in an electric furnace at 1400 to 1650 ° C.
It was baked for 1 hour. This fired body has a size of 4 × 8 × 25m
polished to m.
【0023】こうして作成された各試料の諸特性は第2
表に示すとおりである。第2表から明らかなように、各
試料は、通常のAl2O3の抗折力50kg/mm2以
下、靱性(Kic)10kg/mm3/2以下に比べ、かなり
高い抗折力および靱性を示している。The characteristics of each sample thus prepared are
As shown in the table. As is clear from Table 2, each sample has considerably higher transverse rupture strength and toughness than ordinary Al 2 O 3 transverse rupture strength of 50 kg / mm 2 or less and toughness (Kic) 10 kg / mm 3/2 or less. Is shown.
【0024】尚、試料の各特性の測定法は次のとおりで
ある。(1)曲げ強度はJIS B4104により測定、
5本の平均値を示す。(2)破壊靱性はASTMスペシャ
ルテクニカルパブリケーションNo.410に準じて、巾
4mm、厚さ5mm、長さ25mmの試片に深さ0.5
mm、巾0.15mmの切欠きを入れ、スパン20mm
の三点曲げ切欠き法によって測定した。測定値は各5本
の平均値である。(3)結晶系は理学電機製ガイガーフレ
ックスRAD−γA型を用い、X線回折法により行っ
た。まず、15μmダイヤモンドペーストで鏡面研摩し
た試片をX線回折で測定し、単斜晶ZrO2のThe measuring method of each characteristic of the sample is as follows. (1) Flexural strength is measured according to JIS B4104,
The average value of 5 is shown. (2) Fracture toughness is 0.5 mm in depth according to ASTM Special Technical Publication No.410 for a specimen with a width of 4 mm, a thickness of 5 mm and a length of 25 mm.
mm, width 0.15 mm notch, span 20 mm
Was measured by the three-point bending notch method. The measured value is an average value of 5 lines each. (3) As a crystal system, Geiger flex RAD-γA type manufactured by Rigaku Denki was used, and the crystal system was determined by X-ray diffraction. First, a sample mirror-polished with a 15 μm diamond paste was measured by X-ray diffraction to find that monoclinic ZrO 2
【数3】
面と(111)面の積分強度Imと、正方晶ZrO2の
(111)面と立方晶ZrO2の(111)面の積分強
度の和It+Ieの比から、単斜晶ZrO2の量を決定
した。ついで焼結体を325メッシュ全通迄粉砕し、同
条件でX線回折し、再度単斜晶ZrO2と立方晶ZrO2
の積分強度I′mおよびI′eを求めた。この際、焼結
体中の残留正方晶ZrO2は粉砕によって機械的応力を
受け、すべて単斜晶ZrO2に変態すると考えられるの
で、I′e/(I′m+I′e)から立方晶ZrO2量
が決定されついで正方晶ZrO2量も決定した。[Equation 3] The amount of monoclinic ZrO 2 is determined from the integrated intensity Im of the (111) face of the tetragonal ZrO 2 and the ratio It + Ie of the integrated intensities of the (111) face of the cubic ZrO 2 and the (111) face of the cubic ZrO 2. did. Then, the sintered body was pulverized to a total of 325 mesh, subjected to X-ray diffraction under the same conditions, and again monoclinic ZrO 2 and cubic ZrO 2
The integrated intensities I'm and I'e of At this time, the residual tetragonal ZrO 2 in the sintered body is considered to be transformed into monoclinic ZrO 2 by mechanical stress due to pulverization, so that I'e / (I'm + I'e) is converted into cubic ZrO 2. The amount of 2 was determined and then the amount of tetragonal ZrO 2 was also determined.
【0025】次に、これらの各試料をSNGN432T
N(JIS008Bによるスローアウェイチップ形状表
示法)の形状に加工し、この成形体(基材)の表面にC
VD法により所定の被覆層を形成した。具体的には、基
材をセットした反応容器内にキャリアガスとしてH2ガ
スを流し、前述の化学反応を伴わせて基材の表面に所定
の被覆材を付着させた(第3表参照)。反応容器の内圧
は、TiC、Al2O3、AlONを被覆する場合100
mb、同じくTiCNの場合300mb、TiNの場合
500mbとし、反応容器内の温度は1050℃にセッ
トした。被覆速度は、TiC、TiN、TiCNについ
ては1μm/hr、Al2O3、AlONについては0.
5μm/hrに設定した。Next, each of these samples was treated with SNGN432T.
Processed in the shape of N (throw away chip shape display method according to JIS008B), and C on the surface of this molded body (base material).
A predetermined coating layer was formed by the VD method. Specifically, H 2 gas was caused to flow as a carrier gas into the reaction vessel in which the base material was set, and a predetermined coating material was attached to the surface of the base material with the above-mentioned chemical reaction (see Table 3). . The internal pressure of the reaction vessel is 100 when coating TiC, Al 2 O 3 and AlON.
mb, 300 mb for TiCN and 500 mb for TiN, and the temperature inside the reaction vessel was set to 1050 ° C. The coating rate was 1 μm / hr for TiC, TiN, and TiCN, and 0. 0 for Al 2 O 3 and AlON.
It was set to 5 μm / hr.
【0026】このようにして得られたセラミック工具
(試料)を用いて、ダクタイル鋳鉄(FCD55)のフ
ライス切削(テスト1)と、クロムモリブデン合金鋼
(SCM44C)の旋削(テスト2)を行った。切削条
件は第4表のとおりである。Using the ceramic tool (sample) thus obtained, milling cutting of ductile cast iron (FCD55) (test 1) and turning of chromium-molybdenum alloy steel (SCM44C) (test 2) were performed. The cutting conditions are shown in Table 4.
【0027】この切削試験の結果は、第3表に示すとお
りであり、この表からわかるように、テスト1におい
て、試料No.2〜8は略約4000〜5000回の衝撃
に十分耐えるのに対し、参考試料No.1および9は20
00〜2500回の衝撃で欠損している。これらNo.2
〜8,10およびNo.4a〜4gの両グループは比較例
1〜4に比べ寿命が極めて長い(10〜50倍以上にも
達する)ことから所定の被覆層を形成して成るAl2O3
−ZrO2系セラミックが、所定の膜厚でダクタイル鋳
鉄のフライス切削に特に有効であることがわかる。ま
た、テスト2からも同様に、所定の被覆層を形成してな
るAl2O3−ZrO2系セラミックが、鋼の旋削におい
て耐フランク摩耗性に優れていることがわかる。なおA
lON層の効果はNo.4a、No.4と、No.4b、4dと
を夫々比較することにより明らかである。The results of this cutting test are as shown in Table 3. As can be seen from this table, in Test 1, sample Nos. 2 to 8 are sufficiently resistant to the impact of about 4000 to 5000 times. In contrast, reference sample Nos. 1 and 9 are 20
It is damaged by the impact of 00 to 2500 times. These No. 2
.About.8, 10 and No. 4a to 4g groups have extremely long lives (compared to 10 to 50 times or more) as compared with Comparative Examples 1 to 4, so Al 2 O 3 formed by forming a predetermined coating layer.
-ZrO 2 based ceramic proves to be particularly effective in the milling of ductile iron with a predetermined thickness. Further, from Test 2 as well, it can be seen that the Al 2 O 3 —ZrO 2 -based ceramic having the predetermined coating layer formed thereon has excellent flank wear resistance in turning steel. A
The effect of the ON layer is clear by comparing No. 4a and No. 4 with No. 4b and 4d, respectively.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【表2】 [Table 2]
【0030】[0030]
【表3】 [Table 3]
【0031】[0031]
【表4】 [Table 4]
【0032】[0032]
【発明の効果】以上説明したように、本発明によれば、
基材としてAl2O3を主体とするAl2O3−ZrO2系
セラミックを用いるとともに、その基材の表面に所定の
薄膜としてのTiC、TiN、TiCN、Al2O3、A
lONのうちの少なくとも一種のセラミックからなる被
覆層をCVD法により形成することにより、基材の劣化
を招来することなく極めて高い強度および靱性(耐衝撃
性)を発揮するセラミック工具が製造できる(第1の視
点)。その結果従来のセラミック工具では得られなかっ
た優れた耐摩耗製を発揮するという効果がある。特に第
2、第3の視点において、高硬度のAl2O3(外層)を
AlON(その内側層)を介して、共にCVD法によ
り、ZrO2基材の強度劣化を招くことなく形成し得た
ことは、当業者の予期の範囲を超えたものである。As described above, according to the present invention,
An Al 2 O 3 —ZrO 2 -based ceramic containing Al 2 O 3 as a main component is used as a base material, and TiC, TiN, TiCN, Al 2 O 3 , A as a predetermined thin film is formed on the surface of the base material.
By forming the coating layer made of at least one ceramic of lON by the CVD method, it is possible to manufacture a ceramic tool that exhibits extremely high strength and toughness (impact resistance) without causing deterioration of the base material (No. 1). 1 viewpoint). As a result, there is an effect of exhibiting excellent wear resistance which cannot be obtained by the conventional ceramic tools. In particular, from the second and third viewpoints, it is possible to form high hardness Al 2 O 3 (outer layer) through AlON (the inner layer) by the CVD method without deteriorating the strength of the ZrO 2 base material. This is beyond the expectations of those skilled in the art.
【0033】本発明により製造されるセラミック工具は
単に切削、旋削用工具のみならず線引き用ダイス、その
他の、耐摩耗製、靱性、硬度を兼ね備えることを要求さ
れる、金属等加工用工具としても応用できる。The ceramic tool produced according to the present invention is not only a tool for cutting and turning, but also a die for wire drawing and other tools for working metal, etc. which are required to have wear resistance, toughness and hardness. It can be applied.
Claims (8)
l2O3の組成を有するAl2O3−ZrO2系セラミック
焼結体から成る基材の表面に、TiC、TiN、TiC
N、Al2O3若しくはAlON又はこれらの組合せから
成る被覆層をCVD法により形成することを特徴とする
高靱性高耐久性被覆セラミック工具の製造方法。1. ZrO 2 1 to 50 wt%, the balance being substantially A
TiC, TiN, and TiC are formed on the surface of a substrate made of an Al 2 O 3 -ZrO 2 -based ceramic sintered body having a composition of 1 2 O 3.
A method for producing a high toughness and high durability coated ceramic tool, which comprises forming a coating layer made of N, Al 2 O 3 or AlON or a combination thereof by a CVD method.
成する特許請求の範囲第1項記載の製造方法。2. The manufacturing method according to claim 1, wherein the coating layer is formed to a thickness of 0.3 to 15 μm.
l2O3の組成を有するAl2O3−ZrO2系セラミック
焼結体から成る基材の表面に、 (イ) TiC、TiN若しくはTiCN又はこれらの組合
せから成る内層をCVD法により形成する工程、 (ロ) 内層の表面にAlONから成る中間層をCVD法に
より形成する工程、及び (ハ) 中間層の表面に、Al2O3から成る外層をCVD法
により形成する工程、 を含むことを特徴とする高靱性高耐久性被覆セラミック
工具の製造方法。3. ZrO 2 1 to 50 wt%, the balance substantially A
a step of forming an inner layer of (a) TiC, TiN or TiCN or a combination thereof on the surface of a base material made of an Al 2 O 3 -ZrO 2 based ceramic sintered body having a composition of l 2 O 3 by a CVD method. And (b) forming an intermediate layer of AlON on the surface of the inner layer by the CVD method, and (c) forming an outer layer of Al 2 O 3 on the surface of the intermediate layer by the CVD method. A method for producing a ceramic tool having a high toughness and a high durability, which is characterized.
層を、0.3〜15μmの厚さに形成する特許請求の範
囲第3項記載の製造方法。4. The method according to claim 3, wherein the coating layer composed of the inner layer, the intermediate layer, and the outer layer is formed to a thickness of 0.3 to 15 μm.
る特許請求の範囲第3項又は第4項記載の製造方法。5. The method according to claim 3, wherein the outer layer of Al 2 O 3 is formed to have a thickness of 0.3 to 5 μm.
l2O3の組成を有するAl2O3−ZrO2系セラミック
焼結体から成る基材の表面に、 (イ) AlONから成る内層をCVD法により形成する工
程、 (ロ) 内層の表面に、Al2O3から成る層をCVD法によ
り形成する工程、 を含むことを特徴とする高靱性高耐久性被覆セラミック
工具の製造方法。6. ZrO 2 1 to 50 wt%, the balance substantially A
(a) a step of forming an inner layer made of AlON by a CVD method on the surface of a base material made of an Al 2 O 3 -ZrO 2 system ceramic sintered body having a composition of l 2 O 3 ; And a step of forming a layer composed of Al 2 O 3 by a CVD method, and a method for producing a high toughness and high durability coated ceramic tool.
3〜15μmに形成する特許請求の範囲第6項記載の製
造方法。7. A coating layer comprising an inner layer and an Al 2 O 3 layer,
The manufacturing method according to claim 6, wherein the thickness is 3 to 15 μm.
する特許請求の範囲第7項記載の製造方法。8. The manufacturing method according to claim 7, wherein the Al 2 O 3 layer is formed to a thickness of 0.3 to 5 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3307214A JPH0516031A (en) | 1991-10-28 | 1991-10-28 | Manufacture of sheathed ceramic tool of high toughess and durability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3307214A JPH0516031A (en) | 1991-10-28 | 1991-10-28 | Manufacture of sheathed ceramic tool of high toughess and durability |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23148883A Division JPS60127905A (en) | 1983-12-09 | 1983-12-09 | High touchness ceramic tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0516031A true JPH0516031A (en) | 1993-01-26 |
JPH0579449B2 JPH0579449B2 (en) | 1993-11-02 |
Family
ID=17966420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3307214A Granted JPH0516031A (en) | 1991-10-28 | 1991-10-28 | Manufacture of sheathed ceramic tool of high toughess and durability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0516031A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118573A (en) * | 1987-11-02 | 1989-05-11 | Nippon Shokubai Kagaku Kogyo Co Ltd | Production of surface-treated inorganic pigment |
JP2004195564A (en) * | 2002-12-16 | 2004-07-15 | Kyocera Corp | Surface-covered cutting tool and throw-away tip |
US6939607B2 (en) * | 2000-09-07 | 2005-09-06 | Ngk Spark Plug Co., Ltd. | Cutting tool |
WO2005121388A1 (en) * | 2004-05-19 | 2005-12-22 | Tdy Industries, Inc. | Al2o3 ceramic tools with diffusion bonding enhanced layer |
JP2011068960A (en) * | 2009-09-28 | 2011-04-07 | Kyocera Corp | Surface-coated member |
WO2013128673A1 (en) * | 2012-02-27 | 2013-09-06 | 住友電工ハードメタル株式会社 | Coated surface cutting tool and manufacturing method therefor |
US9650714B2 (en) | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Nanocomposite refractory coatings and applications thereof |
US9650712B2 (en) | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Inter-anchored multilayer refractory coatings |
US9719175B2 (en) | 2014-09-30 | 2017-08-01 | Kennametal Inc. | Multilayer structured coatings for cutting tools |
US9903018B2 (en) | 2013-03-21 | 2018-02-27 | Kennametal Inc. | Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same |
CN115417686A (en) * | 2022-07-19 | 2022-12-02 | 大连海事大学 | Connecting AlON/Al 2 O 3 Method for producing ceramic |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5076682A (en) * | 1973-09-17 | 1975-06-23 | ||
JPS565374A (en) * | 1979-06-08 | 1981-01-20 | Feldmuehle Ag | Cutting tool tip and its manufacture |
JPS58172278A (en) * | 1982-04-05 | 1983-10-11 | 日本特殊陶業株式会社 | High speed cutting tip and manufacture |
-
1991
- 1991-10-28 JP JP3307214A patent/JPH0516031A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5076682A (en) * | 1973-09-17 | 1975-06-23 | ||
JPS565374A (en) * | 1979-06-08 | 1981-01-20 | Feldmuehle Ag | Cutting tool tip and its manufacture |
JPS58172278A (en) * | 1982-04-05 | 1983-10-11 | 日本特殊陶業株式会社 | High speed cutting tip and manufacture |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118573A (en) * | 1987-11-02 | 1989-05-11 | Nippon Shokubai Kagaku Kogyo Co Ltd | Production of surface-treated inorganic pigment |
US6939607B2 (en) * | 2000-09-07 | 2005-09-06 | Ngk Spark Plug Co., Ltd. | Cutting tool |
JP2004195564A (en) * | 2002-12-16 | 2004-07-15 | Kyocera Corp | Surface-covered cutting tool and throw-away tip |
US8147992B2 (en) | 2004-05-19 | 2012-04-03 | TDY Industries, LLC | AL2O3 ceramic tools with diffusion bonding enhanced layer |
JP2007537968A (en) * | 2004-05-19 | 2007-12-27 | ティーディーワイ・インダストリーズ・インコーポレーテッド | Al2O3 ceramic tool with diffusion bonding enhancement layer |
US7581906B2 (en) * | 2004-05-19 | 2009-09-01 | Tdy Industries, Inc. | Al2O3 ceramic tools with diffusion bonding enhanced layer |
AU2005252629B2 (en) * | 2004-05-19 | 2011-01-27 | Kennametal Inc. | AL2O3 ceramic tools with diffusion bonding enhanced layer |
US7914913B2 (en) | 2004-05-19 | 2011-03-29 | Tdy Industries, Inc. | Al2O3 ceramic tool with diffusion bonding enhanced layer |
US7968147B2 (en) | 2004-05-19 | 2011-06-28 | Tdy Industries, Inc. | Method of forming a diffusion bonding enhanced layer on Al2O3 ceramic tools |
WO2005121388A1 (en) * | 2004-05-19 | 2005-12-22 | Tdy Industries, Inc. | Al2o3 ceramic tools with diffusion bonding enhanced layer |
NO341546B1 (en) * | 2004-05-19 | 2017-12-04 | Kennametal Inc | AL2O3 - cutting ceramics with diffusion-bonded reinforced layer. |
JP2011068960A (en) * | 2009-09-28 | 2011-04-07 | Kyocera Corp | Surface-coated member |
CN104136156A (en) * | 2012-02-27 | 2014-11-05 | 住友电工硬质合金株式会社 | Coated surface cutting tool and manufacturing method therefor |
KR20140138124A (en) * | 2012-02-27 | 2014-12-03 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | Coated surface cutting tool and manufacturing method therefor |
JPWO2013128673A1 (en) * | 2012-02-27 | 2015-07-30 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool and manufacturing method thereof |
US9381575B2 (en) | 2012-02-27 | 2016-07-05 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and method of manufacturing the same |
WO2013128673A1 (en) * | 2012-02-27 | 2013-09-06 | 住友電工ハードメタル株式会社 | Coated surface cutting tool and manufacturing method therefor |
US9903018B2 (en) | 2013-03-21 | 2018-02-27 | Kennametal Inc. | Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same |
US9719175B2 (en) | 2014-09-30 | 2017-08-01 | Kennametal Inc. | Multilayer structured coatings for cutting tools |
US9650714B2 (en) | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Nanocomposite refractory coatings and applications thereof |
US9650712B2 (en) | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Inter-anchored multilayer refractory coatings |
CN115417686A (en) * | 2022-07-19 | 2022-12-02 | 大连海事大学 | Connecting AlON/Al 2 O 3 Method for producing ceramic |
Also Published As
Publication number | Publication date |
---|---|
JPH0579449B2 (en) | 1993-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3866305B2 (en) | Composite high hardness material for tools | |
EP2500332B1 (en) | Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, method for producing cubic boron nitride sintered compact, and method for producing coated cubic boron nitride sintered compact | |
US5275981A (en) | Al2 O3 based ceramic | |
US4578087A (en) | Nitride based cutting tool and method for producing the same | |
JPS6348836B2 (en) | ||
JPH0516031A (en) | Manufacture of sheathed ceramic tool of high toughess and durability | |
JPH0260442B2 (en) | ||
JP4191663B2 (en) | Composite high hardness material for tools | |
JPH0292868A (en) | High-strength sintered material of boron nitride-base of cubic system | |
JPH05186272A (en) | Sintered boron nitride having composite high-density phase | |
JP3266200B2 (en) | Silicon nitride based sintered body | |
JP5400692B2 (en) | Wear-resistant member provided with hard coating and method for producing the same | |
JP3476504B2 (en) | Silicon nitride based sintered body and its coated sintered body | |
JPH05186844A (en) | Sintered compact based on boron nitride having high density phase | |
JPH0569205A (en) | Ceramic cutting tool | |
JP2849055B2 (en) | Sialon-based sintered body and coated sintered body | |
JPH06340481A (en) | Surface-coated tungsten carbide-alumina sintered compact | |
JPH07136810A (en) | Ceramic tool for cutting very hard material | |
JP2005212048A (en) | Ceramics and cutting tool using the same | |
JP2568494B2 (en) | Manufacturing method of surface coated β 'sialon-based ceramics for cutting tools | |
JP3147511B2 (en) | Alumina sintered body for tools | |
JP2570354B2 (en) | Surface coated ceramic members for cutting tools | |
JPH06298568A (en) | Whisker-reinforced sialon-based sintered compact and sintered and coated material | |
JPH04304332A (en) | Sintered hard alloy excellent in wear resistance and breaking resistance | |
JPH0295502A (en) | High speed cutting chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19961015 |