JPH05140689A - High corrosion resistant and high wear resistant boride tungsten base alloy - Google Patents
High corrosion resistant and high wear resistant boride tungsten base alloyInfo
- Publication number
- JPH05140689A JPH05140689A JP3065730A JP6573091A JPH05140689A JP H05140689 A JPH05140689 A JP H05140689A JP 3065730 A JP3065730 A JP 3065730A JP 6573091 A JP6573091 A JP 6573091A JP H05140689 A JPH05140689 A JP H05140689A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- boride
- tungsten
- resistance
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、硼化物とタングステン
からなる焼結合金であり、さらに詳しくは、アルミニウ
ム、マグネシウム、亜鉛、鉛、ナトリウムなどの溶融金
属に対してきわめて優れた耐食性を示すと共に、高い常
温および高温硬度と、優れた耐摩耗性、耐凝着性、熱衝
撃抵抗および靭性を有し、また良好な被加工性を有する
硼化物系タングステン基合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a sintered alloy of boride and tungsten. More specifically, it shows extremely excellent corrosion resistance to molten metals such as aluminum, magnesium, zinc, lead and sodium. The present invention relates to a boride-based tungsten-based alloy having high hardness at room temperature and high temperature, excellent wear resistance, adhesion resistance, thermal shock resistance and toughness, and good workability.
【0002】[0002]
【従来の技術】産業機械の自動化、高速化やメンテナン
スフリー化などの高性能化に伴い、そこで用いられる耐
摩耗材料の特性に対する要求は益々厳しくなっている。
例えばダイカスト関連部品や熱間あるいは冷間での押し
出しダイスなどもより高温で、しかもより強い腐食環境
で使用されるようになり、それに伴って耐摩耗性の他に
耐食性に優れること、耐凝着性、即ち相手材とくっつき
がないこと、常温および高温での硬度が高く変形に耐え
ること、高い熱衝撃抵抗を持つことなどが従来にもまし
て要求されるようになってきた。2. Description of the Related Art As industrial machines become more automated, faster, and maintenance-free, performance requirements for wear-resistant materials used therein are becoming more and more demanding.
For example, die-casting related parts and hot or cold extrusion dies have come to be used at higher temperatures and in a stronger corrosive environment, so that in addition to wear resistance, they also have excellent corrosion resistance and adhesion resistance. In other words, it has been required more than ever before that the material has no sticking property with the mating material, has high hardness at normal temperature and high temperature, can withstand deformation, and has high thermal shock resistance.
【0003】ダイカスト法は非常に高い生産性により大
量生産に適し、さらに製品の品質、寸法精度がともに高
いなど多くの利点を有するため、亜鉛合金、マグネシウ
ム合金、アルミニウム合金など比較的低融点金属に幅広
く用いられている鋳造法であり、ダイカスト関連部品と
は、このダイカスト法に用いる金型、スリーブ、プラン
ジャーチップなどを指す。これらに共通して求められる
特性は、溶融金属に侵食されないこと、硬度が高く耐摩
耗性に優れること、高温硬度が高く高温での変形に耐え
ること、熱衝撃によって破壊しないこと、被加工性が良
いことなどである。また、冷間あるいは熱間押し出しダ
イスでは、銅やアルミニウムなどの押し出しや線引き加
工、成形加工を行う際、銅やアルミニウムが粘い材料で
あるので、これらと凝着をおこさないことが製品の品質
を高めるために重要となる。The die-casting method is suitable for mass production due to its extremely high productivity, and has many advantages such as high product quality and high dimensional accuracy. Therefore, it is suitable for relatively low melting point metals such as zinc alloys, magnesium alloys and aluminum alloys. It is a widely used casting method, and die-casting-related parts refer to dies, sleeves, plunger chips, and the like used in this die-casting method. The properties commonly required for these are that they are not corroded by molten metal, have high hardness and excellent wear resistance, have high temperature hardness and withstand deformation at high temperatures, do not break by thermal shock, and have workability. Good things. In cold or hot extrusion dies, copper or aluminum is a viscous material when performing extrusion, drawing or forming of copper or aluminum. Will be important to increase.
【0004】このような要求に対して、SKD61など
の熱間工具鋼に熱処理、窒化処理を施した材料が早くか
ら用いられてきた。しかし、窒化処理を施しても、その
窒化層が20〜30μm程度と薄く、溶融金属に対する
長時間にわたる耐食性は十分とはいえない。このため、
これをアルミダイカストスリーブに用いると、寿命が短
いためにスリーブの取り替えを頻繁に行わなければなら
ず、ランニングコストが高くなり、また連続操業では著
しく生産性が低下する。さらにアルミニウムに侵食され
た鉄が溶け出してダイカスト製品の中へ巻き込まれ、製
品の品質低下を招くこともある。In response to such a demand, a material obtained by subjecting a hot work tool steel such as SKD61 to a heat treatment or a nitriding treatment has been used for a long time. However, even if the nitriding treatment is performed, the nitrided layer is as thin as about 20 to 30 μm and the corrosion resistance to molten metal for a long time cannot be said to be sufficient. For this reason,
When this is used for an aluminum die casting sleeve, the life of the sleeve is short, so that the sleeve must be replaced frequently, resulting in a high running cost and a marked decrease in productivity in continuous operation. Further, iron eroded by aluminum may be melted out and may be caught in the die-cast product, resulting in deterioration of product quality.
【0005】また、溶融金属に対して優れた耐食性およ
び耐凝着性を示す炭化物、炭窒化物のWC,TiCNを
用い、これにNi,Co等鉄族金属を添加して焼結した
WC−Co系超硬合金、TiCN−Ni系サーメットが
開発され、工具類として用いられている。しかし、これ
らはいずれも添加した鉄族金属が焼結後に結合相として
残るため、この結合相が溶融金属に侵食されたり、ある
いは相手材と凝着をおこすなど、耐食性および耐凝着性
に問題がある。Further, carbides and carbonitrides WC and TiCN having excellent corrosion resistance and adhesion resistance to molten metal are used, and WC-which is sintered by adding an iron group metal such as Ni and Co thereto. Co-based cemented carbide and TiCN-Ni-based cermet have been developed and used as tools. However, since the added iron group metal remains as a binder phase after sintering in both cases, this binder phase is eroded by the molten metal or causes adhesion with the mating material, which causes problems in corrosion resistance and adhesion resistance. There is.
【0006】さらに、優れた耐食性と、高い常温および
高温硬度を持つ材料としてセラミックスがあり、その中
でも特にアルミニウムなど非鉄金属との耐凝着性および
その溶融金属に対する耐食性に優れていると言われてい
る硼化物系セラミックス(例えば特開昭59−4597
1号公報、特開昭57−129876号公報、特開昭5
7−42578号公報など)が提案されている。しかし
セラミックスは脆性材料であるために、高い靭性および
熱衝撃抵抗が必要なダイカスト関連部品には適用でき
ず、その用途は切削工具など工具類が主である。またセ
ラミックスの中では比較的高い熱衝撃抵抗を有するサイ
アロンのダイカストスリーブへの応用も試みられている
が、製造コストが非常に高く、被加工性にも問題があ
り、さらに、あまりにも硬度が高いためにプランジャー
チップのように低硬度材と摺動する場合、相手材を摩耗
させてしまうという欠点もある。Further, there is ceramics as a material having excellent corrosion resistance and high hardness at room temperature and high temperature. Among them, it is said that it is particularly excellent in adhesion resistance to non-ferrous metal such as aluminum and corrosion resistance to molten metal thereof. Boride-based ceramics (for example, JP-A-59-4597).
1, JP-A-57-129876, JP-A-5
7-42578). However, since ceramics is a brittle material, it cannot be applied to die-casting-related parts that require high toughness and thermal shock resistance, and its application is mainly tools such as cutting tools. Among ceramics, application of sialon, which has a relatively high thermal shock resistance, to die-cast sleeves has also been tried, but the manufacturing cost is very high, there is a problem in workability, and the hardness is too high. Therefore, when sliding on a low hardness material such as a plunger tip, there is also a drawback that the mating material is worn away.
【0007】耐食性、耐凝着性、靭性、熱衝撃抵抗に優
れ、セラミックスよりもはるかに加工が容易な材料とし
てはタングステンが挙げられる。タングステンはアルミ
ニウム、マグネシウム、亜鉛、鉛、ナトリウムなど多く
の溶融金属に対して高温まで安定で耐食性に優れ、ま
た、それらとの反応性が低いために、常温および高温に
おける耐凝着性にも優れていることは早くから知られて
いた。タングステンは融点が3410℃と金属の中で最
高であるため、工業的な溶解−鋳造法によってインゴッ
トを得ることは困難であり、通常は粉末冶金法が用いら
れる。しかし、焼結には約2500℃以上の高温と高純
度の水素ガスが必要であり、100%ち密化させるため
には、さらにスエージング、鍛造、圧延等が必要である
ため製造コストが高くなる。また、タングステン単体は
硬度がHv(ビッカース硬度)で約400と低いために
耐摩耗性に問題があり、さらに、300℃付近から伸展
性を示し、高温で容易に変形してしまうなどの欠点もあ
り、ワイヤーやフィラメントなど、ごく一部の用途のみ
で、構造用材料としては用いられていない。Tungsten is mentioned as a material which is excellent in corrosion resistance, adhesion resistance, toughness and thermal shock resistance and which is much easier to process than ceramics. Tungsten is stable to many molten metals such as aluminum, magnesium, zinc, lead, and sodium at high temperatures and has excellent corrosion resistance. Also, since it has low reactivity with them, it has excellent adhesion resistance at normal and high temperatures. It was known early on. Since tungsten has the highest melting point of 3410 ° C. among metals, it is difficult to obtain an ingot by an industrial melting-casting method, and a powder metallurgy method is usually used. However, sintering requires a high temperature of about 2500 ° C. or higher and high-purity hydrogen gas, and further swaging, forging, rolling, etc. are required for 100% densification, resulting in high manufacturing costs. .. In addition, since tungsten has a low hardness of about 400 in Hv (Vickers hardness), there is a problem in wear resistance. Further, it exhibits extensibility from around 300 ° C. and easily deforms at high temperatures. Yes, it is used as a structural material only for a small number of applications such as wires and filaments.
【0008】タングステンの焼結をより低温で行うため
に、その焼結を促進する目的でFe,Ni,Coなどの
鉄族金属を添加することは公知の技術であり、このよう
な焼結タングステン合金が数多く開発されている。しか
し、このような焼結タングステン合金は添加した鉄族金
属が焼結後に結合相として残り、前述したようなWC−
Co系超硬合金、TiCN−Ni系サーメットと同様
に、この結合相が溶融金属に侵食されるため耐食性に劣
り、相手材との耐凝着性も悪くなる。さらに、タングス
テンの硬度が低く、高温で軟化するという欠点は何等解
決されていない。また、焼結タングステン合金に微量の
TiB2を添加して耐酸化性、硬度、耐摩耗性を向上さ
せた電気接点材料(特開昭56−55548号公報)も
提案されているが、やはり結合相が鉄属金属のNiであ
るため、この結合相が溶融金属に侵食されるなど、耐食
性や相手材との耐凝着性は改善されていない。また、T
iB2添加量が少なく、硬度が低いためダイカストスリ
ーブのように高い耐摩耗性を必要とする用途には適さな
い。It is a known technique to add an iron group metal such as Fe, Ni or Co in order to accelerate the sintering of tungsten in order to carry out the sintering at a lower temperature. Many alloys have been developed. However, in such a sintered tungsten alloy, the added iron group metal remains as a binder phase after sintering, and the above-mentioned WC-
Similar to Co-based cemented carbide and TiCN-Ni-based cermet, this binder phase is eroded by the molten metal, resulting in poor corrosion resistance and poor adhesion resistance with the mating material. Furthermore, the drawback that tungsten has low hardness and softens at high temperature has not been solved at all. Further, an electric contact material (Japanese Patent Laid-Open No. 56-55548) in which a small amount of TiB 2 is added to a sintered tungsten alloy to improve the oxidation resistance, hardness and wear resistance is also proposed, but it is also bonded. Since the phase is Ni, which is an iron group metal, this binder phase is eroded by the molten metal, and the corrosion resistance and the adhesion resistance with the mating material are not improved. Also, T
Since the iB 2 content is small and the hardness is low, it is not suitable for applications such as die casting sleeves that require high wear resistance.
【0009】[0009]
【発明が解決しようとする課題】本発明はタングステン
の持つ優れた耐食性、靭性を損なわず、しかも高い常温
および高温硬度、優れた耐摩耗性、耐凝着性、熱衝撃抵
抗、被加工性を有するタングステン基合金を提供するこ
とを目的としている。The present invention does not impair the excellent corrosion resistance and toughness of tungsten, yet has high room temperature and high temperature hardness, excellent wear resistance, adhesion resistance, thermal shock resistance and workability. It is intended to provide a tungsten-based alloy having the same.
【0010】[0010]
【課題を解決するための手段】Mo2FeB2,Mo2
CoB2,Mo2NiB2,W2FeB2,W2CoB
2,W2NiB2,MoCoB,WFeB,WCoBの
中から選ばれた1種以上の3元系複硼化物粉末を1〜3
0体積%と、残部がタングステン粉末ならびに不可避的
不純物からなる混合粉末を成形して焼結することによっ
て、タングステンの持つ優れた耐食性、靭性を損なわ
ず、しかも高い常温および高温硬度、優れた耐摩耗性、
耐凝着性、熱衝撃抵抗、被加工性を有する硼化物系タン
グステン基合金が得られる。この合金を合金Aと呼ぶ。
なお、3元系複硼化物は必ずしも化学量論比と一致する
必要はなく、また不可避的な不純物を含んでも良い。な
お、これらの3元系複硼化物は単独で用いても良く、2
種以上を組み合わせて用いても良いし、さらに2種以上
が相互に固溶したものを用いても良い。Means for Solving the Problems Mo 2 FeB 2 , Mo 2
CoB 2 , Mo 2 NiB 2 , W 2 FeB 2 , W 2 CoB
2 , W 2 NiB 2 , MoCoB, WFeB, WCoB selected from one or more ternary compound boride powders of 1 to 3
By molding and sintering a mixed powder of 0% by volume and the balance consisting of tungsten powder and unavoidable impurities, the excellent corrosion resistance and toughness of tungsten are not impaired, and high room temperature and high temperature hardness and excellent wear resistance are provided. sex,
A boride-based tungsten-based alloy having adhesion resistance, thermal shock resistance, and workability can be obtained. This alloy is called alloy A.
The ternary compound boride does not necessarily have to match the stoichiometric ratio, and may contain inevitable impurities. Incidentally, these ternary compound boride may be used alone, and
A combination of two or more kinds may be used, or a combination of two or more kinds may be used.
【0011】3元系複硼化物の第1の効果は焼結時に液
相となって焼結を促進し、焼結体をち密化することであ
る。そして、これらの3元系複硼化物はそれ自体が耐食
性に優れているため、焼結体の耐食性を低下させること
もない。タングステンは難焼結材料であるが、液相の出
現によってち密化を促進させる、いわゆる液相焼結を行
えば比較的低温でち密な焼結体が得られることは良く知
られている。液相として用いる材種は耐食性に優れるこ
とが必要であり、また、2000℃以下のできるだけ低
い温度で液相になり焼結を促進させることが必要であ
る。例えば、Fe,Ni,Coのような鉄族金属を液相
として用いると、焼結後も鉄族金属が結合相として残
り、この結合相が溶融金属に侵食されるため、溶融金属
に対する耐食性は著しく低下する。また、一般的に耐食
性に優れる金属間化合物やセラミックスは融点が高く、
2000℃以下で液相になるものは少ないし、仮に液相
となってもタングステンとの濡れ性が悪く、タングステ
ンを十分ち密化できるものはさらに少なくなる。このよ
うな条件を満たす材料としては、Mo2FeB2,Mo
2CoB2,Mo2NiB2,W2FeB2,W2Co
B2,W2NiB2,MoCoB,WFeB,WCoB
などの3元系複硼化物が適している。The first effect of the ternary compound boride is that it becomes a liquid phase at the time of sintering to promote the sintering and to make the sintered body dense. Since these ternary compound borides themselves have excellent corrosion resistance, they do not deteriorate the corrosion resistance of the sintered body. Tungsten is a difficult-to-sinter material, but it is well known that a dense sintered body can be obtained at a relatively low temperature by performing so-called liquid phase sintering, which promotes densification by the appearance of a liquid phase. It is necessary that the material used as the liquid phase has excellent corrosion resistance, and that the material becomes the liquid phase at a temperature as low as 2000 ° C. or less and promotes sintering. For example, when an iron group metal such as Fe, Ni, Co is used as a liquid phase, the iron group metal remains as a binder phase even after sintering, and this binder phase is corroded by the molten metal, so that the corrosion resistance to the molten metal is Markedly reduced. In addition, intermetallic compounds and ceramics that are generally excellent in corrosion resistance have high melting points,
At 2000 ° C. or less, there are few that become a liquid phase, and even if they become a liquid phase, the wettability with tungsten is poor, and the number that can sufficiently densify tungsten becomes even smaller. Materials that satisfy such conditions include Mo 2 FeB 2 and Mo.
2 CoB 2 , Mo 2 NiB 2 , W 2 FeB 2 , W 2 Co
B 2 , W 2 NiB 2 , MoCoB, WFeB, WCoB
Such as ternary compound boride is suitable.
【0012】3元系複硼化物の第2の効果は焼結後、タ
ングステンのまわりを取り囲む形で残り、300℃以上
の高温で容易に変形してしまうというタングステンの欠
点をなくすことである。さらに第3の効果は、タングス
テンの高温抗折力や高温硬度の低下を防ぐことである。The second effect of the ternary compound boride is to eliminate the disadvantage of tungsten, which remains in the form of surrounding tungsten after sintering and is easily deformed at a high temperature of 300 ° C. or higher. Further, the third effect is to prevent the deterioration of the high temperature transverse rupture strength and high temperature hardness of tungsten.
【0013】以上の効果により合金Aは優れた耐食性、
高温での耐変形性および高い高温抗折力、高温硬度を持
つが、さらに優れた靭性、熱衝撃抵抗、被加工性も有し
ている。この理由は正確には解明されていないが、次の
ように考えられる。液相を出現させるために添加する材
料とタングステンが反応し、その大部分が金属間化合物
を形成したり結晶粒を粗大化させると、タングステンの
有する高い靭性や熱衝撃抵抗が損なわれてしまう。しか
し、本発明の3元系複硼化物を用いると、3元系複硼化
物とタングステンの急激な反応がなく、焼結後も合金の
結晶粒の粗大化が少なく、しかも金属タングステンの結
晶構造がほとんど失われないため、タングステンの有す
る高い靭性、熱衝撃抵抗および良好な被加工性が損なわ
れないものと推定される。Due to the above effects, Alloy A has excellent corrosion resistance,
It has high-temperature deformation resistance, high-temperature transverse rupture strength, and high-temperature hardness, but also has excellent toughness, thermal shock resistance, and workability. The reason for this has not been clarified exactly, but it is considered as follows. When the material added to cause the appearance of the liquid phase reacts with tungsten and most of it forms an intermetallic compound or coarsens the crystal grains, the high toughness and thermal shock resistance of tungsten are impaired. However, when the ternary compound boride of the present invention is used, there is no rapid reaction between the ternary compound compound and tungsten, the crystal grains of the alloy are not coarsened even after sintering, and the crystal structure of metallic tungsten is small. It is presumed that the high toughness, thermal shock resistance, and good workability of tungsten will not be impaired, since the alloy has almost no loss.
【0014】3元系複硼化物の添加量は1〜30%が良
く、好ましくは3〜20%が良い。1%未満では前述第
1,第2,第3の効果が十分あらわれない。また、30
%を越えるとタングステンと3元系複硼化物が反応して
形成される硼化物の量が多くなり、この硼化物の影響で
靭性、熱衝撃抵抗および被加工性が著しく低下する。ま
た、添加量が1%以上3%未満でも焼結体はほぼち密化
するが、液相量が少なくなるため100%ち密化させる
ことが難しく、ミクロな気孔が僅かに残り強度がやや低
くなる。また、20%を越えると相対的にタングステン
量が少なくなるため靭性がやや低下する。従って高強
度、高靭性を得るためには3〜20%の添加量がより好
ましい。The amount of the ternary compound boride added is preferably 1 to 30%, more preferably 3 to 20%. If it is less than 1%, the above-mentioned first, second and third effects are not sufficiently exhibited. Also, 30
If it exceeds 0.1%, the amount of boride formed by the reaction between tungsten and the ternary compound boride increases, and the toughness, thermal shock resistance, and workability are remarkably lowered due to the influence of this boride. Also, when the addition amount is 1% or more and less than 3%, the sintered body is almost densified, but it is difficult to densify it to 100% because the amount of liquid phase is small, and microscopic pores are slightly left and the strength is slightly lowered. .. On the other hand, if it exceeds 20%, the amount of tungsten becomes relatively small and the toughness is slightly lowered. Therefore, in order to obtain high strength and high toughness, the addition amount of 3 to 20% is more preferable.
【0015】合金Aは旋盤による加工が可能であるなど
非常に被加工性が良く、また、溶融金属、酸類、アルカ
リ類にきわめて優れた耐食性を示す。従って、高耐食性
を必要とする金属溶解用るつぼ、溶融金属測温用熱電対
の保護管、ダイカストマシン用ラドル、酸やアルカリ溶
液の蒸発皿などに好適な材料である。The alloy A has a very good workability such that it can be processed by a lathe, and has an extremely excellent corrosion resistance against molten metals, acids and alkalis. Therefore, it is a suitable material for crucibles for melting metals that require high corrosion resistance, protective tubes for thermocouples for measuring molten metal temperature, ladles for die casting machines, evaporation plates for acid and alkaline solutions, and the like.
【0016】次に合金Aの常温および高温硬度、耐摩耗
性について調べた結果、純タングステンや鉄族金属を添
加した焼結タングステン合金に比べると非常に優れてお
り、前述の用途には好適な材料であるが、耐食性に加え
て非常に高い耐摩耗性を必要とする溶融金属ダイカスト
マシン用スリーブやプランジャーチップなどに適用する
にはやや低いと思われた。そこでMo2FeB2,Mo
2CoB2,Mo2NiB2,W2FeB2,W2Co
B2,W2NiB2,MoCoB,WFeB,WCoB
の中から選ばれた1種以上の3元系複硼化物を1〜20
%と、MxBy(ただし、MはTi,Zr,Ta,N
b,Cr,Vを表し、x=1〜2、y=1〜4である)
で表せる2元系硼化物粉末の中から選ばれた少なくとも
1種以上を1〜20%と、残部がタングステン粉末なら
びに不可避的不純物からなる混合粉末を成形して焼結し
た焼結体とすることによって、耐食性を損なうことなく
常温および高温硬度を高くし、耐摩耗性を向上させるこ
とができる。なお、これらの3元系複硼化物および2元
系硼化物は必ずしも化学量論比と一致する必要はなく、
また不可避的な不純物を含んでも良い。3元系複硼化物
および2元系硼化物は単独で用いても良いし、2種以上
を組み合わせて用いても良く、さらに2種以上が相互に
固溶したものを用いても良い。この合金を合金Bと呼
ぶ。即ち、合金Bは合金Aに、非常に高い硬度、耐摩耗
性を有する2元系硼化物を添加することにより、合金の
常温および高温硬度を高くし、耐摩耗性をさらに向上さ
せた材料である。Next, as a result of examining the room temperature and high temperature hardness and wear resistance of alloy A, it is extremely superior to pure tungsten and a sintered tungsten alloy to which an iron group metal is added, and is suitable for the above-mentioned applications. Although it is a material, it was considered to be somewhat low in application to sleeves and plunger chips for molten metal die casting machines that require very high wear resistance in addition to corrosion resistance. Therefore, Mo 2 FeB 2 , Mo
2 CoB 2 , Mo 2 NiB 2 , W 2 FeB 2 , W 2 Co
B 2 , W 2 NiB 2 , MoCoB, WFeB, WCoB
1 to 20 of one or more ternary compound boride selected from among
% And MxBy (where M is Ti, Zr, Ta, N
represents b, Cr, and V, and x = 1 to 2 and y = 1 to 4)
Of at least one selected from the binary boride powders represented by 1 to 20% and the balance consisting of tungsten powder and unavoidable impurities are molded and sintered to obtain a sintered body. By this, the normal temperature and high temperature hardness can be increased and the wear resistance can be improved without impairing the corrosion resistance. It should be noted that these ternary compound boride and binary boride do not necessarily have to match the stoichiometric ratio.
It may also contain unavoidable impurities. The ternary compound boride and the ternary boride may be used alone, two or more kinds may be used in combination, and two or more kinds may be used as a solid solution with each other. This alloy is called alloy B. That is, Alloy B is a material in which the binary boride having extremely high hardness and wear resistance is added to Alloy A to increase the room temperature and high temperature hardness of the alloy and further improve the wear resistance. is there.
【0017】合金Bの3元系複硼化物の効果は合金Aと
同様である。これらの3元系複硼化物は2元系硼化物と
複合添加しても同様の効果があらわれる。The effect of the ternary compound boride of alloy B is the same as that of alloy A. Similar effects can be obtained by adding these ternary compound boride and the binary compound boride together.
【0018】合金Bの3元系複硼化物の添加量は1〜2
0%が良く、好ましくは3〜15%が良い。1%未満で
は3元系複硼化物の添加効果が充分あらわれない。ま
た、添加量が20%を越えるとタングステンと3元系複
硼化物が反応して形成される硼化物の量が多くなり、こ
の硼化物の影響で、靭性および熱衝撃抵抗が著しく低下
する。また、添加量が1%以上3%未満でも焼結体はち
密化するが、液相量が少なくなるため100%ち密化さ
せることが難しく、ミクロな気孔が僅かに残り強度がや
や低くなる。また、15%を越えると相対的にタングス
テン量が少なくなるため靭性がやや低下する。従って高
強度、高靭性を得るためには、3〜15%の添加量がよ
り好ましい。The addition amount of the ternary compound boride of alloy B is 1 to 2
0% is good, and preferably 3 to 15%. If it is less than 1%, the effect of adding the ternary compound boride is not sufficiently exhibited. On the other hand, if the addition amount exceeds 20%, the amount of boride formed by the reaction of tungsten and the ternary compound boride increases, and the toughness and thermal shock resistance significantly decrease due to the influence of this boride. Also, when the addition amount is 1% or more and less than 3%, the sintered body is densified, but since the liquid phase amount is small, it is difficult to densify it to 100%, and microscopic pores are slightly left and the strength is slightly lowered. On the other hand, if it exceeds 15%, the toughness is slightly lowered because the amount of tungsten is relatively small. Therefore, in order to obtain high strength and high toughness, the addition amount of 3 to 15% is more preferable.
【0019】次に2元系硼化物の第1の効果は焼結体中
均一に分散することによって合金の常温および高温硬度
を高め、さらに耐摩耗性を向上させることである。2元
系硼化物、例えばTiB2、ZrB2およびCrB2の
硬度はそれぞれHv3400、Hv2200およびHv
1700と非常に高く、耐摩耗性にも優れるため、少量
の添加でも合金の常温および高温硬度を高め、耐摩耗性
を向上させることができる。第2の効果は、合金の強度
を向上させることである。これは、タングステンは高温
での粒成長が大きいことが知られているが、合金Aでは
3元系複硼化物が粒成長を抑制し、合金Bでは、さらに
2元系硼化物の粒成長抑制効果が大きいために結晶粒が
より細かくなり、この結晶粒微細化効果によって合金B
の強度が向上するものと考えられる。Next, the first effect of the binary boride is to increase the room temperature and high temperature hardness of the alloy by uniformly dispersing it in the sintered body and further improve the wear resistance. The hardness of binary borides such as TiB 2 , ZrB 2 and CrB 2 is Hv3400, Hv2200 and Hv, respectively.
Since it is extremely high at 1700 and has excellent wear resistance, it is possible to increase the room temperature and high temperature hardness of the alloy and improve the wear resistance even if added in a small amount. The second effect is to improve the strength of the alloy. It is known that tungsten has a large grain growth at high temperature, but in alloy A, ternary compound boride suppresses grain growth, and in alloy B, grain growth of binary borides is further suppressed. Since the effect is great, the crystal grains become finer, and due to this grain refinement effect, alloy B
It is considered that the strength of the is improved.
【0020】2元系硼化物の添加量は1〜20%が良
く、好ましくは5〜15%が良い。1%未満では2元系
硼化物を添加した前述の効果があらわれない。20%を
越えるとタングステンと2元系硼化物が反応して形成さ
れる硼化物の量が多くなるために、靭性および熱衝撃抵
抗が著しく低下するし、また、硬度が高くなりすぎて被
加工性も低下する。添加量が1%以上5%未満では添加
した効果はあるものの十分ではないために、合金Aと比
べて強度、硬度、耐摩耗性が僅かしか改善されない。ま
た、15%を超え20%までの添加は、相対的にタング
ステン量が少なくなるため靭性がやや低下する。従っ
て、添加量は5〜15%とすることがより好ましい。The addition amount of the binary boride is preferably 1 to 20%, more preferably 5 to 15%. If it is less than 1%, the above-described effect of adding the binary boride will not be exhibited. If it exceeds 20%, the amount of boride formed by the reaction of tungsten and the binary boride increases, so that the toughness and thermal shock resistance are remarkably lowered, and the hardness becomes too high, resulting in the workability. Sex is also reduced. If the amount of addition is 1% or more and less than 5%, the effect of addition is not sufficient, but strength, hardness, and wear resistance are slightly improved compared to alloy A. Further, addition of more than 15% and up to 20% results in a relatively small amount of tungsten, resulting in a slight decrease in toughness. Therefore, the addition amount is more preferably 5 to 15%.
【0021】合金Bは耐食性に優れ、しかも、常温およ
び高温硬度が高く、耐摩耗性にも優れる材料である。ま
た、合金Bの被加工性は合金Aよりも劣るが、やはり切
削加工が可能であり、セラミックスに比べれば、はるか
に加工の容易な材料である。したがって、溶融金属ダイ
カストマシン用スリーブ、プランジャーチップ、金型、
押し出しダイスなどに好適である。Alloy B is a material having excellent corrosion resistance, high hardness at room temperature and high temperature, and excellent wear resistance. Further, although the workability of the alloy B is inferior to that of the alloy A, it is also possible to perform cutting work, and is a material that is far easier to process than ceramics. Therefore, the sleeve for molten metal die casting machine, plunger tip, mold,
It is suitable for extrusion dies.
【0022】本発明の高耐食耐摩耗性硼化物系タングス
テン基合金の製造は次のようにして行うことができる。
合金Aでは、例えば、タングステン粉末に3元系複硼化
物Mo2NiB2粉末を所定の組成となるように添加
し、合金Bでは、例えば、タングステン粉末に3元系複
硼化物Mo2FeB2粉末と2元系硼化物ZrB2粉末
を所定の組成となるように添加して、アトライターある
いは振動ボールミルで湿式混合と粉砕を十分に行った
後、窒素ガス中で乾燥造粒する。この混合粉末を黒鉛型
に充填し、真空中またはアルゴンガス、窒素ガスおよび
水素ガスのような中性または還元性雰囲気中、100k
g/cm2以上の圧力下において1400℃〜1900
℃の温度で加熱するホットプレスによるか、あるいは、
前記の混合粉末を油圧プレスによってあらかじめ圧粉成
形した圧粉体とし、真空中またはアルゴンガス、窒素ガ
スおよび水素ガスのような中性または還元性雰囲気中、
あるいは雰囲気加圧中、1500℃〜2000℃の温度
で加熱する普通焼結することによって製造することがで
きる。なお、ホットプレスや普通焼結によって得られた
焼結体は、さらに熱間静水圧プレスを行っても良い。ま
た、圧粉成形は油圧プレスを用いず、冷間静水圧プレス
を行っても良く、また混合粉末をキャンニングし直接熱
間静水圧プレスを行って焼結体を得ることもできる。The high corrosion resistance and wear resistance boride-based tungsten-based alloy of the present invention can be manufactured as follows.
In alloy A, for example, ternary compound boride Mo 2 NiB 2 powder is added to tungsten powder so as to have a predetermined composition, and in alloy B, for example, ternary compound boride Mo 2 FeB 2 is added to tungsten powder. The powder and the binary boride ZrB 2 powder are added so as to have a predetermined composition, sufficiently wet-mixed and pulverized by an attritor or a vibrating ball mill, and then dry granulated in a nitrogen gas. This mixed powder is filled in a graphite mold, and the mixture is vacuumed or in a neutral or reducing atmosphere such as argon gas, nitrogen gas and hydrogen gas at 100 k.
1400 ° C to 1900 under pressure of g / cm 2 or more
By hot pressing to heat at a temperature of ℃, or
The mixed powder is pre-compacted by a hydraulic press into a compact, and in vacuum or in a neutral or reducing atmosphere such as argon gas, nitrogen gas and hydrogen gas,
Alternatively, it can be produced by ordinary sintering by heating at a temperature of 1500 ° C. to 2000 ° C. while pressurizing in an atmosphere. The sintered body obtained by hot pressing or ordinary sintering may be further subjected to hot isostatic pressing. Further, the powder compacting may be performed by cold isostatic pressing without using a hydraulic press, or by sintering the mixed powder and directly performing hot isostatic pressing to obtain a sintered body.
【0023】[0023]
【実施例】以下実施例により本発明をさらに詳細に説明
する。なお実施例に供した材料の組成を表1に示した。
また比較例1には溶解−鋳造によって作製したSKD6
1(87.8Fe−1.1C−5.3Cr−0.9Mo
−1.3V−3.6(Si,Mn,P,S))を窒化処
理した鋼材を示し、比較例2には焼結タングステン合金
(84W−5Fe−5Ni−6Mo)を示した。なお、
組成はいずれも体積%である。The present invention will be described in more detail with reference to the following examples. The compositions of the materials used in the examples are shown in Table 1.
In Comparative Example 1, SKD6 produced by melting-casting
1 (87.8Fe-1.1C-5.3Cr-0.9Mo
The steel material obtained by nitriding -1.3V-3.6 (Si, Mn, P, S) is shown, and the sintered tungsten alloy (84W-5Fe-5Ni-6Mo) is shown in Comparative Example 2. In addition,
All compositions are% by volume.
【0024】実施例1 タングステン粉末およびMo2NiB2粉末を表2の実
施例1に示す割合に配合し、アトライターにより、アセ
トン中で8時間混合粉砕を行った後、窒素雰囲気中で乾
燥造粒した。次にこの混合粉末を金型に充填し、上下一
軸方向の油圧プレスにより、1.5Ton/cm2の圧
力でプレスを行い圧粉体とした。この圧粉体をアルゴン
雰囲気加圧(ガス圧9.8kg/cm2)中、1700
℃の温度で30分間加熱した。この焼結体をダイアモン
ド砥石による研削加工、あるいはダイアモンドペースト
による鏡面仕上げを施した後、表3に示す硬度、耐摩耗
性、耐食性を調べた。硬さは常温、300℃および90
0℃におけるビッカース硬度(Hv)により評価した。
測定は荷重5kgで5点測定し、平均値を求めた。比較
例1のSKD61(窒化処理)は表面硬化相が非常に薄
いためマイクロビッカース(荷重100g)によって測
定した。耐摩耗性は大越式摩耗試験により評価した。大
越式摩耗試験はプレートの形状に加工した試験片を回転
するリングに押しつけて摩擦をおこさせ、リングで削ら
れたプレート上の摩耗痕の体積を測定する方法である。
摩耗体積が小さいほど耐摩耗性が優れていることにな
る。リングの材質はS35Cであり、試験条件は摩擦距
離200m、最終荷重18.9kgとし、摩擦速度を低
速(0.21m/秒),中速(0.94m/秒)および
高速(4.39m/秒)と変化させた。耐食性は溶融ア
ルミニウム中への浸せき試験により評価した。この試験
では溶融アルミニウム(ADC10,750℃)の中に
ブロックを8時間浸せきした後、ブロックが溶融アルミ
ニウムによって表面から侵食された深さを測定した。従
って、侵食深さが小さいほど、耐食性が優れていること
になる。Example 1 Tungsten powder and Mo 2 NiB 2 powder were blended in the proportions shown in Example 1 of Table 2, mixed and pulverized in acetone with an attritor for 8 hours, and then dried in a nitrogen atmosphere. Grained. Next, this mixed powder was filled in a mold, and pressed by a hydraulic press in the up and down uniaxial direction at a pressure of 1.5 Ton / cm 2 to obtain a green compact. This green compact was subjected to an argon atmosphere pressurization (gas pressure of 9.8 kg / cm 2 ) at 1700
Heated for 30 minutes at a temperature of ° C. The sintered body was ground with a diamond grindstone or mirror-finished with a diamond paste, and the hardness, wear resistance and corrosion resistance shown in Table 3 were examined. Hardness is room temperature, 300 ℃ and 90
It was evaluated by Vickers hardness (Hv) at 0 ° C.
The measurement was performed at 5 points under a load of 5 kg, and the average value was obtained. Since SKD61 (nitriding treatment) of Comparative Example 1 has a very thin surface hardening phase, it was measured by micro Vickers (load 100 g). The wear resistance was evaluated by the Ohkoshi type wear test. The Ogoshi-type wear test is a method in which a test piece processed into a plate shape is pressed against a rotating ring to cause friction, and the volume of wear marks on the plate scraped by the ring is measured.
The smaller the wear volume, the better the wear resistance. The ring material was S35C, the test conditions were a friction distance of 200 m, a final load of 18.9 kg, and a friction speed of low speed (0.21 m / sec), medium speed (0.94 m / sec) and high speed (4.39 m / sec). Seconds). The corrosion resistance was evaluated by a dipping test in molten aluminum. In this test, after immersing the block in molten aluminum (ADC10,750 ° C.) for 8 hours, the depth at which the block was eroded from the surface by the molten aluminum was measured. Therefore, the smaller the erosion depth, the better the corrosion resistance.
【0025】実施例1と比較例1,2の特性を表3に示
す。実施例1の硬度は比較例2の焼結タングステン合金
よりも高く、900℃では約1.5倍であった。次に比
摩耗量は比較例1のSKD61(窒化処理)よりも、特
に中、高速側で非常に小さく、また比較例2の焼結タン
グステン合金よりも全速度域にわたって小さい値であり
耐摩耗性に優れていた。これは常温および高温硬度が高
くなったこと、および耐凝着性が改善されたことによる
効果であろうと考えられる。溶融アルミニウムに対する
耐食性は、比較例1のSKD61(窒化処理)の侵食深
さが650μm、比較例2の焼結タングステン合金の侵
食深さが1800μmであるのに対し、実施例1の合金
は全く侵食されず非常に優れていた。The characteristics of Example 1 and Comparative Examples 1 and 2 are shown in Table 3. The hardness of Example 1 was higher than that of the sintered tungsten alloy of Comparative Example 2, and was about 1.5 times at 900 ° C. Next, the specific wear amount is much smaller than that of the SKD61 (nitriding treatment) of Comparative Example 1, especially on the medium and high speed sides, and is smaller than that of the sintered tungsten alloy of Comparative Example 2 over the entire speed range. Was excellent. It is considered that this is due to the fact that the hardness at normal temperature and high temperature became high and the adhesion resistance was improved. Regarding the corrosion resistance to molten aluminum, the SKD61 (nitriding treatment) of Comparative Example 1 has an erosion depth of 650 μm and the sintered tungsten alloy of Comparative Example 2 has an erosion depth of 1800 μm, whereas the alloy of Example 1 has no erosion. Not very good.
【0026】実施例1の合金Aの抗折力は常温で85k
g/mm2であり、1000℃まで抗折力の低下がなか
った。さらに抗折力測定の際、1000℃においても破
壊に至るまで試験片の変形は認められず、高温での耐変
形性にも優れていた。また、靭性値K1Cは28.7M
Pa/mm0.5と非常に高く、高靭性であった。The bending strength of the alloy A of Example 1 is 85 k at room temperature.
It was g / mm 2 , and the bending strength did not decrease up to 1000 ° C. Further, when the transverse rupture strength was measured, no deformation of the test piece was observed even at 1000 ° C. until it was broken, and the deformation resistance at high temperature was also excellent. The toughness value K 1C is 28.7M.
It had a very high Pa / mm 0.5 and high toughness.
【0027】実施例2 タングステン粉末およびMo2CoB2粉末を表2の実
施例1に示す割合に配合し、振動ボールミルにより、ア
セトン中で52時間、混合粉砕を行った後、窒素雰囲気
中で乾燥造粒した。次にこの混合粉末を黒鉛型に充填
し、アルゴン雰囲気(大気圧)において、200kg/
cm2の圧力で上下の1軸方向に加圧しながら1550
℃の温度で20分間加熱した。この焼結体から試験に適
した形状にブロックを切り出し、ダイアモンド砥石によ
る研削加工、あるいはダイアモンドペーストによる鏡面
仕上げを施した後、表3に示す特性を調べた。Example 2 Tungsten powder and Mo 2 CoB 2 powder were mixed in the proportions shown in Example 1 of Table 2, mixed and pulverized in acetone for 52 hours by a vibrating ball mill, and then dried in a nitrogen atmosphere. Granulated. Next, this mixed powder was filled in a graphite mold, and 200 kg / in an argon atmosphere (atmospheric pressure).
1550 while applying pressure in the upper and lower uniaxial directions with a pressure of cm 2.
Heated at a temperature of ° C for 20 minutes. A block was cut out from this sintered body into a shape suitable for the test, and after grinding with a diamond grindstone or mirror finishing with diamond paste, the properties shown in Table 3 were examined.
【0028】実施例3 タングステン粉末およびMo2FeB2粉末を表2の実
施例3に示す割合に配合した後、実施例1と同様の方法
で混合粉砕、圧粉成形および焼結を行った。但し、焼結
雰囲気は大気圧とした。Example 3 Tungsten powder and Mo 2 FeB 2 powder were mixed in the proportions shown in Example 3 of Table 2, and then mixed and pulverized, compacted and sintered in the same manner as in Example 1. However, the sintering atmosphere was atmospheric pressure.
【0029】実施例2および3で得られた合金Aの特性
を表3に示すが、比較例1のSKD61(窒化処理)お
よび比較例2の焼結タングステン合金よりも、いずれも
耐摩耗性および耐食性に優れていた。また、硬度は比較
例2の焼結タングステン合金よりも高かった。The characteristics of the alloy A obtained in Examples 2 and 3 are shown in Table 3. Both the wear resistance and the wear resistance and the SKD61 (nitriding treatment) of Comparative Example 1 and the sintered tungsten alloy of Comparative Example 2 are higher. It had excellent corrosion resistance. The hardness was higher than that of the sintered tungsten alloy of Comparative Example 2.
【0030】実施例4 タングステン粉末、Mo2NiB2粉末およびTiB2
粉末を表2の実施例4に示す割合に配合した後、実施例
2と同様の方法で焼結体を作製した。実施例4の硬度は
比較例2の焼結タングステン合金よりも高く、900℃
では約3倍であった。次に比摩耗量は比較例1のSKD
61(窒化処理)よりも、特に中、高速側で非常に小さ
く、また比較例2の焼結タングステン合金よりも全速度
域にわたって小さい値であり、耐摩耗性に優れていた。
また溶融アルミニウムによる侵食はなく耐食性も非常に
良好であった。抗折力は常温で140kg/mm2であ
り、1000℃まで抗折力の低下がなかった。さらに抗
折力測定の際、1000℃においても破壊に至るまで試
験片の変形は認められず、高温での耐変形性にも優れて
いた。また、靭性値K1Cは8.5MPa/mm0.5
であった。実施例1〜3の合金Aと比較すると、靭性は
やや低いが、常温および高温硬度、耐摩耗性および抗折
力が向上した。Example 4 Tungsten powder, Mo 2 NiB 2 powder and TiB 2
After mixing the powders in the proportions shown in Example 4 of Table 2, a sintered body was produced in the same manner as in Example 2. The hardness of Example 4 is higher than that of the sintered tungsten alloy of Comparative Example 2, 900 ° C.
Was about 3 times. Next, the specific wear amount is the SKD of Comparative Example 1.
The value was much smaller than that of 61 (nitriding treatment), especially on the medium and high speed sides, and was smaller than the sintered tungsten alloy of Comparative Example 2 over the entire speed range, and was excellent in wear resistance.
Further, there was no corrosion by molten aluminum and the corrosion resistance was very good. The transverse rupture strength was 140 kg / mm 2 at room temperature, and the transverse rupture strength did not decrease up to 1000 ° C. Further, when the transverse rupture strength was measured, no deformation of the test piece was observed even at 1000 ° C. until it was broken, and the deformation resistance at high temperature was also excellent. Further, the toughness value K 1C is 8.5 MPa / mm 0.5.
Met. Compared with the alloys A of Examples 1 to 3, the toughness was slightly lower, but the room temperature and high temperature hardness, the wear resistance and the transverse rupture strength were improved.
【0031】実施例5 タングステン粉末、Mo2NiB2粉末およびZrB2
粉末を表2の実施例5に示す割合に配合した後、実施例
2と同様の方法で焼結体を作製した。Example 5 Tungsten powder, Mo 2 NiB 2 powder and ZrB 2
After mixing the powders in the proportions shown in Example 5 of Table 2, a sintered body was produced in the same manner as in Example 2.
【0032】実施例6 タングステン粉末、Mo2CoB2粉末およびTiB2
粉末を表2の実施例6に示す割合に配合した後、実施例
1と同様の方法で焼結体を作製した。Example 6 Tungsten powder, Mo 2 CoB 2 powder and TiB 2
After mixing the powders in the proportions shown in Example 6 of Table 2, a sintered body was produced in the same manner as in Example 1.
【0033】実施例7 タングステン粉末、Mo2NiB2粉末およびTiB2
粉末を表2の実施例7に示す割合に配合した後、実施例
1と同様の方法で焼結体を作製した。但し、焼結雰囲気
は大気圧とした。Example 7 Tungsten powder, Mo 2 NiB 2 powder and TiB 2
After mixing the powders in the proportions shown in Example 7 of Table 2, a sintered body was produced in the same manner as in Example 1. However, the sintering atmosphere was atmospheric pressure.
【0034】実施例8 タングステン粉末、Mo2CoB2粉末およびTiB2
粉末を表2の実施例8に示す割合に配合した後、実施例
1と同様の方法で焼結体を作製した。但し、焼結雰囲気
は大気圧とした。Example 8 Tungsten powder, Mo 2 CoB 2 powder and TiB 2
After mixing the powders in the proportions shown in Example 8 of Table 2, a sintered body was produced in the same manner as in Example 1. However, the sintering atmosphere was atmospheric pressure.
【0035】実施例9 タングステン粉末、Mo2NiB2粉末およびZrB2
粉末を表2の実施例9に示す割合に配合した後、実施例
1と同様の方法で焼結体を作製した。但し、焼結は真空
中で実施した。Example 9 Tungsten powder, Mo 2 NiB 2 powder and ZrB 2
After mixing the powders in the proportions shown in Example 9 of Table 2, a sintered body was produced in the same manner as in Example 1. However, sintering was performed in a vacuum.
【0036】実施例10 タングステン粉末、W2NiB2粉末、W2CoB2粉
末およびTiB2粉末を表2の実施例10に示す割合に
配合した後、実施例2と同様の方法で焼結体を作製し
た。Example 10 Tungsten powder, W 2 NiB 2 powder, W 2 CoB 2 powder and TiB 2 powder were mixed in the proportions shown in Example 10 of Table 2 and then sintered in the same manner as in Example 2. Was produced.
【0037】実施例11 タングステン粉末、WCoB粉末、MoCoB粉末およ
びTaB2粉末を表2の実施例11に示す割合に配合し
た後、実施例2と同様の方法で焼結体を作製した。Example 11 Tungsten powder, WCoB powder, MoCoB powder and TaB 2 powder were mixed in the proportions shown in Example 11 of Table 2, and then a sintered body was produced in the same manner as in Example 2.
【0038】実施例12 タングステン粉末、W2FeB2粉末、WFeB粉末お
よびCrB2粉末を表2の実施例12に示す割合に配合
した後、実施例2と同様の方法で焼結体を作製した。Example 12 Tungsten powder, W 2 FeB 2 powder, WFeB powder and CrB 2 powder were mixed in the proportions shown in Example 12 of Table 2, and then a sintered body was prepared in the same manner as in Example 2. ..
【0039】実施例4〜12で得られた合金Bの特性を
表3に示すが、比較例1のSKD61(窒化処理)、お
よび比較例2の焼結タングステン合金よりも、いずれも
耐摩耗性および耐食性に優れていた。また、硬度は比較
例2の焼結タングステン合金よりも非常に高い値であっ
た。実施例1〜3の合金Aと比較すると、靭性はやや低
いが、常温および高温硬度が高くなり、また耐摩耗性お
よび抗折力が向上した。The characteristics of the alloy B obtained in Examples 4 to 12 are shown in Table 3. The wear resistance is lower than that of SKD61 (nitriding treatment) of Comparative Example 1 and the sintered tungsten alloy of Comparative Example 2. It was also excellent in corrosion resistance. The hardness was much higher than that of the sintered tungsten alloy of Comparative Example 2. Compared with the alloys A of Examples 1 to 3, the toughness was slightly lower, but the normal temperature and high temperature hardness were higher, and the wear resistance and transverse rupture strength were improved.
【0040】[0040]
【表1】 [Table 1]
【0041】[0041]
【表2】 [Table 2]
【0042】[0042]
【表3】 [Table 3]
【0043】[0043]
【発明の効果】以上説明したように本発明の高耐食耐摩
耗性硼化物系タングステン基合金は高い常温および高温
硬度と優れた耐食性、耐摩耗性を有する新しい材料であ
り、金属溶解用るつぼ、溶融金属測温用熱電対の保護
管、ダイカストマシン用ラドル、酸やアルカリ溶液の蒸
発皿、溶融金屈ダイカストマシン用スリーブ、プランジ
ャーチップ、金型、押し出しダイスなど多くの工業分野
に適用できる。As described above, the high corrosion resistance and wear resistance boride-based tungsten-based alloy of the present invention is a new material having high room temperature and high temperature hardness and excellent corrosion resistance and wear resistance. It can be applied to many industrial fields such as thermocouple protection tube for measuring temperature of molten metal, ladle for die casting machine, evaporating dish of acid or alkali solution, sleeve for molten metal bending die casting machine, plunger chip, die, extrusion die.
Claims (3)
2NiB2,W2FeB2,W2CoB2,W2NiB
2,MoCoB,WFeB,WCoBの中から選ばれた
1種以上の3元系複硼化物粉末を1〜30体積%(以下
%は体積%)と、残部がタングステン粉末ならびに不可
避的不純物からなる混合粉末を成形して焼結した焼結体
であることを特徴とする高耐食耐摩耗性硼化物系タング
ステン基合金。1. Mo 2 FeB 2 , Mo 2 CoB 2 , Mo
2 NiB 2 , W 2 FeB 2 , W 2 CoB 2 , W 2 NiB
2 , 1 to 30% by volume of ternary compound boride powder selected from MoCoB, WFeB and WCoB (hereinafter,% is volume%), and the balance is tungsten powder and inevitable impurities. A high-corrosion and wear-resistant boride-based tungsten-based alloy, which is a sintered body obtained by molding and sintering powder.
2NiB2,W2FeB2,W2CoB2,W2NiB
2,MoCoB,WFeB,WCoBの中から選ばれた
1種以上の3元系複硼化物粉末を1〜20%と、MxB
y(ただしMはTi,Zr,Ta,Nb,Cr,Vを表
し、x=1〜2、y=1〜4である)で表せる2元系硼
化物粉末の中から選ばれた少なくとも1種以上を1〜2
0%と、残部がタングステン粉末ならびに不可避的不純
物からなる混合粉末を成形して焼結した焼結体であるこ
とを特徴とする高耐食耐摩耗性硼化物系タングステン基
合金。2. Mo 2 FeB 2 , Mo 2 CoB 2 , Mo
2 NiB 2 , W 2 FeB 2 , W 2 CoB 2 , W 2 NiB
2 , 1 to 20% of one or more ternary compound boride powder selected from MoCoB, WFeB and WCoB, and MxB
At least one selected from the binary boride powders represented by y (where M represents Ti, Zr, Ta, Nb, Cr, V, and x = 1 to 2, y = 1 to 4). 1 to 2 above
A high corrosion-resistant and wear-resistant boride-based tungsten-based alloy, which is a sintered body obtained by molding and sintering a mixed powder of 0% and the balance of tungsten powder and inevitable impurities.
2,CrB2の中から選ばれた少なくとも1種以上の2
元系硼化物であることを特徴とする請求項2の高耐食耐
摩耗性硼化物系タングステン基合金。3. MxBy is TiB 2 , ZrB 2 , TaB
2, CrB 2 of at least one or more kinds selected from among 2
The high-corrosion and wear-resistant boride-based tungsten-based alloy according to claim 2, which is an original boride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3065730A JP2967789B2 (en) | 1991-01-11 | 1991-01-11 | High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3065730A JP2967789B2 (en) | 1991-01-11 | 1991-01-11 | High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05140689A true JPH05140689A (en) | 1993-06-08 |
JP2967789B2 JP2967789B2 (en) | 1999-10-25 |
Family
ID=13295431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3065730A Expired - Fee Related JP2967789B2 (en) | 1991-01-11 | 1991-01-11 | High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2967789B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006097070A (en) * | 2004-09-29 | 2006-04-13 | Allied Material Corp | Tungsten alloy having oxidation resistance, and production method therefor |
US20140272171A1 (en) * | 2013-03-15 | 2014-09-18 | Mesocoat, Inc. | Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder |
CN117887992A (en) * | 2024-03-14 | 2024-04-16 | 崇义章源钨业股份有限公司 | Hard alloy and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS568904A (en) * | 1980-06-05 | 1981-01-29 | Toshiba Corp | Antenna unit |
JPS59222556A (en) * | 1983-05-30 | 1984-12-14 | Daido Steel Co Ltd | Wear resistant sintered iron alloy with superior workability and its manufacture |
-
1991
- 1991-01-11 JP JP3065730A patent/JP2967789B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS568904A (en) * | 1980-06-05 | 1981-01-29 | Toshiba Corp | Antenna unit |
JPS59222556A (en) * | 1983-05-30 | 1984-12-14 | Daido Steel Co Ltd | Wear resistant sintered iron alloy with superior workability and its manufacture |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006097070A (en) * | 2004-09-29 | 2006-04-13 | Allied Material Corp | Tungsten alloy having oxidation resistance, and production method therefor |
JP4603841B2 (en) * | 2004-09-29 | 2010-12-22 | 株式会社アライドマテリアル | Tungsten alloy having oxidation resistance and method for producing the same |
US20140272171A1 (en) * | 2013-03-15 | 2014-09-18 | Mesocoat, Inc. | Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder |
CN105209178A (en) * | 2013-03-15 | 2015-12-30 | 梅索涂层公司 | Ternary ceramic thermal spraying powder and coating method |
US9885100B2 (en) * | 2013-03-15 | 2018-02-06 | Mesocoat, Inc. | Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder |
CN117887992A (en) * | 2024-03-14 | 2024-04-16 | 崇义章源钨业股份有限公司 | Hard alloy and preparation method thereof |
CN117887992B (en) * | 2024-03-14 | 2024-05-28 | 崇义章源钨业股份有限公司 | Hard alloy and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2967789B2 (en) | 1999-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101435047B (en) | Ceramet containing Ni-Cr binder and preparation thereof | |
US4029000A (en) | Injection pump for injecting molten metal | |
JP3916465B2 (en) | Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same | |
JP4193958B2 (en) | Molten metal member having excellent corrosion resistance against molten metal and method for producing the same | |
JP2967789B2 (en) | High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same | |
KR960006046B1 (en) | Injection part for die-casting machines | |
JP2009108338A (en) | Cermet and manufacturing method thereof | |
JP2959912B2 (en) | Discharge coating composite | |
JP4976626B2 (en) | Sintered alloy material, method for producing the same, and mechanical structural member using the same | |
JP4265853B2 (en) | Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy | |
JP3368178B2 (en) | Manufacturing method of composite sintered alloy for non-ferrous metal melt | |
JP4409067B2 (en) | Molten metal member having excellent corrosion resistance against molten metal and method for producing the same | |
JP3260210B2 (en) | Die casting injection sleeve and method of casting aluminum or aluminum alloy member | |
JP2627090B2 (en) | Bonded body of boride ceramics and metal-based structural member and bonding method | |
JP2859967B2 (en) | Sleeve for die casting machine | |
SK5151Y1 (en) | Fluid-tight sintered metall parts and production method | |
JPH04247801A (en) | Injecting parts for die casting machine | |
JP3396800B2 (en) | Composite sintered alloy for non-ferrous metal melt and method for producing the same | |
JP2000313670A (en) | Silicon nitride sintered compact and sputtering target made of the same | |
JP4057108B2 (en) | Material for die casting mold | |
JPH04247804A (en) | Injecting parts for die casting machine | |
JPH04224066A (en) | Sleeve for die-casting machine | |
JP2797048B2 (en) | Melt erosion resistant material | |
JP3368181B2 (en) | Manufacturing method of composite sintered alloy for non-ferrous metal melt | |
JPH04247806A (en) | Injecting parts for die casting machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19970520 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |