JPH04224066A - Sleeve for die-casting machine - Google Patents
Sleeve for die-casting machineInfo
- Publication number
- JPH04224066A JPH04224066A JP41424690A JP41424690A JPH04224066A JP H04224066 A JPH04224066 A JP H04224066A JP 41424690 A JP41424690 A JP 41424690A JP 41424690 A JP41424690 A JP 41424690A JP H04224066 A JPH04224066 A JP H04224066A
- Authority
- JP
- Japan
- Prior art keywords
- sleeve
- nitride layer
- titanium
- titanium nitride
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004512 die casting Methods 0.000 title claims description 12
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002131 composite material Substances 0.000 claims abstract description 18
- 239000000919 ceramic Substances 0.000 claims abstract description 16
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 14
- 239000010959 steel Substances 0.000 claims abstract description 14
- 239000010936 titanium Substances 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 14
- 239000002184 metal Substances 0.000 abstract description 14
- 230000003628 erosive effect Effects 0.000 abstract description 7
- 238000005121 nitriding Methods 0.000 abstract description 6
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005266 casting Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- -1 ferrous metals Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 101100258328 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) crc-2 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007948 ZrB2 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はアルミニウム、亜鉛、ス
ズ及び鉛等の非鉄金属(その合金も含む)の鋳造に好適
のダイカストマシン用スリーブに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sleeve for a die-casting machine suitable for casting nonferrous metals (including alloys thereof) such as aluminum, zinc, tin, and lead.
【0002】0002
【従来の技術】近時、アルミニウム等の非鉄金属を高精
度且つ高速度で鋳造できるダイカスト技術は、自動車、
産業機械及び家電機器等の分野において、各種部品の重
要な鋳造手段となっている。[Prior Art] In recent years, die-casting technology that allows non-ferrous metals such as aluminum to be cast with high precision and high speed has become popular in automobiles,
It is an important casting method for various parts in the fields of industrial machinery and home appliances.
【0003】従来、ダイカストマシン用スリーブ(以下
、スリーブという)には JIS SKD11又は S
KD61等の冷間又は熱間ダイス鋼が使用されている。
しかしながら、一般的に非鉄金属は鉄と反応しやすいと
いう性質があるため、スリーブの内面では溶損及び摩耗
が発生してその内径が拡大し、特に注湯口底部では著し
い溶損が発生する。従って、スリーブを頻繁に交換する
必要があり、寿命が短い。また、鋼からなるスリーブは
熱伝導性が高いため、スリーブ内に注入された溶湯の温
度が低下しやすく、これにより鋳造品の製造歩留りが著
しく低下する。[0003] Conventionally, sleeves for die casting machines (hereinafter referred to as sleeves) were JIS SKD11 or S.
Cold or hot die steel such as KD61 is used. However, since non-ferrous metals generally tend to react easily with iron, erosion and wear occur on the inner surface of the sleeve, expanding its inner diameter, and significant erosion occurs particularly at the bottom of the pouring spout. Therefore, the sleeve must be replaced frequently and has a short lifespan. Further, since the sleeve made of steel has high thermal conductivity, the temperature of the molten metal injected into the sleeve tends to drop, which significantly reduces the manufacturing yield of the cast product.
【0004】このため、スリーブの長寿命化を図ると共
に、鋳造品の大型化及び複雑化に対応し、更に溶湯の保
温性を改善して鋳造品の製造歩留りを向上させるために
、非鉄金属と接触する部分にセラミックス製部材を鋳ぐ
るみ又は焼きばめしたスリーブも使用されている。しか
し、この場合にはスリーブの耐溶損性は優れているもの
の、溶湯を射出する瞬間にスリーブに極めて大きな衝撃
が加えられるので、本来脆い性質を有するセラミックス
部分が破壊されることがある。そうすると、作業を中断
する必要があり、作業性が悪い。[0004] Therefore, in order to extend the life of the sleeve, cope with the larger and more complex casting products, and improve the heat retention of the molten metal to improve the manufacturing yield of the casting products, we are using non-ferrous metals. A sleeve in which a ceramic member is cast or shrink-fitted to the contacting portion is also used. However, in this case, although the sleeve has excellent corrosion resistance, an extremely large impact is applied to the sleeve at the moment the molten metal is injected, so that the ceramic portion, which is inherently brittle, may be destroyed. In this case, it is necessary to interrupt the work, resulting in poor work efficiency.
【0005】そこで、近年、チタン又はチタン合金とセ
ラミックスとからなる複合材料により成形された内筒を
鋳ぐるみ又は焼きばめしたスリーブも使用されている。
この複合材料は耐溶損性、耐衝撃性及び溶湯保温性が優
れている。[0005] Therefore, in recent years, sleeves in which an inner cylinder formed of a composite material made of titanium or a titanium alloy and ceramics is cast or shrink-fitted have been used. This composite material has excellent erosion resistance, impact resistance, and molten metal heat retention.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上述し
た従来の複合材料を鋳ぐるみ又は焼きばめしたスリーブ
は、耐溶損性、耐衝撃性及び溶湯保温性が優れているも
のの、複合材料の硬度が鋼又はセラミックスの硬度より
低いため、耐摩耗性が悪いという問題点がある。このた
め、ピストンの摺動による摩耗によりスリーブの内径が
拡大し、スリーブとピストンとの間のクリアランスが大
きくなり、鋳造時にスリーブとピストンとの間から溶湯
が漏出して所謂フラッシュバックが生じる虞がある。こ
のようなフラッシュバックが生じると、スリーブの寿命
が短くなり、作業性が低下する。[Problems to be Solved by the Invention] However, although the above-mentioned conventional sleeves made of composite materials cast or shrink-fitted have excellent erosion resistance, impact resistance, and molten metal heat retention, the hardness of the composite material is Since its hardness is lower than that of steel or ceramics, it has a problem of poor wear resistance. For this reason, the inner diameter of the sleeve expands due to wear caused by sliding of the piston, increasing the clearance between the sleeve and the piston, and there is a risk that molten metal may leak from between the sleeve and the piston during casting, resulting in so-called flashback. be. When such flashback occurs, the life of the sleeve is shortened and workability is reduced.
【0007】本発明はかかる問題点に鑑みてなされたも
のであって、非鉄金属の溶湯に対する耐溶損性、耐衝撃
性及び保温性が優れていると共に、ピストンの摺動に対
する耐摩耗性が優れており、長寿命であって作業性が優
れたダイカストマシン用スリーブを提供することを目的
とする。The present invention has been made in view of these problems, and has excellent corrosion resistance, impact resistance, and heat retention against molten nonferrous metals, as well as excellent wear resistance against piston sliding. The purpose of the present invention is to provide a sleeve for a die-casting machine that has a long life and excellent workability.
【0008】[0008]
【課題を解決するための手段】本発明に係るダイカスト
マシン用スリーブは、鋼製の外筒と、チタン又はチタン
合金及びセラミックスからなる複合材料により成形され
前記外筒内に嵌入された内筒と、この内筒の内面に形成
された窒化チタン層とを有することを特徴とする。[Means for Solving the Problems] A sleeve for a die-casting machine according to the present invention includes an outer cylinder made of steel, an inner cylinder molded from a composite material made of titanium or a titanium alloy, and ceramics and fitted into the outer cylinder. , and a titanium nitride layer formed on the inner surface of the inner cylinder.
【0009】[0009]
【作用】本発明においては、鋼製の外筒内に嵌入された
内筒が非鉄金属の溶湯に対する耐溶損性、耐衝撃性及び
保温性が優れたチタン又はチタン合金とセラミックスと
の複合材料により成形されており、この内筒の内面に窒
化チタン層(TiN,Ti2 N等)が形成されている
。
この窒化チタン層は前記複合材料に含まれるチタンを窒
化処理することにより前記内筒の内面に強固に形成する
ことができ、この窒化チタン層によりスリーブ内に挿入
されるピストンの摺動に対する耐摩耗性を著しく向上さ
せることができる。このように窒化チタン層はピストン
の摺動によって摩耗されにくいため、スリーブの内径が
拡大することを防止することができる。従って、本発明
に係るダイカストマシン用スリーブは長寿命であり、鋳
造時の作業性を向上させることができる。[Operation] In the present invention, the inner cylinder fitted into the steel outer cylinder is made of a composite material of titanium or titanium alloy and ceramics, which has excellent corrosion resistance against molten nonferrous metals, impact resistance, and heat retention. A titanium nitride layer (TiN, Ti2N, etc.) is formed on the inner surface of the inner cylinder. This titanium nitride layer can be strongly formed on the inner surface of the inner cylinder by nitriding the titanium contained in the composite material, and this titanium nitride layer provides wear resistance against sliding of the piston inserted into the sleeve. can significantly improve performance. In this way, the titanium nitride layer is less likely to be worn away by the sliding movement of the piston, so that it is possible to prevent the inner diameter of the sleeve from expanding. Therefore, the sleeve for a die-casting machine according to the present invention has a long life and can improve workability during casting.
【0010】上述のダイカストマシン用スリーブは以下
に示すようにして製造することができる。即ち、複合材
料により成形された内筒を外筒内に嵌入した後、真空炉
又は熱間静水圧プレス装置等を使用して、窒素ガス又は
分解アンモニアガスの雰囲気下にて所定の温度に加熱し
て窒化処理することにより、前記内筒の内面に窒化チタ
ン層を形成する。この場合、窒化処理における加熱温度
が 400℃未満であると、窒化チタン層の生成が不十
分になる。一方、加熱温度が1200℃を超えると、窒
化チタン層は十分に形成されるものの、複合材料に含ま
れるチタン又はチタン合金の結晶粒が粗大化する。そう
すると、内筒自体が脆性化し、割れが発生しやすくなる
。従って、窒化処理における加熱温度は 400乃至1
200℃にすることが好ましい。[0010] The above-mentioned sleeve for a die-casting machine can be manufactured as follows. That is, after fitting the inner cylinder formed from a composite material into the outer cylinder, it is heated to a predetermined temperature in an atmosphere of nitrogen gas or decomposed ammonia gas using a vacuum furnace or hot isostatic press equipment. By performing nitriding treatment, a titanium nitride layer is formed on the inner surface of the inner cylinder. In this case, if the heating temperature in the nitriding treatment is less than 400°C, the formation of the titanium nitride layer will be insufficient. On the other hand, when the heating temperature exceeds 1200° C., although a titanium nitride layer is sufficiently formed, the crystal grains of titanium or titanium alloy contained in the composite material become coarse. If this happens, the inner cylinder itself becomes brittle and cracks are likely to occur. Therefore, the heating temperature in nitriding treatment is 400 to 1
Preferably, the temperature is 200°C.
【0011】[0011]
【実施例】次に、本発明の実施例に係るダイカストマシ
ン用スリーブを実際に製造し、その性能をその比較例と
比較した結果について説明する。EXAMPLE Next, the results of actually manufacturing a sleeve for a die-casting machine according to an example of the present invention and comparing its performance with that of a comparative example will be described.
【0012】先ず、平均粒径が20μmのチタン(Ti
)粉末を約80重量%とし、平均粒径が5μmの炭化珪
素(SiC)粉末を約18重量%とし、平均粒径が10
μmのコバルト(Co)粉末を約 2重量%として、こ
れらを均一に混合して複合材料の原料とした。First, titanium (Ti) with an average particle size of 20 μm
) powder is about 80% by weight, silicon carbide (SiC) powder with an average particle size of 5 μm is about 18% by weight, and the average particle size is 10% by weight.
Approximately 2% by weight of μm cobalt (Co) powder was mixed uniformly to form a raw material for a composite material.
【0013】この原料をゴム型に密封し、加圧力が 1
トン/ cm2の条件で冷間静水圧プレス(CIP)加
工を行った。これにより、筒状の圧粉体を得た。次に、
この圧粉体を真空度が10−5Torr、温度が135
0℃の真空炉中で焼結させた後に、この焼結体を旋盤加
工して、上述の組成の複合材料からなるスリーブ内筒を
得た。次いで、真空炉を使用して、このスリーブ内筒を
1気圧の窒素ガス中にて1000℃に加熱して窒化処
理することにより、前記スリーブ内筒の内面にTi2
N及びTiNからなる窒化チタン層を形成した。そして
、スリーブ内筒の外径と略同一の内径を有するJIS
S45C鋼製のスリーブ外筒に、窒化チタン層を設けた
スリーブ内筒を焼きばめすることにより本実施例に係る
スリーブを製作した。[0013] This raw material is sealed in a rubber mold, and the pressing force is 1
Cold isostatic pressing (CIP) was performed under the condition of ton/cm2. Thereby, a cylindrical green compact was obtained. next,
This green compact is placed at a vacuum level of 10-5 Torr and a temperature of 135 Torr.
After sintering in a vacuum furnace at 0° C., the sintered body was lathe-processed to obtain an inner sleeve made of a composite material having the above-mentioned composition. Next, using a vacuum furnace, this sleeve inner cylinder was heated to 1000°C in nitrogen gas at 1 atm to undergo a nitriding treatment, thereby adding Ti2 to the inner surface of the sleeve inner cylinder.
A titanium nitride layer made of N and TiN was formed. The JIS standard has an inner diameter that is approximately the same as the outer diameter of the sleeve inner cylinder.
The sleeve according to this example was manufactured by shrink-fitting an inner sleeve tube provided with a titanium nitride layer to an outer sleeve tube made of S45C steel.
【0014】また、従来から使用されているダイス鋼(
SKD61)製のスリーブを比較例1とし、セラミッ
クス(窒化珪素)製の内筒を鋼製の外筒に焼きばめした
スリーブを比較例2とした。更に、前述した実施例と同
様の組成の複合材料からなる内筒を、窒化チタン層を設
けずに鋼製の外筒に焼きばめしたスリーブを比較例3と
した。[0014] Furthermore, conventionally used die steel (
Comparative Example 1 was a sleeve made of SKD61), and Comparative Example 2 was a sleeve in which an inner cylinder made of ceramics (silicon nitride) was shrink-fitted to an outer cylinder made of steel. Furthermore, Comparative Example 3 was a sleeve in which an inner cylinder made of a composite material having the same composition as in the above-mentioned example was shrink-fitted to a steel outer cylinder without providing a titanium nitride layer.
【0015】上述した実施例及び比較例の各スリーブに
対して以下に示す試験を行って、その特性を調べた。■
硬度試験スリーブ内面のマイクロビッカース硬度を測定
した。■引張試験スリーブ内面の部材の伸びを測定した
。■実用試験コールドチャンバ用ダイカストマシン(能
力 250トン)にスリーブを取り付けて実際にアルミ
ニウム合金(ADC 12)溶湯から自動車用エンジン
カバーを鋳造した。そして、 10000回ショットし
た後にスリーブを取り外し、その溶損状況を調べた。The following tests were conducted on the sleeves of the above-mentioned Examples and Comparative Examples to examine their characteristics. ■
Hardness Test The micro Vickers hardness of the inner surface of the sleeve was measured. ■Tensile test The elongation of the inner surface of the sleeve was measured. ■Practical test A sleeve was attached to a cold chamber die-casting machine (capacity 250 tons), and an automobile engine cover was actually cast from molten aluminum alloy (ADC 12). After 10,000 shots, the sleeve was removed and the state of wear and tear was examined.
【0016】これらの試験結果を下記表1に示す。なお
、第1表において、溶損状況は使用前の寸法に対するス
リーブ内面の最大溶損量が 0.1mm以下である場合
を◎で示し、 0.1mmを超え 0.3mm以下であ
る場合を○で示し、 0.3mmを超える場合を△で示
した。The results of these tests are shown in Table 1 below. In addition, in Table 1, regarding the corrosion damage condition, cases where the maximum amount of corrosion damage on the inner surface of the sleeve relative to the dimensions before use is 0.1 mm or less are indicated by ◎, and cases where it is more than 0.1 mm and 0.3 mm or less are indicated by ○. It is shown by △ if it exceeds 0.3 mm.
【0017】[0017]
【表1】
この表1から明らかなように、本実施例に係るスリ
ーブは伸びが 1.0%であって耐衝撃性が優れている
と共に、内面の硬度が1200と高く耐摩耗性が優れて
いた。また、このスリーブは 10000回ショットし
た後にも殆ど溶損されておらず、割れも発生しなかった
。[Table 1] As is clear from Table 1, the sleeve according to this example has an elongation of 1.0% and has excellent impact resistance, and the inner surface has a hardness of 1200 and has excellent wear resistance. was. Furthermore, even after being shot 10,000 times, this sleeve was hardly eroded and no cracks occurred.
【0018】一方、ダイス鋼製の比較例1に係るスリー
ブは耐衝撃性が優れているものの、内面の硬度が 60
0と低く耐摩耗性が劣っていると共に、内面の溶損量が
極めて多かった。また、セラミックス製内筒を焼きばめ
した比較例2に係るスリーブは耐摩耗性が優れているも
のの、伸びが 0.1%と低く耐衝撃性が劣っており、
200ショットでセラミックス部分に割れが発生した
。更に、複合材料製内筒を焼きばめした比較例3に係る
スリーブは耐衝撃性及び耐溶損性が比較的優れているも
のの、窒化チタン層が設けられていないため内面の硬度
が 450と低く耐摩耗性が劣っていた。On the other hand, although the die steel sleeve according to Comparative Example 1 has excellent impact resistance, the inner hardness is 60.
The wear resistance was as low as 0, and the wear resistance was poor, and the amount of erosion on the inner surface was extremely large. In addition, although the sleeve according to Comparative Example 2, in which a ceramic inner cylinder was shrink-fitted, had excellent wear resistance, its elongation was only 0.1%, and its impact resistance was poor.
Cracks occurred in the ceramic part after 200 shots. Furthermore, although the sleeve according to Comparative Example 3, in which the inner cylinder made of a composite material was shrink-fitted, has relatively excellent impact resistance and erosion resistance, the inner hardness is low at 450 because the titanium nitride layer is not provided. Abrasion resistance was poor.
【0019】なお、本発明において使用可能なセラミッ
クスは上述の炭化珪素(SiC)に限定されるものでは
なく、Cr2 O3 、TiO2 、ZrO2 、Mg
O及びY2 O3 等の酸化物系セラミックス、Si3
N4 、TiN、BN及びAlN等の窒化物系セラミ
ックス、TiC、B4 C及びCrC2 等の炭化物系
セラミックス、ZrB2 、TiB2 等のホウ化物系
セラミックス並びにサイアロン等、種々のものを使用す
ることができる。また、これらのセラミックスを2種類
以上混合して使用することもできる。Note that the ceramics that can be used in the present invention are not limited to the above-mentioned silicon carbide (SiC), but also include Cr2O3, TiO2, ZrO2, Mg
Oxide ceramics such as O and Y2 O3, Si3
Various materials can be used, such as nitride ceramics such as N4, TiN, BN and AlN, carbide ceramics such as TiC, B4C and CrC2, boride ceramics such as ZrB2 and TiB2, and sialon. Moreover, two or more types of these ceramics can be mixed and used.
【0020】[0020]
【発明の効果】以上説明したように本発明によれば、鋼
製の外筒内に所定の複合材料により成形された内筒を嵌
入し、この内筒の内面に窒化チタン層を設けたから、ピ
ストンの摺動に対するスリーブ内面の耐摩耗性を著しく
向上させることができる。従って、本発明に係るダイカ
ストマシン用スリーブは非鉄金属の溶湯に対する耐溶損
性、耐衝撃性及び保温性が優れていると共に、ピストン
の摺動に対する耐摩耗性が優れており、長寿命であって
作業性が優れている。As explained above, according to the present invention, an inner cylinder formed of a predetermined composite material is fitted into an outer cylinder made of steel, and a titanium nitride layer is provided on the inner surface of the inner cylinder. The wear resistance of the inner surface of the sleeve against sliding of the piston can be significantly improved. Therefore, the sleeve for a die-casting machine according to the present invention has excellent corrosion resistance, impact resistance, and heat retention against molten nonferrous metals, has excellent wear resistance against piston sliding, and has a long life. Excellent workability.
Claims (1)
及びセラミックスからなる複合材料により成形され前記
外筒内に嵌入された内筒と、この内筒の内面に形成され
た窒化チタン層とを有することを特徴とするダイカスト
マシン用スリーブ。1. An outer cylinder made of steel, an inner cylinder molded from a composite material made of titanium or a titanium alloy, and ceramics and fitted into the outer cylinder, and a titanium nitride layer formed on the inner surface of the inner cylinder. A sleeve for a die-casting machine, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41424690A JPH04224066A (en) | 1990-12-25 | 1990-12-25 | Sleeve for die-casting machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41424690A JPH04224066A (en) | 1990-12-25 | 1990-12-25 | Sleeve for die-casting machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04224066A true JPH04224066A (en) | 1992-08-13 |
Family
ID=18522745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP41424690A Pending JPH04224066A (en) | 1990-12-25 | 1990-12-25 | Sleeve for die-casting machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04224066A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5983977A (en) * | 1994-06-14 | 1999-11-16 | Kabushiki Kaisha Toshiba | Sleeve for die casting machines and die casting machine using the same |
JP2020070454A (en) * | 2018-10-29 | 2020-05-07 | 東京窯業株式会社 | Method for manufacturing nitride material |
JP2020196908A (en) * | 2019-05-31 | 2020-12-10 | 東京窯業株式会社 | Method for manufacturing nitride material, and nitride material |
-
1990
- 1990-12-25 JP JP41424690A patent/JPH04224066A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5983977A (en) * | 1994-06-14 | 1999-11-16 | Kabushiki Kaisha Toshiba | Sleeve for die casting machines and die casting machine using the same |
JP2020070454A (en) * | 2018-10-29 | 2020-05-07 | 東京窯業株式会社 | Method for manufacturing nitride material |
JP2020196908A (en) * | 2019-05-31 | 2020-12-10 | 東京窯業株式会社 | Method for manufacturing nitride material, and nitride material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4226656B2 (en) | Powder metallurgy cobalt based article with high wear and corrosion resistance in semi-solid metal | |
JP3126471B2 (en) | Sleeve for die casting machine | |
WO2017141480A1 (en) | Die-casting sleeve and method for manufacturing same | |
JP2003205352A (en) | Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it | |
JPH04224066A (en) | Sleeve for die-casting machine | |
CA2060028C (en) | Injection part for die-casting machines | |
JPH04247801A (en) | Injecting parts for die casting machine | |
JP3260210B2 (en) | Die casting injection sleeve and method of casting aluminum or aluminum alloy member | |
JPH04224069A (en) | Sleeve for die-casting machine | |
JPH03142053A (en) | Sleeve for die casting machine | |
JPH07246449A (en) | Sleeve for die casting | |
JPH04247804A (en) | Injecting parts for die casting machine | |
JP2859967B2 (en) | Sleeve for die casting machine | |
JPH04224068A (en) | Sleeve for die-casting machine | |
JP2002283029A (en) | Sleeve for die casting | |
JPH04224067A (en) | Sleeve for die-casting machine | |
JP3368178B2 (en) | Manufacturing method of composite sintered alloy for non-ferrous metal melt | |
JPH04251651A (en) | Sleeve for die casting machine | |
JPH04247806A (en) | Injecting parts for die casting machine | |
JPH02280953A (en) | Injecting parts for die casting machine | |
JPH04247805A (en) | Injecting parts for die casting machine | |
JPH05140689A (en) | High corrosion resistant and high wear resistant boride tungsten base alloy | |
JPH091310A (en) | Sleeve for die-cast machine | |
JPH0691358A (en) | Sleeve for die casting machine | |
JPH0691357A (en) | Sleeve for die casting machine |