[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05144841A - Method of manufacturing thin film transistor - Google Patents

Method of manufacturing thin film transistor

Info

Publication number
JPH05144841A
JPH05144841A JP30508991A JP30508991A JPH05144841A JP H05144841 A JPH05144841 A JP H05144841A JP 30508991 A JP30508991 A JP 30508991A JP 30508991 A JP30508991 A JP 30508991A JP H05144841 A JPH05144841 A JP H05144841A
Authority
JP
Japan
Prior art keywords
film
mask
drain
source
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30508991A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ozawa
清 小沢
Niwaji Majima
庭司 間島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30508991A priority Critical patent/JPH05144841A/en
Publication of JPH05144841A publication Critical patent/JPH05144841A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To make it possible to reduce the number of a plasma CVD processes by a method wherein after an Si film, which is used as an operating semiconductor film, is deposited a hydrogeneration treatment is performed on the whole surface of the Si film to form a hydrogenerated Si film and the like. CONSTITUTION:A gate electrode (a Ta film) 2, gate insulating films (a Ta2O5 film and an SiNx film) 3 and 4 and an operating semiconductor film 5 are laminated in that order on a transparent insulative substrate (a glass substrate) 1 and the film 5 has a channel part and has a source and a drain on both sides of the channel part. In the case where such a thin film transistor is manufactured, an Si film 5 is deposited on a gate insulating film 4 and a hydrogeneration treatment is performed on the while surface of the film 5 to form a hydrogenerated Si film 5a. Then, after an insulating film (an SiO2 film) 6 is formed on the film 5a, the film 6 is patterned and etched by a back exposure method using a gate electrode 2 as a mask to form a channel protective layer 6a. Then, a one conductivity type impurity is introduced in the film 5a using the layer 6a as a mask to form a source and a drain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,薄膜トランジスタの製
造方法に関する。近年,液晶表示パネル,エレクトロル
ミネッセンス等の駆動素子として,薄膜トランジスタ
(以下,TFTと称する)マトリックスが使用されるよ
うになった。このようなTFTマトリックスにおいて
は,数十万箇のTFTを歩留りよく安価に製造すること
が望まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor. In recent years, a thin film transistor (hereinafter referred to as TFT) matrix has been used as a driving element for a liquid crystal display panel, electroluminescence, or the like. In such a TFT matrix, it is desired to manufacture hundreds of thousands of TFTs with high yield and at low cost.

【0002】[0002]

【従来の技術】図3(a) 〜(d) は液晶駆動用TFTを製
造する従来例を示す工程順断面図(その1),図4(e)
〜(g) は従来例を示す工程順断面図(その2)である。
以下,これらの図を参照しながら従来例について説明す
る。
2. Description of the Related Art FIGS. 3 (a) to 3 (d) are sectional views showing a conventional example of manufacturing a liquid crystal driving TFT (step 1), and FIG.
(G) is a process order sectional view (2) which shows a prior art example.
Hereinafter, a conventional example will be described with reference to these drawings.

【0003】図3(a) 参照 ガラス基板1上にゲート電極となるTa膜12を形成し,
その表面を陽極酸化して, Ta2 5 膜13を形成する。
Ta2 5 膜13はゲート絶縁膜の一部となる。
Referring to FIG. 3A, a Ta film 12 to be a gate electrode is formed on a glass substrate 1,
The surface is anodized to form a Ta 2 O 5 film 13.
The Ta 2 O 5 film 13 becomes a part of the gate insulating film.

【0004】図3(b) 参照 全面にプラズマCVD法によりゲート絶縁膜となるSi
x 膜14, 動作半導体膜となるa−Si:H膜15, チャ
ネル保護層となるSiO2 膜16を形成する。
See FIG. 3 (b). The entire surface is covered with Si to be a gate insulating film by plasma CVD.
An N x film 14, an a-Si: H film 15 to be an operating semiconductor film, and a SiO 2 film 16 to be a channel protective layer are formed.

【0005】図3(c) 参照 SiO2 膜16上にポジレジストを塗布し,ゲート電極2
をマスクとする背面露光によりポジレジストを露光し,
現像することによりレジストマスク17を形成する。
Referring to FIG. 3C, a positive resist is applied on the SiO 2 film 16 and the gate electrode 2 is formed.
Exposing the positive resist by backside exposure using
The resist mask 17 is formed by developing.

【0006】図3(d) 参照 レジストマスク17をマスクにしてSiO2 膜16をエッチ
ングし,SiO2 膜のチャネル保護層16a を形成する。
Referring to FIG. 3 (d), the SiO 2 film 16 is etched using the resist mask 17 as a mask to form a channel protective layer 16a of the SiO 2 film.

【0007】図4(e) 参照 全面にプラズマCVD法によりソース・ドレインとなる
+ 型a−Si膜18を堆積した後, 全面にスパッタ法に
よりソース電極,ドレイン電極となるTi膜19を堆積す
る。
Referring to FIG. 4 (e), an n + -type a-Si film 18 serving as a source / drain is deposited on the entire surface by a plasma CVD method, and then a Ti film 19 serving as a source electrode and a drain electrode is deposited on the entire surface by a sputtering method. To do.

【0008】図4(f) 参照 マスクを用いてTi膜19, n+ 型a−Si膜18,a−S
i膜15をエッチングし,ソース18a,ドレイン18b,ソース
電極19a,ドレイン電極19b を形成する。
Referring to FIG. 4 (f), a Ti film 19, n + type a-Si film 18 and a-S are formed using a mask.
The i film 15 is etched to form a source 18a, a drain 18b, a source electrode 19a and a drain electrode 19b.

【0009】図4(g) 参照 全面にITO膜をスパッタ法で堆積した後,マスクを用
いてそれをエッチングし,ソース電極19a に接続する画
素電極20を形成する。
Referring to FIG. 4 (g), after depositing an ITO film on the entire surface by sputtering, it is etched using a mask to form a pixel electrode 20 connected to the source electrode 19a.

【0010】ところで,上で述べた従来例では,プラズ
マCVD工程が4工程ある。通常の量産工程では各工程
1台づつプラズマCVD装置が必要であるから,全部で
4台のプラズマCVD装置が必要となる。また,プラズ
マCVD装置は反応チャンバ内に堆積物の塵埃の発生が
あり,歩留りを維持するための管理が煩雑である。
In the conventional example described above, there are four plasma CVD processes. In a normal mass production process, one plasma CVD device is required for each process, and therefore four plasma CVD devices are required in total. Further, in the plasma CVD apparatus, dust of deposits is generated in the reaction chamber, and management for maintaining the yield is complicated.

【0011】プラズマCVD装置は高価であり,コスト
面から,また,歩留り維持の面からプラズマCVD工程
を減らす工夫が望まれる。
The plasma CVD apparatus is expensive, and it is desirable to reduce the number of plasma CVD processes in terms of cost and yield.

【0012】[0012]

【発明が解決しようとする課題】本発明は上記の問題に
鑑み,プラズマCVD工程回数を低減できるTFTの製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a method of manufacturing a TFT that can reduce the number of plasma CVD steps.

【0013】[0013]

【課題を解決するための手段】図1(a) 〜(d) は実施例
を示す工程順断面図(その1),図2(e) 〜(g) は実施
例を示す工程順断面図(その2)である。
1 (a) to 1 (d) are sectional views in order of steps showing an embodiment (No. 1), and FIGS. 2 (e) to 2 (g) are sectional views in order of steps showing an embodiment. (Part 2).

【0014】上記課題は,透明絶縁性基板1上にゲート
電極2,ゲート絶縁膜3及び4,動作半導体膜5がこの
順に積層され,該動作半導体膜5はチャネル部とその両
側にソース・ドレインを有する薄膜トランジスタの製造
において,ゲート絶縁膜4上にシリコン膜5を堆積する
工程と, 該シリコン膜5全面に水素化処理を施して水素
化されたシリコン膜5aを形成する工程と, 該水素化され
たシリコン膜5a上に絶縁膜を形成した後ゲート電極2を
マスクとする背面露光法により該絶縁膜をパターニング
・エッチングしてチャネル保護層6aを形成する工程と,
該チャネル保護層6aをマスクにして,該水素化されたシ
リコン膜5aに一導電型不純物を導入してソース5c及びド
レイン5dを形成する工程とを有する薄膜トランジスタの
製造方法によって解決される。
The above-mentioned problem is that the gate electrode 2, the gate insulating films 3 and 4, and the operating semiconductor film 5 are laminated in this order on the transparent insulating substrate 1, and the operating semiconductor film 5 is a source / drain on both sides of the channel portion. A step of depositing a silicon film 5 on the gate insulating film 4, a step of subjecting the entire surface of the silicon film 5 to a hydrogenation treatment to form a hydrogenated silicon film 5a, Forming an insulating film on the formed silicon film 5a, and then patterning and etching the insulating film by a backside exposure method using the gate electrode 2 as a mask to form a channel protective layer 6a;
This is solved by a method of manufacturing a thin film transistor, which includes a step of forming a source 5c and a drain 5d by introducing an impurity of one conductivity type into the hydrogenated silicon film 5a using the channel protection layer 6a as a mask.

【0015】また,前記チャネル保護層6aをマスクにし
て,前記水素化されたシリコン膜5aにプラズマドーピン
グ法により一導電型不純物を導入してソース5c及びドレ
イン5dを形成する薄膜トランジスタの製造方法によって
解決される。
In addition, the channel protection layer 6a is used as a mask to solve the problem by a method of manufacturing a thin film transistor in which a source 5c and a drain 5d are formed by introducing an impurity of one conductivity type into the hydrogenated silicon film 5a by a plasma doping method. To be done.

【0016】また,前記シリコン膜5は非晶質シリコン
膜であり,前記一導電型不純物はn型不純物である薄膜
トランジスタの製造方法によって解決される。
Further, the silicon film 5 is an amorphous silicon film, and the one conductivity type impurity is an n-type impurity, which is solved by a method of manufacturing a thin film transistor.

【0017】[0017]

【作用】本発明では,動作半導体膜となるシリコン膜5
を堆積した後水素化処理を施して水素化されたシリコン
膜5aを形成しているので,シリコン膜5の形成法として
例えば蒸着法またはスパッタ法が適用でき,通常,水素
化されたシリコン膜の形成に用いられるプラズマCVD
法を適用しなくともよい。
In the present invention, the silicon film 5 serving as the operating semiconductor film is used.
Since the hydrogenated silicon film 5a is formed by depositing hydrogen, a vapor deposition method or a sputtering method, for example, can be applied as a method for forming the silicon film 5. Plasma CVD used for formation
The law does not have to be applied.

【0018】また,水素化されたシリコン膜5aに一導電
型不純物の導入されたソース5c及びドレイン5dを形成す
る時も,プラズマCVD法を適用しなくともよい。例え
ば,プラズマドーピング法が適用でき,プラズマCVD
法に比較して工程管理が容易であり,特性の再現性もよ
い。
Further, also when forming the source 5c and the drain 5d in which one conductivity type impurity is introduced in the hydrogenated silicon film 5a, the plasma CVD method may not be applied. For example, plasma doping method can be applied, plasma CVD
Compared with the method, process control is easier and the reproducibility of characteristics is good.

【0019】また,非晶質シリコン膜を動作半導体膜と
し,一導電型不純物はn型不純物である薄膜トランジス
タの製造に本発明の方法は極めて効果的に適用できる。
Further, the method of the present invention can be very effectively applied to the manufacture of a thin film transistor in which an amorphous silicon film is used as an operating semiconductor film and one conductivity type impurity is an n type impurity.

【0020】[0020]

【実施例】図1(a) 〜(d) は実施例を示す工程順断面図
(その1),図2(e) 〜(g) は実施例を示す工程順断面
図(その2)である。以下,これらの図を参照しながら
実施例について説明する。
Embodiments FIGS. 1 (a) to 1 (d) are process sectional views showing the embodiment (No. 1), and FIGS. 2 (e) to 2 (g) are process sectional views showing the embodiment (No. 2). is there. Examples will be described below with reference to these drawings.

【0021】図1(a) 透明絶縁性基板となるガラス基板1として,例えば,コ
ーニング#7059を用い,その上にTaを 300nmの厚さに
スパッタし,マスクを用いてそれをエッチングし,ゲー
ト電極2を形成した。Ta表面を陽極酸化して厚さ200n
m のTa2 5 膜3を形成した。Ta25 膜3はゲー
ト絶縁膜の一部となる。
FIG. 1 (a) As a glass substrate 1 to be a transparent insulating substrate, for example, Corning # 7059 is used, Ta is sputtered thereon to a thickness of 300 nm, and it is etched using a mask to form a gate. The electrode 2 was formed. Anodizing the Ta surface to a thickness of 200n
A Ta 2 O 5 film 3 of m was formed. The Ta 2 O 5 film 3 becomes a part of the gate insulating film.

【0022】図1(b) プラズマCVD法により,全面に厚さ 150nmのシリコン
窒化膜(SiNx )を堆積し,ゲート絶縁膜4を形成し
た。原料ガスとしてSiH4 +NH3 +H2 を使用し,
温度 250℃, 圧力0.8 Torr, 電力0.2 W/cm2 とした。
FIG. 1 (b) A silicon nitride film (SiN x ) having a thickness of 150 nm was deposited on the entire surface by plasma CVD to form a gate insulating film 4. SiH 4 + NH 3 + H 2 is used as the source gas,
The temperature was 250 ° C, the pressure was 0.8 Torr, and the power was 0.2 W / cm 2 .

【0023】ゲート絶縁膜4上に,室温で電子ビーム蒸
着法により,厚さ20nmの非晶質シリコン(a−Si)
膜5を堆積する。このa−Si膜5は動作半導体膜とな
るものである。
Amorphous silicon (a-Si) having a thickness of 20 nm is formed on the gate insulating film 4 by electron beam evaporation at room temperature.
The film 5 is deposited. The a-Si film 5 serves as an operating semiconductor film.

【0024】例えば平行平板型高周波放電装置により,
a−Si膜5全面に水素プラズマ処理を行い,水素化さ
れたa−Si膜5aを形成した。その条件は,温度 250
℃, 圧力0.8 Torr, 電力0.3 W/cm2 である。
For example, by a parallel plate type high frequency discharge device,
Hydrogen plasma treatment was performed on the entire surface of the a-Si film 5 to form a hydrogenated a-Si film 5a. The conditions are temperature 250
℃, pressure 0.8 Torr, power 0.3 W / cm 2 .

【0025】図1(c) 水素化されたa−Si膜5a上にプラズマCVD法により
厚さ 200nmのSiO2 膜6を堆積する。原料ガスとして
5%SiH4 +N2 O+H2 を使用して,温度は 200℃
とした。
FIG. 1 (c) A SiO 2 film 6 having a thickness of 200 nm is deposited on the hydrogenated a-Si film 5a by a plasma CVD method. Using 5% SiH 4 + N 2 O + H 2 as the source gas, the temperature is 200 ℃
And

【0026】SiO2 膜6上にポジレジストを塗布し,
ガラス基板1の背面からゲート電極2をマスクにしてポ
ジレジストを露光した後現像して,レジストマスク7を
形成した。
A positive resist is coated on the SiO 2 film 6,
A positive resist was exposed from the back surface of the glass substrate 1 using the gate electrode 2 as a mask, and then developed to form a resist mask 7.

【0027】図1(d) レジストマスク7をマスクにしてSiO2 膜6をエッチ
ングし,ゲート電極2に自己整合したチャネル保護層6a
を形成した。その後,レジストマスク7を剥離した。
FIG. 1 (d) The SiO 2 film 6 is etched using the resist mask 7 as a mask to self-align the channel protection layer 6a with the gate electrode 2.
Formed. After that, the resist mask 7 was peeled off.

【0028】図2(e) 例えば平行平板型高周波放電装置により,チャネル保護
層6aをマスクにして水素化されたa−Si膜5aに不純物
のプラズマドーピング処理を行う。原料ガスとして10
%PH3 +H2 を用い,温度 250℃, 圧力0.8 Torr, 電
力0.3 W/cm2 とした。この処理により水素化されたa
−Si膜にP(燐)が導入され,n+ 型a−Si膜5bが
形成された。
FIG. 2 (e), for example, a parallel plate type high frequency discharge device is used to perform plasma doping treatment of impurities on the hydrogenated a-Si film 5a using the channel protection layer 6a as a mask. 10 as source gas
% PH 3 + H 2 was used, and the temperature was 250 ° C., the pressure was 0.8 Torr, and the power was 0.3 W / cm 2 . A hydrogenated by this treatment
P (phosphorus) was introduced into the -Si film to form the n + -type a-Si film 5b.

【0029】図2(f) 全面にスパッタ法により厚さ 150nmのMo膜を堆積した
後,マスク(図示せず)を用いてMo膜及びn+ 型a−
Si膜5bをエッチングし,n+ 型a−Si膜のソース5
c, ドレイン5d,Mo膜のソース電極8a及びドレイン電極
8bを形成した。
FIG. 2 (f): After depositing a Mo film having a thickness of 150 nm on the entire surface by a sputtering method, a Mo film and an n + -type a- are formed by using a mask (not shown).
The Si film 5b is etched to form the n + type a-Si film source 5
c, drain 5d, source electrode 8a and drain electrode of Mo film
Formed 8b.

【0030】図2(g) 全面にスパッタ法により厚さ 200nmのITO膜を堆積
し,マスク(図示せず)を用いてそのITO膜をパター
ニング・エッチングし,ソース電極8aに接続する画素電
極9を形成した。
2G, an ITO film having a thickness of 200 nm is deposited on the entire surface by a sputtering method, the ITO film is patterned and etched using a mask (not shown), and the pixel electrode 9 connected to the source electrode 8a is formed. Formed.

【0031】このようにして,非晶質Si膜を動作半導
体膜とするTFTが形成できた。この実施例に示すよう
に,本発明ではa−Si膜の形成に電子ビーム蒸着法を
使用し,さらにa−Si膜への不純物の導入をプラズマ
ドーピング法により行うので,従来行われているプラズ
マCVD法を用いる成膜工程が2工程低減できる。それ
ゆえ,プラズマCVD法の問題点である装置が高価であ
ること,装置内に堆積物の塵埃が発生して歩留りを不安
定にするといった問題点を避けることができた。
In this way, a TFT having an amorphous Si film as an operating semiconductor film could be formed. As shown in this embodiment, in the present invention, the electron beam evaporation method is used to form the a-Si film, and the impurities are introduced into the a-Si film by the plasma doping method. The number of film forming steps using the CVD method can be reduced by two steps. Therefore, it was possible to avoid the problems of the plasma CVD method such as the expensive apparatus and the generation of dust in the apparatus to make the yield unstable.

【0032】[0032]

【発明の効果】以上説明したように,本発明によれば,
a−Si膜を使用するTFTの形成において,従来より
もプラズマCVD法による膜堆積回数を低減することが
できるから,量産時にプラズマCVD装置設置台数の低
減,CVD装置の維持管理工数の低減が可能となり,T
FTのコスト低減に効果的である。
As described above, according to the present invention,
When forming a TFT using an a-Si film, it is possible to reduce the number of film depositions by the plasma CVD method as compared with the conventional method. Therefore, it is possible to reduce the number of installed plasma CVD devices during mass production and the maintenance man-hours of CVD devices. And T
It is effective in reducing the cost of FT.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) 〜(d) は実施例を示す工程順断面図(その
1)である。
1A to 1D are cross-sectional views (part 1) in order of processes, showing an embodiment.

【図2】(e) 〜(g) は実施例を示す工程順断面図(その
2)である。
2 (e) to 2 (g) are process order cross-sectional views (No. 2) showing an embodiment.

【図3】(a) 〜(d) は従来例を示す工程順断面図(その
1)である。
3A to 3D are sectional views (No. 1) in the order of steps showing a conventional example.

【図4】(e) 〜(g) は従来例を示す工程順断面図(その
2)である。
4 (e) to 4 (g) are process order cross-sectional views (No. 2) showing a conventional example.

【符号の説明】[Explanation of symbols]

1は透明絶縁性基板であってガラス基板 2はゲート電極であってTa膜 3は酸化膜でありTa2 5 膜であってゲート絶縁膜 4はゲート絶縁膜であってSiNx 膜 5は動作半導体膜であってa−Si膜 5aは水素化されたa−Si膜 5bはn+ 型a−Si膜 5cはソース 5dはドレイン 6は絶縁膜であってSiO2 膜 6aはチャネル保護層 7はレジストマスクであってポジレジスト 8aはソース電極 8bはドレイン電極 9は画素電極 12はゲート電極であってTi膜 13は酸化膜でありTa2 5 膜であってゲート絶縁膜 14はゲート絶縁膜であってSiNx 膜 15は動作半導体膜であってa−Si:H 16は絶縁膜であってSiO2 膜 16a はチャネル保護層 17はレジストマスクであってポジレジスト 18はn+ 型a−Si膜 18a はソース 18b はドレイン 19はTi膜 19a はソース電極 19b はドレイン電極 20は画素電極Reference numeral 1 is a transparent insulating substrate, glass substrate 2 is a gate electrode, Ta film 3 is an oxide film, Ta 2 O 5 film, gate insulating film 4 is a gate insulating film, and SiN x film 5 is A-Si film 5a is a hydrogenated a-Si film 5b is an n + type a-Si film 5c is a source 5d is a drain 6 is an insulating film and the SiO 2 film 6a is a channel protective layer Numeral 7 is a resist mask, positive resist 8a is source electrode 8b, drain electrode 9 is pixel electrode 12, gate electrode, Ti film 13 is oxide film, Ta 2 O 5 film is gate insulating film 14 is gate The insulating film is the SiN x film 15 is the operating semiconductor film, the a-Si: H 16 is the insulating film, the SiO 2 film 16a is the channel protective layer 17 is the resist mask, and the positive resist 18 is the n + type. The a-Si film 18a is the source 18b, the drain 19 is the Ti film 19a, and the The drain electrode 20 is the pixel electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/12 8728−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 27/12 8728-4M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明絶縁性基板(1) 上にゲート電極(2),
ゲート絶縁膜(3,4),動作半導体膜(5) がこの順に積層さ
れ,該動作半導体膜(5) はチャネル部とその両側にソー
ス・ドレインを有する薄膜トランジスタの製造におい
て, ゲート絶縁膜(4) 上にシリコン膜(5) を堆積する工程
と, 該シリコン膜(5) 全面に水素化処理を施して水素化され
たシリコン膜(5a)を形成する工程と, 該水素化されたシリコン膜(5a)上に絶縁膜を形成した後
ゲート電極(2) をマスクとする背面露光法により該絶縁
膜をパターニング・エッチングしてチャネル保護層(6a)
を形成する工程と, 該チャネル保護層(6a)をマスクにして,該水素化された
シリコン膜(5a)に一導電型不純物を導入してソース(5c)
及びドレイン(5d)を形成する工程とを有することを特徴
とする薄膜トランジスタの製造方法。
1. A gate electrode (2) on a transparent insulating substrate (1),
A gate insulating film (3, 4) and an operating semiconductor film (5) are laminated in this order, and the operating semiconductor film (5) is used for manufacturing a thin film transistor having a channel portion and source / drain on both sides of the gate insulating film (4). ) A step of depositing a silicon film (5) on the silicon film, a step of forming a hydrogenated silicon film (5a) by subjecting the entire surface of the silicon film (5) to a hydrogenation process, and the hydrogenated silicon film After forming an insulating film on (5a), the insulating film is patterned and etched by the back exposure method using the gate electrode (2) as a mask to form a channel protective layer (6a).
And a source (5c) by introducing an impurity of one conductivity type into the hydrogenated silicon film (5a) using the channel protection layer (6a) as a mask.
And a step of forming a drain (5d).
【請求項2】 前記チャネル保護層(6a)をマスクにし
て,前記水素化されたシリコン膜(5a)にプラズマドーピ
ング法により一導電型不純物を導入してソース(5c)及び
ドレイン(5d)を形成することを特徴とする請求項1記載
の薄膜トランジスタの製造方法。
2. A source (5c) and a drain (5d) are formed by introducing one conductivity type impurity into the hydrogenated silicon film (5a) by a plasma doping method using the channel protection layer (6a) as a mask. The method of manufacturing a thin film transistor according to claim 1, wherein the thin film transistor is formed.
【請求項3】 前記シリコン膜(5) は非晶質シリコン膜
であり,前記一導電型不純物はn型不純物であることを
特徴とする請求項1又は2記載の薄膜トランジスタの製
造方法。
3. The method of manufacturing a thin film transistor according to claim 1, wherein the silicon film (5) is an amorphous silicon film, and the one conductivity type impurity is an n type impurity.
JP30508991A 1991-11-20 1991-11-20 Method of manufacturing thin film transistor Withdrawn JPH05144841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30508991A JPH05144841A (en) 1991-11-20 1991-11-20 Method of manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30508991A JPH05144841A (en) 1991-11-20 1991-11-20 Method of manufacturing thin film transistor

Publications (1)

Publication Number Publication Date
JPH05144841A true JPH05144841A (en) 1993-06-11

Family

ID=17940979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30508991A Withdrawn JPH05144841A (en) 1991-11-20 1991-11-20 Method of manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JPH05144841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913860A2 (en) * 1997-10-29 1999-05-06 Xerox Corporation Method of manufacturing a thin film transistor
KR100338099B1 (en) * 1999-06-29 2002-05-24 박종섭 Method of manufacturing a semiconductor device
JP2005039173A (en) * 2003-07-02 2005-02-10 Sony Corp Thin film transistor and method for manufacturing the same, and display unit and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913860A2 (en) * 1997-10-29 1999-05-06 Xerox Corporation Method of manufacturing a thin film transistor
EP0913860A3 (en) * 1997-10-29 2001-05-09 Xerox Corporation Method of manufacturing a thin film transistor
KR100338099B1 (en) * 1999-06-29 2002-05-24 박종섭 Method of manufacturing a semiconductor device
JP2005039173A (en) * 2003-07-02 2005-02-10 Sony Corp Thin film transistor and method for manufacturing the same, and display unit and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5137841A (en) Method of manufacturing a thin film transistor using positive and negative photoresists
JPH06267979A (en) Thin film transistor and manufacture thereof
JP3369244B2 (en) Thin film transistor
JP3352191B2 (en) Method for manufacturing thin film transistor
US4704784A (en) Method of making thin film field effect transistors for a liquid crystal display device
JPH05144841A (en) Method of manufacturing thin film transistor
JP2002294451A (en) Method for forming polycrystalline semiconductor thin- film, method for manufacturing semiconductor device, and apparatus for carrying out these methods
JP3452679B2 (en) Method of manufacturing thin film transistor, thin film transistor and liquid crystal display
JPH04324683A (en) Thin film transistor and its manufacture
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
US5851859A (en) Method for manfacturing a thin film transistor by using temperature difference
JPH10177968A (en) Thin film device, forming method thereof, and manufacturing method of this film transistor and liquid crystal display device
JPH07297404A (en) Manufacture of thin film transistor
JPH1195239A (en) Production of liquid crystal display device
JPS58192375A (en) Manufacture of thin film transistor
JP3333489B2 (en) Method for manufacturing thin film transistor
JPS63250178A (en) Manufacture of thin film semiconductor device
JP4599734B2 (en) Method for forming polycrystalline semiconductor thin film and method for manufacturing semiconductor device
JPH05343685A (en) Manufacture of silicon thin film transistor
KR100304551B1 (en) Method for manufacturing thin film transistor
JPH0677486A (en) Thin-film transistor element
JP3149041B2 (en) Method for manufacturing staggered thin film transistor
JP2561572B2 (en) Method for manufacturing insulated gate field effect transistor
JPH09181325A (en) Manufacture of thin film semiconductor device
JPH0541390A (en) Manufacture of thin film transistor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204