[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0477553A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPH0477553A
JPH0477553A JP18722090A JP18722090A JPH0477553A JP H0477553 A JPH0477553 A JP H0477553A JP 18722090 A JP18722090 A JP 18722090A JP 18722090 A JP18722090 A JP 18722090A JP H0477553 A JPH0477553 A JP H0477553A
Authority
JP
Japan
Prior art keywords
group
polyphenylene ether
formula
saturated polyester
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18722090A
Other languages
Japanese (ja)
Inventor
Michiharu Kihira
紀平 道治
Mitsutoshi Aritomi
有富 充利
Haruo Omura
大村 治夫
Fumiyoshi Yamada
書佳 山田
Shinako Mori
森 志奈子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP18722090A priority Critical patent/JPH0477553A/en
Priority to US07/701,910 priority patent/US5177156A/en
Priority to EP19910108052 priority patent/EP0457351A3/en
Publication of JPH0477553A publication Critical patent/JPH0477553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the title composition having a combination of heat resistance, mechanical strength, dimensional accuracy, electrical properties and solvent resistance, comprising a saturated polyester and a terminal group- modified polyphenylene ether produced by reaction of an alkoxysilane compound with a polyphenylene ether. CONSTITUTION:The objective composition comprising (A) 10 - 90wt.% of a terminal group-modified polyphenylene ether of formula III produced by reaction, in the presence of a basic catalyst in an organic solvent, of (1) a polyphenylene ether of formula I (Q<1> is halogen, primary or secondary alkyl, etc.; Q<2> is H, halogen, etc.; (n) is >=10) with (2) a compound having, in an identical molecule, both alkoxysilyl and glycidyl groups of formula II (X is O or N; R<1> is 1-12C alkylene; R<2> and R<3> are each 1-6C hydrocarbon group; S is 1 or 2 when X is O or N, respectively; (t) is 1 - 3) and (B) 90 - 10wt.% of a saturated polyester (pref. polyester with liquid crystal nature).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリフェニレンエーテルと飽和ポリエステル
との樹脂組成物を得るに際し、ポリフェニレンエーテル
にアルコキシシラン化合物を反応させて製造された末端
変性ポリフェニレンエーテルと飽和ポリエステルを配合
したことにより、ポリフェニレンエーテルの特徴である
耐熱性、機穢的強度及び寸法精度並に飽和ポリエステル
の機械的性質、電気的性質及び耐瀉剤性を兼ね備えた高
性能な熱可塑性樹脂組成物に関する。本樹脂組成物は、
ますます多様化、高度化している自動車電気・電子分野
に応用展開する材料として有用である。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for obtaining a resin composition of polyphenylene ether and saturated polyester using terminal-modified polyphenylene ether produced by reacting polyphenylene ether with an alkoxysilane compound. By blending saturated polyester, we have created a high-performance thermoplastic resin composition that combines the heat resistance, mechanical strength, and dimensional accuracy that are characteristic of polyphenylene ether, as well as the mechanical properties, electrical properties, and antidiathermia properties of saturated polyester. relating to things. This resin composition is
It is useful as a material for application in the automotive electrical and electronic fields, which are becoming increasingly diverse and sophisticated.

(従来の技術) フェニレン環に非置換又は置換基を有するポリフェニレ
ンエーテル、特にポリ(2,6−シメチルー1.4−フ
ェニレンエーテル)は耐熱性及び機械的強度が優れ、い
わゆるエンジニアリングプラスチックとして有用である
が、溶融粘度が高いので、射出成形等による成形加工が
困難であるという望ましくない性質を有することは良く
知られている。また、同樹脂の耐衝撃強度及び耐溶剤性
もエンジニアリングプラスチックとしての多くの用途分
野で不充分である。単独の樹脂材料では、所望の諸性質
を充分に満たすことができない場合の試みの一つとして
、他の樹脂材料を混合することにより、不充分な性質を
補うという考え方は良く知られている。ポリフェニレン
エーテルと相溶性が良く、成形加工性の良好なポリスチ
レンを配合してポリフェニレンエーテルの成形性を改良
した材料は、広く実用されている。しかし、この場合、
同成分とも耐溶剤性は良好でなく、混合組成物も、耐溶
剤性が充分ではない。
(Prior art) Polyphenylene ether having an unsubstituted or substituent group on the phenylene ring, particularly poly(2,6-dimethyl-1,4-phenylene ether), has excellent heat resistance and mechanical strength, and is useful as a so-called engineering plastic. However, it is well known that it has an undesirable property of being difficult to mold by injection molding or the like because of its high melt viscosity. Furthermore, the impact strength and solvent resistance of the same resin are insufficient in many fields of use as engineering plastics. The idea of supplementing the insufficient properties by mixing other resin materials is well known as one of the attempts when desired properties cannot be fully satisfied with a single resin material. Materials in which the moldability of polyphenylene ether is improved by blending polystyrene, which has good compatibility with polyphenylene ether and has good moldability, are widely used. But in this case,
Both of the same components do not have good solvent resistance, and the mixed composition also does not have sufficient solvent resistance.

飽和ポリエステルは、機械的性質、電気的性質、耐溶剤
性などが優れた代表的なエンジニア′1゛ングプラスチ
ックの一つとじて、自動車部品、電気 電子部品等の用
途に広く使用されでいる。しかしながら本樹脂は、成形
4ヌ縮率及び線膨張率が大きく、また高荷重下での耐転
安定性が劣るという欠点を有するため、その使用用途は
、制限されている。このため、ガラス繊維などの強化剤
を充填する方法が提案されているが、成形品の外りが悪
化することから、要求分野によっては、その使用が制限
されるという問題を有する。このため、ポリフェニレン
エーテルと飽和ポリエステルの良好な性質を併せ持ち、
望ましくない性質を補う組成物が得られれば、利用分野
の広い優れた樹脂材料の提供が可能となり、その工業的
意味は非常に大きいものといえる。そこで両者の長所を
損なわずに欠点を相補った成形材料を提供する目的で、
例えば、同樹脂を羊純に溶融混合した組成物が、特公昭
51−21664号、特開昭49−50050号、同4
9−75662号、同59−159847号各公報等に
開示されている。しかしながら、このような単純なブレ
ンド系では、ボッフェニレンエーテルと飽和ポリエステ
ルとは、本質的に相溶性に乏しいため、この二相構造の
界面の接着性は良好ではなく、この二相は均一かつ微細
な形態となり難く、射出成形などの成形加工時の剪断応
力を受けたとき、層状剥離(デラミネーション)を生し
易く、得られた成形品の外観が悪化したり、二相界面が
欠陥部となり、寸法精度、耐熱性、剛性等の機械的特性
及び耐溶剤性等の物理的特性が優れた組成物は得られな
い。
Saturated polyester is a typical engineering plastic with excellent mechanical properties, electrical properties, and solvent resistance, and is widely used in applications such as automobile parts and electrical and electronic parts. However, this resin has the drawbacks of high molding shrinkage and linear expansion coefficient, and poor rolling stability under high loads, so its uses are limited. For this reason, a method of filling reinforcing agents such as glass fibers has been proposed, but this has the problem that the molded product's deterioration deteriorates, which limits its use depending on the required fields. Therefore, it combines the good properties of polyphenylene ether and saturated polyester,
If a composition that compensates for undesirable properties can be obtained, it will be possible to provide an excellent resin material that can be used in a wide range of fields, and it can be said to have great industrial significance. Therefore, in order to provide a molding material that compensates for the disadvantages without compromising the advantages of both,
For example, compositions in which the same resin is melt-mixed with sheep pure are disclosed in Japanese Patent Publication No. 51-21664, Japanese Patent Application Publication No. 49-50050,
It is disclosed in Publications No. 9-75662 and No. 59-159847. However, in such a simple blend system, bophenylene ether and saturated polyester are essentially incompatible, so the adhesion at the interface of this two-phase structure is not good, and this two-phase structure is uniform and fine. When subjected to shear stress during molding processes such as injection molding, delamination is likely to occur, resulting in deterioration of the appearance of the resulting molded product and the formation of defects at the two-phase interface. However, it is not possible to obtain a composition that has excellent mechanical properties such as dimensional accuracy, heat resistance, and rigidity, and physical properties such as solvent resistance.

−数的に非相溶のポリマーブレンドにおいて、上記の問
題点を解決するために考えられる方法の一つは、二成分
相互の親和性を改良するために、ポリフェニレンエーテ
ルを飽和ポリエステルと反応すると考えられる官能基で
変性し、高温で溶融混練して反応させることにより、化
学結合を介したブロック又はグラフト共重合体を得る方
法である。ポリフェニレンエーテルと飽和ポリエステル
の組成物の場合、飽和ポリエステルの末端に存在する水
酸基又はカルボキシル基、あるいは主鎖のエステル構造
単位と反応が考えられる官能基をボッフェニレンエーテ
ルに付加させる必要がある。
- One possible way to solve the above problems in numerically incompatible polymer blends is to react the polyphenylene ether with the saturated polyester in order to improve the mutual affinity of the two components. This is a method of obtaining a block or graft copolymer through chemical bonding by modifying the polymer with a functional group, melt-kneading it at high temperature, and reacting it. In the case of a composition of polyphenylene ether and saturated polyester, it is necessary to add to bophenylene ether a functional group that can react with the hydroxyl group or carboxyl group present at the end of the saturated polyester, or the ester structural unit of the main chain.

そのような観点から、ポリフェニレンエーテルの反応性
を高める目的で、多くの官能化ポリフェニレンエーテル
が提案されている。例えば、その官能化例は、カルボキ
シル基又はカルボン酸無水物官能化ポリフェニレンエー
テルを用いる方法(特開昭62−257958号、同6
3−54427号、特表昭63−500803号各公報
等)、エポキシ基官能化ポリフェニレンエーテルを用い
る方法(特開昭62−257958号、特表昭63−5
03388号各公報等)、アルコキシシリル基官能化ポ
リフェニレンエーテルを用いる方法(特表昭63−50
3392号公報等)等が開示され、各種始和ポリエステ
ルとの樹脂組成物が提案されている。しかし、これらの
方法を用いてもポリフェニレンエーテルと飽和ポリエス
テルの両者の相溶性を改良するためには不充分である場
合が多く、また、得られた組成物の機械的特性も未だ充
分といえず、より一層の改良が望まれている。
From this point of view, many functionalized polyphenylene ethers have been proposed for the purpose of increasing the reactivity of polyphenylene ethers. For example, examples of the functionalization include a method using carboxyl group- or carboxylic anhydride-functionalized polyphenylene ether (JP-A-62-257958, JP-A-62-257958;
3-54427, Japanese Patent Publication No. 63-500803, etc.), method using epoxy group-functionalized polyphenylene ether (Japanese Patent Application Laid-Open No. 62-257958, Japanese Patent Publication No. 1983-500803, etc.)
03388 publications, etc.), a method using alkoxysilyl group-functionalized polyphenylene ether (Japanese Patent Publication No. 1983-50),
No. 3392, etc.), and resin compositions with various Shiwa polyesters have been proposed. However, even if these methods are used, it is often insufficient to improve the compatibility of both polyphenylene ether and saturated polyester, and the mechanical properties of the resulting compositions are still insufficient. , further improvements are desired.

(発明が解決しようとする課題) 本発明は、特に優れた耐熱剛性、寸法積度、成形加工性
、耐溶剤性、分散構造を有する、ポリフェニレンエーテ
ルと飽和ポリエステルとを配合した熱可塑性樹脂組成物
を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention provides a thermoplastic resin composition blended with polyphenylene ether and saturated polyester, which has particularly excellent heat-resistant rigidity, dimensional bulk, moldability, solvent resistance, and dispersion structure. The purpose is to provide

(課題を解決するための手段) 本発明者らは、上記問題点を解決するために鋭意検討を
重ねた結果、特定の手法により極めて容易に変性された
官能化ポリフェニレンエーテルと飽和ポリエステルを配
合した熱可塑性樹脂組成物は、上記目的を達成し得るこ
とを見出し、本発明に到達した。
(Means for Solving the Problems) As a result of intensive studies to solve the above problems, the present inventors have developed a blend of functionalized polyphenylene ether and saturated polyester that are extremely easily modified using a specific method. It has been discovered that a thermoplastic resin composition can achieve the above object, and the present invention has been achieved.

すなわち、本発明は、下記の成分(A)及び(B)から
なることを特徴とする熱可塑性樹脂組成物である。
That is, the present invention is a thermoplastic resin composition characterized by comprising the following components (A) and (B).

(A)−数式 (式中、Qlは各々ハロゲン原子、第−級若しくは第二
級アルキル基、フェニル基、アミノアルキル基、炭化水
素オキシ基又はハロ炭化水素オキシ基を表し、Q2は各
々水素原子、ハロゲン原子、第−級若しくは第二級アル
キル基、フェニル基、ハロアルキル基、炭化水素オキシ
基又はハロ炭化水素オキシ基を表し、nは10以上の数
を表し、Xは酸素原子又は窒素原子を表し、R1は炭素
数1〜12のアルキレン基を表し、R2及びR3は各々
炭素数1〜6の炭化水素基を表す。SはXが酸素原子の
ときは1、Xが窒素原子のときは2であり、tは1〜3
の整数である)で示される末端基変性されたポリフェニ
レンエーテル           10〜90重量%
(B)飽和ポリエステル  90〜lO重量%本発明の
上記構造を有する官能化ポリフェニレンエーテル(以下
、官能化ポリフェニレンエーテルという)(A)と飽和
ポリエステル(B)との組成物は、ポリフェニレンエー
テルの特徴と飽和ポリエステルの特徴を兼ね備えた優れ
た耐熱剛性、寸法精度、成形加工性、耐溶剤性、分散構
造を有する成形材料として、極めて有用なものである。
(A) - Formula (wherein Ql each represents a halogen atom, a secondary or secondary alkyl group, a phenyl group, an aminoalkyl group, a hydrocarbonoxy group, or a halohydrocarbonoxy group, and Q2 each represents a hydrogen atom) , represents a halogen atom, a primary or secondary alkyl group, a phenyl group, a haloalkyl group, a hydrocarbonoxy group, or a halohydrocarbonoxy group, n represents a number of 10 or more, and X represents an oxygen atom or a nitrogen atom. R1 represents an alkylene group having 1 to 12 carbon atoms, R2 and R3 each represent a hydrocarbon group having 1 to 6 carbon atoms, S is 1 when X is an oxygen atom, and 1 when X is a nitrogen atom. 2, and t is 1 to 3
10 to 90% by weight of end group-modified polyphenylene ether represented by
(B) Saturated polyester 90-10% by weight The composition of the functionalized polyphenylene ether (hereinafter referred to as functionalized polyphenylene ether) having the above structure of the present invention (A) and the saturated polyester (B) has the characteristics of polyphenylene ether. It is extremely useful as a molding material that has excellent heat resistance, dimensional accuracy, moldability, solvent resistance, and a dispersion structure, all of which have the characteristics of saturated polyester.

以下1本発明の熱可塑性樹脂組成物の構成について説明
する。
The structure of the thermoplastic resin composition of the present invention will be explained below.

成jLAJO−官能化ポリフェニレンエーテル本発明で
使用する官能化ポリフェニレンエーテルは、下記の方法
により製造される。以下にその詳細を記載する。
LAJO-Functionalized Polyphenylene Ether The functionalized polyphenylene ether used in the present invention is produced by the following method. The details are described below.

一般式(II)で示されるポリフェニレンエーテル 数式(III )で示されるアルコキシシリル基とグリ
シジル基を同一分子内に持つ化合物 (Ill ) (式中、X、R’、R2、R3、S及びtは前述と同し
)を反応させて一般式(I)で示される官能化ポリフェ
ニレンエーテル(A)が得られる。
Polyphenylene ether represented by general formula (II) A compound (Ill) having an alkoxysilyl group and a glycidyl group represented by formula (III) in the same molecule (wherein, X, R', R2, R3, S and t are (same as above) is reacted to obtain the functionalized polyphenylene ether (A) represented by the general formula (I).

ポリフェニレンエーテルは、式(II)の構造よりなる
単独重合体又は共重合体である。
Polyphenylene ether is a homopolymer or copolymer having the structure of formula (II).

Ql及びQ2の第一級アルキル基の好適な例は、メチル
、エチル、n−プロピル、n−ブチル、n−アミル、イ
ソアミル、2−メチルブチル、n−ヘキシル、2.3−
ジメチルブチル、2−13−若しくは4−メチルペンチ
ル又はヘプチルである。第二級アルキル基の例は、イソ
プロピル、5ee−ブチル又は1−エチルプロピルであ
る。多くの場合、各Q’はアルキル基又はフェニル基、
特に炭素数1〜4のアルキル基であり、各(式中、Q’
、Q”及びnは前述と同じ)に、Q2は水素原子である
Suitable examples of primary alkyl groups for Ql and Q2 are methyl, ethyl, n-propyl, n-butyl, n-amyl, isoamyl, 2-methylbutyl, n-hexyl, 2.3-
Dimethylbutyl, 2-13- or 4-methylpentyl or heptyl. Examples of secondary alkyl groups are isopropyl, 5ee-butyl or 1-ethylpropyl. In many cases, each Q' is an alkyl group or a phenyl group,
In particular, it is an alkyl group having 1 to 4 carbon atoms, and each (in the formula, Q'
, Q'' and n are the same as above), and Q2 is a hydrogen atom.

好Jなポリフェニレンエーテルの単独重合体としては、
例えば、2.6−シメチルー1.4−フェニレンエーテ
ル単位からなるものである。好適な共重合体としては、
上記単位と2.3.6−ドリメチルー1.4−フェニレ
ンエーテル単位との組合せからなるランダム共重合体で
ある。多くの好適な単独重合体及びランダム共重合体が
、特許、文献に記載されている。例えば、分子量、溶融
粘度及び/又は衝撃強度等の特性を改良する分子構成部
分を含むポリフェニレンエーテルも、また好適である。
As a homopolymer of polyphenylene ether with good J,
For example, it is composed of 2,6-dimethyl-1,4-phenylene ether units. Suitable copolymers include:
It is a random copolymer consisting of a combination of the above units and 2,3,6-drimethyl-1,4-phenylene ether units. Many suitable homopolymers and random copolymers are described in the patent literature. Also suitable are polyphenylene ethers containing molecular moieties that improve properties such as, for example, molecular weight, melt viscosity and/or impact strength.

例えばアクリロニトリル又はスチレン等のビニル芳香族
化合物などのビニルモノマーあるいはポリスチレン又は
そのエラストマーなどのポリマーをポリフェニレンエー
テル上にグラフト重合させたポリフェニレンエーテル等
である。
For example, polyphenylene ether is obtained by graft polymerizing a vinyl monomer such as a vinyl aromatic compound such as acrylonitrile or styrene, or a polymer such as polystyrene or an elastomer thereof onto polyphenylene ether.

ポリフェニレンエーテルの分子量は通常クロロホルム中
で、30℃の極限粘度が0.2〜0.8a/g程度のも
のである。
The molecular weight of polyphenylene ether is usually such that the intrinsic viscosity at 30° C. in chloroform is about 0.2 to 0.8 a/g.

ポリフェニレンエーテルは、通常前記のモノマーの酸化
カップリングにより製造される。ポリフェニレンエーテ
ルの酸化カップリング重合に関しては、数多(の触媒系
が知られている。触媒の選択に関しては特に制限はなく
、公知の触媒のいずれも用いることができる。例えば、
銅、マンガン、コバルト等の重金属化合物の少なくとも
一種を通常は種々の他の物質との組合せで含むもの等で
ある。
Polyphenylene ethers are usually produced by oxidative coupling of the monomers described above. Regarding the oxidative coupling polymerization of polyphenylene ether, a large number of catalyst systems are known. There are no particular restrictions on the selection of the catalyst, and any known catalyst can be used. For example,
These include at least one heavy metal compound such as copper, manganese, cobalt, etc., usually in combination with various other substances.

ポリフェニレンエーテルの官能化に用いる一般式(II
I )の同一分子内にグリシジル基とアルコキシシリル
基をもつ化合物の具体例を挙げると、N−グリシジル−
N、N−ビス[3−(メチルジメトキシシリル)プロピ
ル〕アミン、N−グリシジル−N、N−ビス[3−(ト
リメトキシシリル)プロピル]アミン、3−グリシジル
オキシプロピル(メチル)ジメトキシシラン、3−グリ
シジルオキシプロピルトリメトキシシラン、3−グリシ
ジルオキシプロピル(メチル)ジェトキシシラン等が挙
げられる。特に好ましくは、3−グリシジルオキシプロ
ピルトリメトキシシラン又は3−グリシジルオキシプロ
ピル(メチル)ジェトキシシランである。
General formula (II) used for functionalization of polyphenylene ethers
Specific examples of compounds having a glycidyl group and an alkoxysilyl group in the same molecule of I) include N-glycidyl-
N, N-bis[3-(methyldimethoxysilyl)propyl]amine, N-glycidyl-N, N-bis[3-(trimethoxysilyl)propyl]amine, 3-glycidyloxypropyl(methyl)dimethoxysilane, 3 -glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyl(methyl)jethoxysilane, and the like. Particularly preferred is 3-glycidyloxypropyltrimethoxysilane or 3-glycidyloxypropyl(methyl)jethoxysilane.

一般式(I)で示される官能化ポリフェニレンエーテル
(A)は、−M式(II)で示されるポリフェニレンエ
ーテルと一般式(Ill )で示されるアルコキシシリ
ル基とグリシジル基を同一分子内に持つ化合物を塩基性
触媒の存在下、有機溶媒中で反応させることにより容易
に製造することができる。
The functionalized polyphenylene ether (A) represented by the general formula (I) is a compound having a polyphenylene ether represented by the -M formula (II) and an alkoxysilyl group and a glycidyl group represented by the general formula (Ill) in the same molecule. It can be easily produced by reacting in an organic solvent in the presence of a basic catalyst.

ここで使用する有機溶媒は、ポリフェニレンエーテルを
溶解できることが望ましい。具体的には、ベンゼン、ト
ルエン、キシレン等の芳香族系溶媒:クロルベンゼン、
ジクロルベンゼン等のハロゲン化芳香族系溶媒;クロロ
ホルム、トリクロルエチレン、四塩化炭素等のハロゲン
化炭化水素系溶媒;N−メチル−2−ピロリドン、1.
3−ジメチル−2−イミダゾリジノン等の非プロトン性
の極性溶媒等が挙げられる。前記の塩基性触媒としては
、ナトリウムメトキシド、ナトリウムエトキシド等のア
ルコラード、ペンシルジメチルアミン、トリブチルアミ
ン等の第三級アミン、水酸化ナトリウム、水酸化カリウ
ム等のアルカリ金属水酸化物等が挙げられる。
The organic solvent used here is desirably capable of dissolving polyphenylene ether. Specifically, aromatic solvents such as benzene, toluene, and xylene: chlorobenzene,
Halogenated aromatic solvents such as dichlorobenzene; halogenated hydrocarbon solvents such as chloroform, trichloroethylene, carbon tetrachloride; N-methyl-2-pyrrolidone; 1.
Examples include aprotic polar solvents such as 3-dimethyl-2-imidazolidinone. Examples of the basic catalyst include alcoholades such as sodium methoxide and sodium ethoxide, tertiary amines such as pencil dimethylamine and tributylamine, and alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. .

本反応は、ポリフェニレンエーテルの末端フェノール性
水酸基1モルに対し、 fQQ式(III )で示され
る官能化剤2〜50モル、好ましくは5〜20モルを用
いる。有機溶媒は、ポリフェニレンエーテル100重量
部に対して500〜1000重量部使用する。塩基性触
媒は使用するポリフェニレンエーテル100重量部あた
り1〜3重量部使用する。
In this reaction, 2 to 50 moles, preferably 5 to 20 moles of the functionalizing agent represented by the fQQ formula (III) are used per mole of the terminal phenolic hydroxyl group of polyphenylene ether. The organic solvent is used in an amount of 500 to 1000 parts by weight per 100 parts by weight of polyphenylene ether. The basic catalyst is used in an amount of 1 to 3 parts by weight per 100 parts by weight of the polyphenylene ether used.

官能化ポリフェニレンエーテル(A)の−IlΩ的製造
手順は、ポリフェニレンエーテル(II)を有ell溶
媒に加熱して溶解させ、次いで少量のエタノール又はメ
タノールに溶解させた塩基性触媒を添加し、50〜20
0℃の温度で官能化剤(nBを加え、更に反応が完結す
るまで加熱するものである。
The -IlΩ production procedure for functionalized polyphenylene ether (A) is to heat and dissolve polyphenylene ether (II) in a well-containing solvent, then add a basic catalyst dissolved in a small amount of ethanol or methanol, 20
The functionalizing agent (nB) was added at a temperature of 0° C. and further heated until the reaction was completed.

成j辷m−飽和ポリエステル 本発明において用いる成分(B)の飽和ポリエステルと
しては、種々のポリエステルが使用可能である。
Saturated polyester Various polyesters can be used as the saturated polyester of component (B) used in the present invention.

例えば、その一つとして、通常の方法に従って、ジカル
ボン酸又はその低級アルキルエステル、酸ハライド若し
くは酸無水物誘導体と、グリコールとを縮合させること
により製造された熱可塑性ポリエステルが挙げられる。
For example, one example is a thermoplastic polyester produced by condensing dicarboxylic acid or its lower alkyl ester, acid halide, or acid anhydride derivative with glycol according to a conventional method.

このポリエステルを製造するに適した芳香族又は脂肪族
ジカルボン酸の具体例としては、蓚酸、マロン酸、コハ
ク酸、グルタル酸、アジピン酸、スペリン酸、アゼライ
ン酸、セバシン酸、テレフタル酸、イソフタル酸、p、
p′−ジカルボキシジフェニルスルホン、p−カルボキ
シフェノキシ酢酸、p−カルボキシフェノキシプロピオ
ン酸、p−カルボキシフェノキシ酪酸、p−カルボキシ
フェノキシ吉草酸、2.6−ナフタリンジカルボン酸又
は2.7−ナフタリンジカルボン酸等あるいはこれらの
カルボン酸の混合物が挙げられる。
Specific examples of aromatic or aliphatic dicarboxylic acids suitable for producing this polyester include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, superric acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, p,
p'-dicarboxydiphenyl sulfone, p-carboxyphenoxyacetic acid, p-carboxyphenoxypropionic acid, p-carboxyphenoxybutyric acid, p-carboxyphenoxyvaleric acid, 2.6-naphthalene dicarboxylic acid or 2.7-naphthalene dicarboxylic acid, etc. Alternatively, a mixture of these carboxylic acids may be used.

またポリエステルの製造に適する脂肪族グリコールとし
ては、炭素数2〜12の直鎖アルキレングリコール、例
えばエチレングリコール、1.3−プロピレングリコー
ル、1.4−ブテングリコール、1,6−ヘキセングリ
コール、112−ドデカメチレングリコール等が例示さ
れる。また、芳香族グリコール化合物としては、p−キ
シリレングリコール、ピロカテコール、レゾルシノール
、ヒドロキノン又はこれらの化合物のアルキル置換誘導
体がある。他の適当なグリコルとしては、l、4−シク
ロヘキサンジメタツールも挙げられる。
Also, examples of aliphatic glycols suitable for producing polyester include linear alkylene glycols having 2 to 12 carbon atoms, such as ethylene glycol, 1,3-propylene glycol, 1,4-butene glycol, 1,6-hexene glycol, 112- Examples include dodecamethylene glycol. Examples of aromatic glycol compounds include p-xylylene glycol, pyrocatechol, resorcinol, hydroquinone, and alkyl-substituted derivatives of these compounds. Other suitable glycols include 1,4-cyclohexane dimetatool.

他の好ましいポリエステルとしては、ラクトンの開環重
合によるポリエステルも挙げられる。例えば、ポリビバ
ロラクトン、ポリ(ε−カプロラクトン)等である。
Other preferred polyesters include polyesters produced by ring-opening polymerization of lactones. For example, polyvivalolactone, poly(ε-caprolactone), and the like.

また 更に他の好ましいポリエステルとしては、瀉融状
態で液晶を形成するポリマー(Therm。
Still other preferable polyesters include polymers that form liquid crystals in a molten state (Therm).

tropic Liquid Crystal Pol
ymer; TLCPIとしてのポリエステルがある。
tropic Liquid Crystal Pol
ymer; There is polyester as TLCPI.

これらの範晴に入るポリエステルとしては、イーストマ
ンコダック社のX7Gダ一トコ社のXydar (ザイ
ダー)、住友化学社のエコノール、セラニーズ社のベク
トラ等が代表的な商品である。
Typical polyesters that fall into these categories include Eastman Kodak Company's X7G Datco's Xydar, Sumitomo Chemical Company's Econol, and Celanese Company's Vectra.

以上、(B)成分として挙げたポリエステルの中でも、
ポリエチレンテレフタレート(PET)、ポリブチレン
テレフタレート(PBT)、ポリナフタレンテレフタレ
ート(PEN)、ポリ1.4シクロヘキサンジメチレン
テレフタレート(PCT)又は液晶性ポリエステル等が
、本発明の熱可塑性樹脂組成物に好適な飽和ポリエステ
ルである。
Among the polyesters mentioned above as component (B),
Polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polynaphthalene terephthalate (PEN), poly1.4 cyclohexane dimethylene terephthalate (PCT), liquid crystalline polyester, etc. are suitable saturated polyesters for the thermoplastic resin composition of the present invention. It is polyester.

成   A   び B  の A 本発明の熱可塑性樹脂組成物の成分(A)及び(B)の
配合比の選択は、最終成形品の用途の要求性能によって
決定される。
Formulation A and B The selection of the blending ratio of components (A) and (B) of the thermoplastic resin composition of the present invention is determined by the required performance of the intended use of the final molded product.

すなわち、成形加工性、機械的強度、耐溶剤性、寸法精
度、高温剛性等の性質は、各構成成分の特徴とその配合
比で調整できる場合が多いものの、例えば剛性と衝撃強
度のように、発現機構の相反する性質は、両立させるの
が困難な場合が多い。実用上の目的のためには、通常、
成形性、機械的強度、高温剛性等の諸性質の調和を適切
にするという駅点から行われる。従って、本発明におけ
る組成物の各成分の配合比には、本質的に限界的なもの
は存在しないが、実用的には下記の範囲が有用であると
言える。
That is, although properties such as moldability, mechanical strength, solvent resistance, dimensional accuracy, and high-temperature rigidity can often be adjusted by the characteristics of each component and their blending ratio, for example, rigidity and impact strength, etc. The contradictory properties of expression mechanisms are often difficult to reconcile. For practical purposes, usually
This is done from the point of achieving an appropriate balance of various properties such as formability, mechanical strength, and high-temperature rigidity. Therefore, although there is essentially no limit to the blending ratio of each component in the composition of the present invention, it can be said that the following ranges are practically useful.

成分(A):官能化ポリフェニレンエーテル90〜10
重量% 成分(B)  飽和ポリエステル 10〜90重量% また、本発明で用いる成分(A)は単独であっても良い
し、官能化ポリフェニレンエーテルと未官能化ポリフェ
ニレンエーテルとの混合物であっても良い。
Component (A): Functionalized polyphenylene ether 90-10
Weight% Component (B) Saturated polyester 10 to 90% by weight Component (A) used in the present invention may be used alone or may be a mixture of functionalized polyphenylene ether and unfunctionalized polyphenylene ether. .

住皿煎風± 本発明による樹脂組成物には、他の付加的成分を添加す
ることができる。例えば、飽和ポリエステルに周知の酸
化防止剤、耐候性改良剤、可塑剤、流動性改良剤、離形
剤、造核剤等、ポリフエニレンエーテルに周知の酸化防
止剤、耐候性改良剤、可塑剤、スチレン系樹脂、流動性
改良剤等を付加的成分として使用できる。また有機・無
機充填剤、補強剤、特にガラス繊維、マイカ、タルク、
ワラストナイト、チタン酸カリウム、炭酸カルシウム、
シリカ等の添加は剛性、耐熱性、寸法精度等の向上に有
効である。実用のために各種着色剤及びそれらの分散剤
なども周知のものが使用できる。
Other additional ingredients can be added to the resin composition according to the present invention. For example, well-known antioxidants, weather resistance improvers, plasticizers, fluidity improvers, mold release agents, nucleating agents, etc. for saturated polyester; well-known antioxidants, weather resistance improvers, plasticizers, etc. for polyphenylene ether. additives, styrenic resins, flow modifiers, etc. can be used as additional ingredients. Also, organic/inorganic fillers, reinforcing agents, especially glass fiber, mica, talc,
Wollastonite, potassium titanate, calcium carbonate,
Addition of silica etc. is effective in improving rigidity, heat resistance, dimensional accuracy, etc. For practical purposes, various known colorants and dispersants thereof can be used.

更に耐衝撃強度向上剤の添加、特に不飽和エポキシ化合
物とエチレンからなる共重合体又は不飽和エポキシ化合
物、エチレン及びエチレン系不飽和化合物からなる共重
合体の添加、スチレン−ブタジェン共重合体ゴム及びそ
の水素化物、エチレン重合体及びエチレン−プロピレン
−(ジエン)共重合体ゴム、更には、それらのα、β−
不飽和カルボン酸無水物変性体及び不飽和グリシジルエ
ステル若しくは不飽和グリシジルエーテルとの変性体の
添加は組成物の衝撃強度向上に有効である。上記の耐衝
撃強度向上剤は、単独で用いても良いし、2種又はそれ
以上併用しても良い。耐衝撃強度向上剤の配合量は、目
標とする物性値−二より異なるが、例えば組成物の剛j
生と衝撃強度のバランスの改良の場合は1組成物の樹脂
成分100重量部当り、5〜30重量部である。
Furthermore, the addition of an impact strength improver, in particular the addition of a copolymer consisting of an unsaturated epoxy compound and ethylene or an unsaturated epoxy compound, a copolymer consisting of ethylene and an ethylenically unsaturated compound, styrene-butadiene copolymer rubber and Its hydrides, ethylene polymers and ethylene-propylene-(diene) copolymer rubbers, as well as their α, β-
Addition of an unsaturated carboxylic acid anhydride modified product and an unsaturated glycidyl ester or unsaturated glycidyl ether modified product is effective for improving the impact strength of the composition. The above impact strength improvers may be used alone, or in combination of two or more. The blending amount of the impact strength improver differs depending on the target physical property value, for example, the stiffness of the composition.
In order to improve the balance between raw strength and impact strength, the amount is 5 to 30 parts by weight per 100 parts by weight of the resin component of one composition.

粧虜隻凹工豆11 本発明の熱可塑性樹脂組成物の混合方法としでは、上記
の各成分を、各種混線機、例えば−軸押出機、二軸押出
機、バンバリーミキサ−等で混線混合する方法、各種成
分の?8液又は懸濁液を混合した後に溶剤を除去するか
、共通非忍媒を加えて沈澱、決別し回収する方法などい
ずれの方法も用いることができる。また混合の順序は、
可能ないずれの順序によっても良いが、溶融混線法によ
って混合する場合には、粘度の高いものから逐次混合す
る方法は好ましい方法である。
As a method for mixing the thermoplastic resin composition of the present invention, the above-mentioned components are mixed in various mixers, such as a screw extruder, twin screw extruder, Banbury mixer, etc. Method, various ingredients? Any method can be used, such as removing the solvent after mixing the 8 liquid or suspension, or adding a common non-toxic medium to precipitate, separate and recover. Also, the order of mixing is
Any possible order may be used, but when mixing by melt cross-fertilization, a preferred method is to sequentially mix the components starting from the one with the highest viscosity.

(実施例) 以下、実施例により、本発明の詳細な説明するが、これ
により、本発明の範囲は、特に限定されるものではない
(Examples) Hereinafter, the present invention will be explained in detail with reference to Examples, but the scope of the present invention is not particularly limited thereby.

官能化ポリフェニレンエーテルの調製例:ポリフェニレ
ンエーテル及びトルエンを表1に記載の配合量で反応器
に仕込み、加熱撹拌して、ポリフェニレンエーテルを溶
解した。同表記載の反応温度迄加熱した後、ナトリウム
エトキシドをエタノールに溶解して添加し、続いて、同
表記載の官能化剤を所定量添加し、加熱撹拌して反応し
た。反応終了後、反応混合物を2512のアセトニトリ
ル中に注ぎ、生成した官能化ポリフェニレンエーテルを
沈澱させた。i戸別後、再びアセトニトリル25I2で
洗浄し、80℃で減圧乾燥させ、官能化ポリフェニレン
エーテルを得た。これら得られた樹脂を官能化ポリフェ
ニレンエーテル(a)及び(b)として、その結果を表
1に示す。
Preparation example of functionalized polyphenylene ether: Polyphenylene ether and toluene were charged into a reactor in the amounts shown in Table 1, and the mixture was heated and stirred to dissolve the polyphenylene ether. After heating to the reaction temperature listed in the same table, sodium ethoxide was dissolved in ethanol and added, followed by a predetermined amount of the functionalizing agent listed in the table, and the mixture was heated and stirred to react. After the reaction was completed, the reaction mixture was poured into 2512 acetonitrile to precipitate the functionalized polyphenylene ether formed. After being separated, it was washed again with acetonitrile 25I2 and dried under reduced pressure at 80°C to obtain a functionalized polyphenylene ether. These obtained resins were designated as functionalized polyphenylene ethers (a) and (b), and the results are shown in Table 1.

実施例1.2及び比較例 官能化ポリフェニレンエーテル(a) (b)、飽和ポリエステル(三菱化成社製ポリブチレン
テレフタレート、商品名 ツバドール5010)及び未
官能化ポリフェニレンエーテル(日本ポリエーテル社製
、クロロホルムの30°Cての固有粘度0.3dI/g
)を使用して、内容積60ccの東洋精機社製のブラス
トミルに表2に示す組成で、260℃、回転数6Orp
mの条件にて、6分間溶融混練した。得られた樹脂組成
物を分析評価した。
Example 1.2 and Comparative Examples Functionalized polyphenylene ether (a) (b), saturated polyester (polybutylene terephthalate manufactured by Mitsubishi Kasei Co., Ltd., trade name: Tubadol 5010) and unfunctionalized polyphenylene ether (manufactured by Nippon Polyether Co., Ltd., chloroform). Intrinsic viscosity at 30°C 0.3dI/g
) with the composition shown in Table 2 in a blast mill manufactured by Toyo Seiki Co., Ltd. with an internal volume of 60 cc, at 260°C and at a rotation speed of 6 Orp.
The mixture was melt-kneaded for 6 minutes under the conditions of m. The obtained resin composition was analyzed and evaluated.

結果を表2に示す。本結果からも明らかなように、官能
化ポリフェニレンエーテルと飽和ポリエステルを配合し
た場合は、非常に細かい球状に近いポリフェニレンエー
テルの分散が認められると共に、グラフト共重合したポ
リフェニレンエーテルが認められた。
The results are shown in Table 2. As is clear from the present results, when functionalized polyphenylene ether and saturated polyester were blended, very fine, almost spherical polyphenylene ether dispersion was observed, as well as graft copolymerized polyphenylene ether.

なお、分析評価法は次の通り。The analysis and evaluation method is as follows.

(1)分散形態 得られた樹脂組成物の二相分散状態を調べるために、日
立製作所製S−2400型走査型電子顕微鏡により断面
を観察した。
(1) Dispersion Form In order to examine the two-phase dispersion state of the obtained resin composition, a cross section was observed using a scanning electron microscope model S-2400 manufactured by Hitachi, Ltd.

(2)樹脂組成物の分析 得られた樹脂組成物から一部を取り出し、0−クロルフ
ェノールとテトラクロルエチレンの3対2(容積比)の
混合液に溶解させた。この溶液をクロロホルム中に注ぎ
不溶分を決過して取り出り乾燥した。この不溶物中のポ
リフェニレンエーテルの量を該樹脂組成物にグラフト結
合したポリフェニレンエーテルの量比として、使用した
ポリブチレンテレフタレートに対する百分率で表した変
性率として求めた。また、先に得られたクロロホルム溶
液を多量のメタノール中に投入し、析出した樹脂を乾燥
し、赤外線分光分析法で分析した。
(2) Analysis of Resin Composition A portion of the obtained resin composition was taken out and dissolved in a 3:2 (volume ratio) mixed solution of 0-chlorophenol and tetrachlorethylene. This solution was poured into chloroform to remove insoluble matter, taken out and dried. The amount of polyphenylene ether in the insoluble matter was determined as the ratio of the amount of polyphenylene ether grafted to the resin composition, and as the modification rate expressed as a percentage of the polybutylene terephthalate used. In addition, the chloroform solution obtained earlier was poured into a large amount of methanol, and the precipitated resin was dried and analyzed by infrared spectroscopy.

(発明の効果) 以上のように、官能化ポリフェニレンエーテルと飽和ポ
リエステルを配合した本発明の熱可塑性樹脂組成物は表
2に示したように、同樹脂が共重合した優れた分散構造
を有している。
(Effects of the Invention) As shown in Table 2, the thermoplastic resin composition of the present invention containing functionalized polyphenylene ether and saturated polyester has an excellent dispersion structure in which the same resin is copolymerized. ing.

第1百の続き 市市東邦町1番地 三菱油化株式会社四日市総 合研光所内Continuation of the 100th part 1 Tohocho, City Mitsubishi Yuka Co., Ltd. Yokkaichiso Inside Gokenkosho

Claims (1)

【特許請求の範囲】 下記の成分(A)及び(B)からなることを特徴とする
熱可塑性樹脂組成物。 (A)一般式 ▲数式、化学式、表等があります▼( I ) (式中、Q^1は各々ハロゲン原子、第一級若しくは第
二級アルキル基、フェニル基、アミノアルキル基、炭化
水素オキシ基又はハロ炭化水素オキシ基を表し、Q^2
は各々水素原子、ハロゲン原子、第一級若しくは第二級
アルキル基、フェニル基、ハロアルキル基、炭化水素オ
キシ基又はハロ炭化水素オキシ基を表し、nは10以上
の数を表し、Xは酸素原子又は窒素原子を表し、R^1
は炭素数1〜12のアルキレン基を表し、R^2及びR
^3は各々炭素数1〜6の炭化水素基を表す。sはXが
酸素原子のときは1、Xが窒素原子のときは2であり、
tは1〜3の整数である) で示される末端基変性されたポリフェニレンエーテル1
0〜90重量% (B)飽和ポリエステル90〜10重量%
[Scope of Claims] A thermoplastic resin composition comprising the following components (A) and (B). (A) General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (I) (In the formula, Q^1 is each a halogen atom, a primary or secondary alkyl group, a phenyl group, an aminoalkyl group, a hydrocarbon oxy group or halohydrocarbonoxy group, Q^2
each represents a hydrogen atom, a halogen atom, a primary or secondary alkyl group, a phenyl group, a haloalkyl group, a hydrocarbonoxy group, or a halohydrocarbonoxy group, n represents a number of 10 or more, and X is an oxygen atom Or represents a nitrogen atom, R^1
represents an alkylene group having 1 to 12 carbon atoms, R^2 and R
^3 each represents a hydrocarbon group having 1 to 6 carbon atoms. s is 1 when X is an oxygen atom, 2 when X is a nitrogen atom,
t is an integer of 1 to 3) Terminal group-modified polyphenylene ether 1
0-90% by weight (B) Saturated polyester 90-10% by weight
JP18722090A 1990-05-17 1990-07-17 Thermoplastic resin composition Pending JPH0477553A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18722090A JPH0477553A (en) 1990-07-17 1990-07-17 Thermoplastic resin composition
US07/701,910 US5177156A (en) 1990-05-17 1991-05-17 Process for producing silane-modified polyphenylene ether and thermoplastic resin composition containing the same
EP19910108052 EP0457351A3 (en) 1990-05-17 1991-05-17 Process for producing silane-modified polyphenylene ether and thermoplastic resin composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18722090A JPH0477553A (en) 1990-07-17 1990-07-17 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH0477553A true JPH0477553A (en) 1992-03-11

Family

ID=16202175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18722090A Pending JPH0477553A (en) 1990-05-17 1990-07-17 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH0477553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017412A1 (en) * 2018-07-20 2020-01-23 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminated plate, resin sheet, and printed-wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017412A1 (en) * 2018-07-20 2020-01-23 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminated plate, resin sheet, and printed-wiring board
JPWO2020017412A1 (en) * 2018-07-20 2021-08-12 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Similar Documents

Publication Publication Date Title
US5177156A (en) Process for producing silane-modified polyphenylene ether and thermoplastic resin composition containing the same
JPH0135860B2 (en)
JPH0232143A (en) Thermoplastic resin composition
JPH036185B2 (en)
JP2610620B2 (en) Resin composition with excellent heat and solvent resistance
JP3129340B2 (en) Resin composition
JPH0477553A (en) Thermoplastic resin composition
JPH02272026A (en) Polyphenylene ether capped with aryloxytriazine, and its preparation
JPH05287202A (en) Thermoplastic resin composition
JPH0598149A (en) Resin composition
JPH0477552A (en) Thermoplastic resin composition
JPH05339493A (en) Flame-retardant resin composition
JPH0117504B2 (en)
JPH0423831A (en) Production of terminal group-modified polyphenylene ether
JPH06200015A (en) Production of alkoxysilylated polyphenylene ether
JPH05279568A (en) Thermoplastic resin composition
JPH04311751A (en) Thermoplastic resin composition
JPH04180962A (en) Thermoplastic resin composition
JPH05271530A (en) Thermoplastic resin composition
JPH02209952A (en) Polyester resin composition
JPH04311750A (en) Thermoplastic resin composition
JPS63189463A (en) Thermoplastic resin composition
JPH05194833A (en) Thermoplastic resin composition
JPH0280458A (en) Novel heat-resistant resin composition
JPH04325558A (en) Thermoplastic resin composition