JPH0474076B2 - - Google Patents
Info
- Publication number
- JPH0474076B2 JPH0474076B2 JP5016289A JP5016289A JPH0474076B2 JP H0474076 B2 JPH0474076 B2 JP H0474076B2 JP 5016289 A JP5016289 A JP 5016289A JP 5016289 A JP5016289 A JP 5016289A JP H0474076 B2 JPH0474076 B2 JP H0474076B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- water
- particle density
- biological
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 140
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- 239000002245 particle Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 description 21
- 230000008929 regeneration Effects 0.000 description 9
- 238000011069 regeneration method Methods 0.000 description 9
- 239000003344 environmental pollutant Substances 0.000 description 8
- 231100000719 pollutant Toxicity 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 244000005700 microbiome Species 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Water Treatment By Sorption (AREA)
- Biological Treatment Of Waste Water (AREA)
Description
〔産業上の利用分野〕
本発明は、下水2次処理水、産業廃水や有機性
汚染の進行した上水用源水のような汚染水を生物
の付着した活性炭によつて、汚染水中の微量有機
物や臭気成分、アンモニア性窒素(NH4−N)
などを好気状態で生物分解する水処理方法に関す
る。
〔従来の技術〕
上水道分野では水源の汚染が進行しており、特
に有機性汚染が著しくなつているが、この水源の
汚染に対応して従来とは異なつた浄化技術が研究
開発されている。その一つが生物活性炭処理の技
術であり、この処理方法は、溶存酸素を含む汚染
水を活性炭層に通水すると、汚染水中の汚濁物質
が活性炭に吸着されるとともに生物学的分解など
の生物学的除去作用を受けるため、活性炭が理論
的に吸着できる量よりも多くの汚濁物質が除去さ
れるというものである。〔黒沢ら「水質汚濁研究」
第11巻第9号590〜598頁(1988)〕。ここでは、活
性炭が吸着した汚濁物質が生物学的除去作用によ
つてなくなり、あたかも活性炭の吸着能力が回復
するようにみえるところから、この生物学的除去
作用は生物再生作用と呼ばれている。活性炭は高
価であり、生物再生効果がなければ、これは単な
る吸着材となり、頻繁な交換が必要になるため、
経済的でない。したがつて、交換頻度の少ない、
生物再生効果の期待できる生物活性炭処理方法
は、今後の発展が期待されている。
〔発明が解決しようとする課題〕
しかしながら、従来の生物活性炭処理方法は、
“活性炭吸着塔を設置したところ、生物活性炭効
果がたまたま認められた”という程度であり、生
物再生の面からみると、十分な効果が引き出され
ているとはいいがたい。
本発明は、汚染水を生物の付着した活性炭によ
つて好気状態で浄化する水処理方法において、活
性炭における生物再生作用を最大限に発揮させる
ことを目的とするものである。
〔課題を解決するための手段〕
本発明は、汚染水を生物の付着した活性炭によ
つて好気状態で浄化する水処理方法において、汚
染水を粒子密度0.3g/c.c.以上0.6g/c.c.未満の活
性炭の層、粒子密度0.6g/c.c.以上1.0g/c.c.以下
の活性炭の層の順に通すことを特徴とする水処理
方法によつて、前記の課題を根本的に解決した。
以下、本発明を図面を参照しながら詳細に説明
する。
第1図は、本発明の一実施態様を示したもので
あり、下水2次処理水などの汚染水1は処理槽2
の上部から入る。処理槽2で活性炭(A)3と活性炭
(B)4が固定床に充填され、活性炭(A)3の層は処理
槽2の上部に、また活性炭(B)4の層は処理槽2の
下部に形成されている。
本発明で最も重要なことは、汚染水を粒子密度
0.3g/c.c.以上0.6g/c.c.未満の活性炭Aの層、粒
子密度0.6g/c.c.以上1.0g/c.c.以下の活性炭Bの
層の順に通すことである。
従来、生物活性炭の処理効果については、その
ミクロポア(細孔)、とりわけ半径数+Åの細孔
の量に着目されてきた。これは、水中に溶存する
汚濁成分の大きさは数+Å程度であるため、孔径
が数+Åのミクロポアを多く有する活性炭がこれ
らの汚濁成分に対する吸着量が多く、したがつて
その吸着量が多いだけ生物再生作用が大きくなる
という考え方に基づいたものである。もつとも、
活性炭の吸着作用については、被吸着物質の大き
さに関する分子ふるい効果だけでなく、親水、疎
水性や電位の問題があるため、被吸着物質の大き
さだけ論ずることはできないが、それは諸因子の
中で吸着作用に最も影響を与えるので、一般的に
は被吸着物質の大きさだけが考慮されている。
しかし、発明者らは、生物再生作用は活性炭自
体の吸着能力ばかりでなく、微生物の保持量にも
大きな関係があると考えて実験したところ、微生
物の保持量は活性炭の粒子密度に依存することが
わかつた。すなわち、活性炭はその粒子密度の低
いものは微生物の保持量が大きいが、その粒子密
度の高いものは微生物の保持量が小さい。これ
は、一般に粒子密度の低い活性炭は10μm(105Å)
オーダのマクロポアの比率が高く、数μmオーダ
である細菌が繁殖し易いためと思われる。
さらに、粒子密度の低い活性炭は、マクロポア
の比率が高いため、汚濁物質を吸着する数+Åオ
ーダのミクロポアが若干少なくなるという欠点が
あり、粒子密度の低い活性炭だけを用いても、生
物再生作用については大きな改善は期待できず、
かえつて場合によつては生物再生作用が低下する
ことがある。
そこで、粒子密度の異なる活性炭について、そ
の活性炭の細孔半径細孔容積などの性状との関連
性やそれらと生物再生作用との関係について検討
したところ、それらの粒子密度と細孔半径、細孔
容積などとの関連性は、その一例を挙げると第1
表に示すようであつた。
[Industrial Application Field] The present invention removes trace amounts of contaminated water, such as secondary treated sewage water, industrial wastewater, and water source water with advanced organic contamination, by using activated carbon to which organisms are attached. Organic matter, odor components, ammonia nitrogen (NH 4 −N)
This paper relates to a water treatment method for biodegrading substances such as substances under aerobic conditions. [Prior Art] In the field of water supply, water sources are becoming increasingly contaminated, and organic pollution is becoming particularly significant. In response to this water source pollution, research and development are being carried out on purification technologies different from conventional ones. One of these is the biological activated carbon treatment technology. This treatment method involves passing contaminated water containing dissolved oxygen through an activated carbon layer. The pollutants in the contaminated water are adsorbed onto the activated carbon, and biological decomposition and other biological effects occur. Because activated carbon has a negative removal effect, more pollutants are removed than the amount that activated carbon can theoretically adsorb. [Kurosawa et al. “Water pollution research”
Vol. 11, No. 9, pp. 590-598 (1988)]. Here, the pollutants adsorbed by the activated carbon are removed by the biological removal action, and this biological removal action is called a biological regeneration action because it appears as if the adsorption capacity of the activated carbon is restored. Activated carbon is expensive, and without a bioregenerative effect, this would be just an adsorbent and would require frequent replacement.
Not economical. Therefore, replacement frequency is low.
Biological activated carbon treatment methods that are expected to have biological regeneration effects are expected to continue to develop in the future. [Problem to be solved by the invention] However, the conventional biological activated carbon treatment method
The only thing that can be said is that ``when an activated carbon adsorption tower was installed, a biological activated carbon effect was observed by chance,'' and from the perspective of biological regeneration, it is difficult to say that sufficient effects have been brought out. The present invention aims to maximize the biological regeneration effect of activated carbon in a water treatment method for purifying contaminated water in an aerobic state using activated carbon to which living organisms are attached. [Means for Solving the Problems] The present invention provides a water treatment method for purifying contaminated water in an aerobic state using activated carbon to which living organisms are attached. The above-mentioned problem has been fundamentally solved by a water treatment method characterized in that the water is passed through a layer of activated carbon in this order, and then a layer of activated carbon with a particle density of 0.6 g/cc to 1.0 g/cc. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows one embodiment of the present invention, in which contaminated water 1 such as secondary treated sewage water is collected in a treatment tank 2.
Enter from the top. Activated carbon (A) 3 and activated carbon in treatment tank 2
(B) 4 is packed in a fixed bed, and a layer of activated carbon (A) 3 is formed in the upper part of the treatment tank 2, and a layer of activated carbon (B) 4 is formed in the lower part of the treatment tank 2. The most important thing in this invention is to reduce the particle density of contaminated water.
A layer of activated carbon A having a particle density of 0.3 g/cc or more and less than 0.6 g/cc is passed through in this order, and a layer of activated carbon B having a particle density of 0.6 g/cc or more and 1.0 g/cc or less. Conventionally, regarding the treatment effects of biological activated carbon, attention has been focused on its micropores (pores), especially the amount of pores with a radius of several angstroms. This is because the size of the pollutant components dissolved in water is approximately several Å, so activated carbon, which has many micropores with a pore diameter of several Å, has a large adsorption capacity for these pollutants. This is based on the idea that biological regeneration effects will be enhanced. However,
Regarding the adsorption effect of activated carbon, there are not only molecular sieving effects related to the size of the adsorbed substance, but also hydrophilicity, hydrophobicity, and potential issues, so it is not possible to discuss only the size of the adsorbed substance, but it depends on various factors. Generally, only the size of the adsorbed substance is considered because it has the greatest influence on the adsorption effect. However, the inventors believed that the biological regeneration effect is largely related not only to the adsorption capacity of activated carbon itself, but also to the amount of microorganisms retained, and through experiments, they found that the amount of microorganisms retained depends on the particle density of activated carbon. I understood. That is, when activated carbon has a low particle density, it holds a large amount of microorganisms, but when it has a high particle density, it holds a small amount of microorganisms. This is because activated carbon with a low particle density is generally 10 μm (10 5 Å)
This seems to be because the ratio of macropores on the order of several micrometers is high, and bacteria on the order of several μm can easily breed there. Furthermore, activated carbon with a low particle density has a high ratio of macropores, which has the disadvantage that the number of micropores on the order of the number + Å that can adsorb pollutants is slightly reduced. No major improvement can be expected,
In some cases, on the contrary, the bioregenerative effect may be reduced. Therefore, we investigated the relationship between the activated carbon's pore radius, pore volume, and other properties of activated carbon with different particle densities, and the relationship between these and biological regeneration effects. The relationship with volume etc. is the first example.
It was as shown in the table.
本発明で用いる粒子密度が0.3g/c.c.以上0.6
g/c.c.未満の活性炭(A)は、1μm以上のマクロポア
の比率が高く、かつ10μmオーダのマクロポアの
比率が高いため、大きさが数μmオーダである細
菌が繁殖し易いため生物作用が十分に行われる。
また、粒子密度が0.6g/c.c.以上1.0g/c.c.以下と
高い活性炭(B)は、1μm以上のマクロポアの比率が
少なく、数+Åのミクロポアの比率が若干高いた
め、汚濁成分の吸着量が多い。
そして、汚染水をこれらの活性炭Aと活性炭B
を順に通すと、生物再生効果が著しく増大する理
由は、明らかではないが、おそらく次のようなこ
とであろうと推測される。活性炭Aに前記したよ
うに細菌が多量に付着するが、その細菌群のなか
には被吸着物質である汚濁物質を分解する細菌も
含まれるため、分解酵素を分泌し、一部の酵素は
活性炭A内で使用されるが、一部は汚染水ととも
に活性炭B内に至り、活性炭Bでの細菌数の不足
を補つているのではないかと考えられる。
〔実施例〕
以下、実施例によつて本発明を具体的に説明す
る。ただし、本発明はこの実施例のみに限定され
るものではない。
実施例 1
下水2次処理水を被処理水として本発明に従つ
て処理した。また、比較例として別の処理方法に
よつて同じ被処理水を処理した。
実験装置は径160mm×高さ5500mmのカラムを用
いた。第2表に実験に使用した活性炭の仕様を示
し、また第3表に実験条件を示す。第3表に見え
るように、比較例1は活性炭A単独を使用した場
合であり、比較例2は活性炭B単独を使用した場
合であり、比較例3は活性炭B、活性炭Aの順に
充填した場合である。
The particle density used in the present invention is 0.3 g/cc or more 0.6
Activated carbon (A) with less than g/cc has a high ratio of macropores of 1 μm or more and a high ratio of macropores on the order of 10 μm, so bacteria with a size on the order of several μm can easily breed, so it does not have sufficient biological effects. It will be done.
In addition, activated carbon (B) with a high particle density of 0.6 g/cc to 1.0 g/cc has a low ratio of macropores of 1 μm or more and a slightly high ratio of micropores of several + Å, so it adsorbs a large amount of pollutant components. . Then, the contaminated water is treated with activated carbon A and activated carbon B.
Although it is not clear why the biological regeneration effect increases significantly when these are passed in this order, it is assumed that the following is probably the reason. As mentioned above, a large amount of bacteria adheres to activated carbon A, but since the bacterial group includes bacteria that decompose pollutants that are adsorbed substances, they secrete degrading enzymes, and some of the enzymes are absorbed into activated carbon A. However, it is thought that some of it reaches the activated carbon B together with the contaminated water and compensates for the lack of bacteria in the activated carbon B. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. However, the present invention is not limited to this example. Example 1 Secondary treated sewage water was treated according to the present invention as water to be treated. In addition, as a comparative example, the same water to be treated was treated using another treatment method. The experimental apparatus used a column with a diameter of 160 mm and a height of 5500 mm. Table 2 shows the specifications of the activated carbon used in the experiment, and Table 3 shows the experimental conditions. As shown in Table 3, Comparative Example 1 is a case where activated carbon A alone is used, Comparative Example 2 is a case where activated carbon B is used alone, and Comparative Example 3 is a case where activated carbon B and activated carbon A are filled in that order. It is.
【表】【table】
【表】
TOC除去率30%を破過とみなしたときの、交
換までの活性炭使用可能期間と汚泥発生量を求め
た。その結果を第4表に示す。[Table] When the TOC removal rate of 30% is considered as breakthrough, the usable period of activated carbon until replacement and the amount of sludge generated were calculated. The results are shown in Table 4.
【表】
処理水SSは、運転初期からあまり変わらない
が、処理水TOCは経過日数とともに徐々に上昇
する。本発明は、比較例1,2,3に比べ、最も
良好な水質の処理水が得られた。
一方、本発明は、交換までの活性炭使用可能期
間が比較例の場合の1.5〜2倍程度延びている。
また、汚泥発生量は、活性炭A単独(比較例1)
の場合とほとんど同じであり、粒子密度の低い活
性炭Aを全量用いなくとも全量用いた場合とほぼ
同様な効果が期待できる。
実施例 2
実施例1の活性炭A及び活性炭Bに代えて、両
活性炭の粒子密度が近接した場合について実施例
1と同じ実験条件(第3表)で試験を行つた。活
性炭A(上層側)として粒子密度0.58g/c.c.、活
性炭B(下層側)として粒子密度0.65g/c.c.のも
のを使用した。これらの活性炭の仕様を第5表に
示す。そして、これらの活性炭を使用したときの
処理効果を第6表に示す。[Table] Treated water SS does not change much from the beginning of operation, but treated water TOC gradually increases as days pass. In the present invention, treated water with the best quality was obtained compared to Comparative Examples 1, 2, and 3. On the other hand, in the present invention, the usable period of activated carbon before replacement is approximately 1.5 to 2 times longer than in the comparative example.
In addition, the amount of sludge generated is for activated carbon A alone (Comparative Example 1)
This is almost the same as in the case of , and even if the activated carbon A having a low particle density is not used in its entirety, almost the same effect as when the entire amount is used can be expected. Example 2 In place of activated carbon A and activated carbon B in Example 1, a test was conducted under the same experimental conditions as in Example 1 (Table 3), except that the particle densities of both activated carbons were close to each other. Activated carbon A (upper layer side) with a particle density of 0.58 g/cc and activated carbon B (lower layer side) with a particle density of 0.65 g/cc were used. Table 5 shows the specifications of these activated carbons. Table 6 shows the treatment effects when using these activated carbons.
【表】【table】
本発明は、粒子密度の低い活性炭と粒子密度の
高い活性炭とを直列に組み合わせることにより、
生物再生作用が増大し、それに伴い、活性炭の逆
洗頻度が従来方法に比べて少なくてすみ、また活
性炭の交換までの使用期間が従来方法の1.5倍程
度まで延長することができたので通水可能期間が
著しく延長された。また、汚泥発生量について
も、粒子密度の低い活性炭を単独で行なつた場合
とほぼ同様にすることができる。
さらに、活性炭充填層下部に散気管を配備する
ことによつて、充填層全域を好気状態に維持する
ことができるので、下水2次処理水のように酸素
要求量の高い汚染水についても有効に処理するこ
とができる。その際、被処理水を下向流で通水す
ると、気液向流効果が発揮されるため、送気量の
節約ができ、省エネルギーになる。
また、被処理水を下向流で通水し、かつ上層に
ある粒子密度の低い活性炭の粒径を粒子密度の高
い活性炭の粒径よりも大きくすると、複層濾過効
果によつて活性炭の目詰まりを防止することがで
きるため、凝集沈澱設備などの前処理を省略でき
る。
The present invention combines activated carbon with a low particle density and activated carbon with a high particle density in series.
The biological regeneration effect increases, and as a result, the frequency of backwashing of activated carbon is reduced compared to conventional methods, and the period of use before replacing activated carbon can be extended to about 1.5 times compared to conventional methods. The available period has been significantly extended. Furthermore, the amount of sludge generated can be made almost the same as when activated carbon with a low particle density is used alone. Furthermore, by installing an aeration pipe at the bottom of the activated carbon packed bed, the entire packed bed can be maintained in an aerobic state, making it effective even for contaminated water with high oxygen demand, such as secondary treated sewage water. can be processed. At this time, when the water to be treated is passed in a downward flow, a gas-liquid countercurrent effect is exhibited, so the amount of air supplied can be saved, resulting in energy savings. In addition, if the water to be treated is passed in a downward flow and the particle size of the activated carbon with a low particle density in the upper layer is made larger than the particle size of the activated carbon with a high particle density, the activated carbon will Since clogging can be prevented, pretreatment such as coagulation and sedimentation equipment can be omitted.
第1図は本発明の一実施態様を行うための装置
の模式図を示す。
符号の説明、1…汚染水、2…処理槽、3…活
性炭A、4…活性炭B、5…散気管、6…酸素含
有ガス、7…処理水管、8…処理水。
FIG. 1 shows a schematic diagram of an apparatus for carrying out one embodiment of the invention. Explanation of symbols: 1... Contaminated water, 2... Treatment tank, 3... Activated carbon A, 4... Activated carbon B, 5... Diffusion pipe, 6... Oxygen-containing gas, 7... Treated water pipe, 8... Treated water.
Claims (1)
状態で浄化する水処理方法において、汚染水を粒
子密度0.3g/c.c.以上0.6g/c.c.未満の活性炭の
層、粒子密度0.6g/c.c.以上1.0g/c.c.以下の活性
炭の層の順に通すことを特徴とする水処理方法。1. In a water treatment method that purifies contaminated water in an aerobic state using activated carbon with attached living organisms, contaminated water is treated with a layer of activated carbon with a particle density of 0.3 g/cc or more and less than 0.6 g/cc, or a layer of activated carbon with a particle density of 0.6 g/cc or more. A water treatment method characterized by passing through layers of activated carbon in order of 1.0 g/cc or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1050162A JPH02229595A (en) | 1989-03-03 | 1989-03-03 | Water treatment by biological active carbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1050162A JPH02229595A (en) | 1989-03-03 | 1989-03-03 | Water treatment by biological active carbon |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02229595A JPH02229595A (en) | 1990-09-12 |
JPH0474076B2 true JPH0474076B2 (en) | 1992-11-25 |
Family
ID=12851502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1050162A Granted JPH02229595A (en) | 1989-03-03 | 1989-03-03 | Water treatment by biological active carbon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02229595A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3056361B2 (en) * | 1993-11-08 | 2000-06-26 | シャープ株式会社 | Wastewater treatment device and wastewater treatment method |
JP3335500B2 (en) | 1994-08-03 | 2002-10-15 | シャープ株式会社 | Wastewater treatment device and wastewater treatment method |
JP3302227B2 (en) * | 1995-09-06 | 2002-07-15 | シャープ株式会社 | Wastewater treatment device and wastewater treatment method |
JP3350353B2 (en) * | 1996-05-28 | 2002-11-25 | シャープ株式会社 | Wastewater treatment method and wastewater treatment device |
JP3969185B2 (en) * | 2002-05-24 | 2007-09-05 | 栗田工業株式会社 | Pure water production equipment |
JP5604914B2 (en) * | 2010-03-05 | 2014-10-15 | 栗田工業株式会社 | Water treatment method and ultrapure water production method |
WO2011108478A1 (en) * | 2010-03-05 | 2011-09-09 | 栗田工業株式会社 | Water treatment method and process for producing ultrapure water |
JP4657372B2 (en) * | 2010-06-03 | 2011-03-23 | 日本建設技術株式会社 | Water purification method and water purification device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57197081A (en) * | 1981-05-28 | 1982-12-03 | Akira Kakumoto | Treatment of waste water |
JPS6071081A (en) * | 1983-09-26 | 1985-04-22 | Unitika Ltd | Removal of organic compound in water |
-
1989
- 1989-03-03 JP JP1050162A patent/JPH02229595A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57197081A (en) * | 1981-05-28 | 1982-12-03 | Akira Kakumoto | Treatment of waste water |
JPS6071081A (en) * | 1983-09-26 | 1985-04-22 | Unitika Ltd | Removal of organic compound in water |
Also Published As
Publication number | Publication date |
---|---|
JPH02229595A (en) | 1990-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60175523A (en) | Separation of gaseous organic noxious substance present in waste gas in trace amount by biological oxidation by bacteria | |
JPH0474076B2 (en) | ||
JPH11285696A (en) | Device and method for sewage treatment | |
CN2863781Y (en) | High-concentration ammonia nitrogen waste water treatment apparatus | |
KR200336701Y1 (en) | Polluted river-water purification system using direct aeration | |
US5139682A (en) | Zeolite enhanced organic biotransformation | |
JPH0226558B2 (en) | ||
Klimenko et al. | Biosorption processes for natural and wastewater treatment–part 1: Literature review | |
KR20020011359A (en) | Combination purifier tank | |
CN113101800A (en) | Volatile organic compound treatment reaction system and application thereof | |
JPH04322799A (en) | Method and device for treating oil-containing waste water | |
JP3555812B2 (en) | Advanced treatment method for organic wastewater | |
JP3222015B2 (en) | Biological water treatment method for wastewater containing ammonia nitrogen | |
JPH04349996A (en) | Nitrogen removal device | |
JP2554560B2 (en) | Method and apparatus for biological regeneration of activated carbon | |
JPH03118891A (en) | Treatment of organic sewage | |
JP3925394B2 (en) | Wastewater treatment method | |
JPH0871545A (en) | Removal of phosphorus and cod-component in sewage | |
JP2000342904A (en) | Method and apparatus for treating volatile organochlorine compound | |
JP3496789B2 (en) | Organic wastewater treatment method and treatment device | |
JPH0312284A (en) | Water treatment method | |
KR830002326B1 (en) | Wastewater Treatment Method | |
JP3560474B2 (en) | How to regenerate activated carbon | |
JP3002592B2 (en) | Biological water treatment method for wastewater containing N ▲ H4 ▼ -N | |
JPH0966293A (en) | Low load sewage treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091125 Year of fee payment: 17 |