[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0448652A - Semiconductor device of silicon planar type - Google Patents

Semiconductor device of silicon planar type

Info

Publication number
JPH0448652A
JPH0448652A JP15790490A JP15790490A JPH0448652A JP H0448652 A JPH0448652 A JP H0448652A JP 15790490 A JP15790490 A JP 15790490A JP 15790490 A JP15790490 A JP 15790490A JP H0448652 A JPH0448652 A JP H0448652A
Authority
JP
Japan
Prior art keywords
conductive ring
insulating film
semiconductor layer
main
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15790490A
Other languages
Japanese (ja)
Other versions
JP2634929B2 (en
Inventor
Hideki Takahashi
英樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2157904A priority Critical patent/JP2634929B2/en
Publication of JPH0448652A publication Critical patent/JPH0448652A/en
Application granted granted Critical
Publication of JP2634929B2 publication Critical patent/JP2634929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To acquire a silicon planar type semiconductor device having a structure whose depletion layer easily grows uniformly and resists external effect by forming the device of a first semiconductor layer of first conductivity type, a second semiconductor layer of second conductivity type, an insulating film, a conductive ring, a first main electrode and a second main electrode. CONSTITUTION:When a reverse voltage is applied to a main junction 4 between main electrodes 8, 9, a depletion layer grows from the main junction 4 and a guard ring 5 and a channel stopper 6 work to hold a reverse voltage of a main junction flat part 4a. In the process, a conductive ring 12 positions on an n<->-silicon layer 2 as a first semiconductor layer through an insulating film 7. Furthermore, since each conductive ring 12 is spaced regularly to a p-region 3, it does not have a detrimental effect on operation of the guard ring 5 and a channel stopper 6. When irregular electric charge exists inside an insulating film 7 below an insulating film-silicon interface and the conductive ring 12, electric charge easily moves inside the conductive ring 12 to cancel effect of irregular electric potential as electric potential of each conductive ring 12 is fixed; therefore the conductive ring 12 resists irregular charge. A depletion layer easily grows uniformly in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、シリコンプレーナ型半導体装置に関し、特
にその耐圧保持能力のための主接合周辺の構造に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon planar semiconductor device, and particularly to a structure around a main junction for maintaining its breakdown voltage ability.

〔従来の技術〕[Conventional technology]

第2図に、従来のプレーナ型半導体装置で主接合の耐圧
保持のため用いられてきた主接合周辺の断面図を示す。
FIG. 2 shows a cross-sectional view of the vicinity of the main junction, which has been used to maintain the withstand voltage of the main junction in a conventional planar semiconductor device.

この図において、1はn+基板であり、その上にn−シ
リコン層2が形成されている。このn9932層2の表
面に、p型不純物をプレーナ技術により拡散することに
より、p領域3が形成され、とのp領域3とn−シリコ
ン層2との境が主接合4となる。外周には、p型不純物
を拡散することにより、必要な本数のガードリング5が
形成される。さらに、ガードリング5の外周にn型不純
物を拡散することにより、チャネルストッパ6が形成さ
れる。このチャネルストッパ6の外側で1枚のウェハか
ら各素子に分割されろ。p領域3゜ガードリング5.チ
ャネルストッパ6の各間のn9932層2の表面には絶
縁膜7が形成されている。また、p領域3の表面に主電
極8が、n+基板1の裏面に主電極9が形成され、各ガ
ードリング5の表面にガードリング電極10が、また、
チャネルストッパ電極11が、チャネルス)・ツバ6の
表面上から絶縁y、7上にかかるように形成されている
In this figure, 1 is an n+ substrate, on which an n- silicon layer 2 is formed. By diffusing p-type impurities into the surface of this n9932 layer 2 by planar technology, a p region 3 is formed, and the boundary between the p region 3 and the n-silicon layer 2 becomes a main junction 4. A required number of guard rings 5 are formed on the outer periphery by diffusing p-type impurities. Furthermore, a channel stopper 6 is formed by diffusing n-type impurities into the outer periphery of the guard ring 5. One wafer is divided into each element outside this channel stopper 6. p region 3° guard ring 5. An insulating film 7 is formed on the surface of the n9932 layer 2 between each channel stopper 6 . Further, a main electrode 8 is formed on the surface of the p region 3, a main electrode 9 is formed on the back surface of the n+ substrate 1, and a guard ring electrode 10 is formed on the surface of each guard ring 5.
A channel stopper electrode 11 is formed so as to extend from the surface of the channel collar 6 to the insulator 7.

このような構成において、主電極8と主電極9の間に、
主電極8がマイナス、主電極9がプラスの電圧を印加す
る。この電圧は主接合4に対して逆電圧なので、電圧が
強くなるにつれ、主接合4から濃度の低いn−シリコン
層2へ空乏層が伸びる。このとき一般に主接合コーナ部
4bの電界が主接合平坦部4aの電界より強くなる。こ
のため、高い逆電圧(100〜200V以上)を得る場
合、ガードリング5がないと主接合平坦部4aで決定さ
れる逆電圧以前にブレークダウンが主接合コーナ部4b
で起こる。したがって、主接合4が主接合コーナ部4b
でブレークダウンする以前に、空乏層が1本目のガード
リング5aに到達するように、1本目のガードリング5
aをつけておくと、空乏層は今度は1本目のガードリン
グ5aから伸びるため、主接合コーナ部4bの電界が緩
和される。次には、この1本目のガードリング5aのコ
ナ部の電界を考えなくてはならないが、複数のガードリ
ング5をつけることにより、コーナ部の電界は緩和され
、主接合4は主接合平坦部4aで決定される逆電圧を示
す。
In such a configuration, between the main electrode 8 and the main electrode 9,
The main electrode 8 applies a negative voltage and the main electrode 9 applies a positive voltage. Since this voltage is a reverse voltage with respect to the main junction 4, as the voltage becomes stronger, a depletion layer extends from the main junction 4 to the n-silicon layer 2 with a lower concentration. At this time, the electric field at the main junction corner portion 4b is generally stronger than the electric field at the main junction flat portion 4a. Therefore, when obtaining a high reverse voltage (100 to 200 V or more), without the guard ring 5, breakdown will occur at the main junction corner 4b before the reverse voltage determined at the main junction flat part 4a.
It happens in Therefore, the main joint 4 is the main joint corner portion 4b.
the first guard ring 5a so that the depletion layer reaches the first guard ring 5a before breaking down.
If a is attached, the depletion layer will now extend from the first guard ring 5a, and the electric field at the main junction corner 4b will be relaxed. Next, we must consider the electric field at the corner of this first guard ring 5a, but by attaching a plurality of guard rings 5, the electric field at the corner is relaxed, and the main junction 4 is connected to the flat part of the main junction. 4a shows the reverse voltage determined in FIG.

また、最外周ガードリング5bからチャネルストッパ6
までは空乏層が伸びないように設計するが、何等かの要
因で空乏層が伸びすぎた場合、チャネルストッパ6がな
いと空乏層が素子の端に到達し、耐圧低下の原因となる
。チャネルストッパ6は一般に裏面のn+基板1と同電
位なので、空乏層の伸びを押さえ、空乏層が素子の端1
で伸びないようにしている。
Also, from the outermost circumferential guard ring 5b to the channel stopper 6
The design is such that the depletion layer does not extend until then, but if the depletion layer extends too much for some reason, the depletion layer will reach the edge of the device without the channel stopper 6, causing a drop in breakdown voltage. Since the channel stopper 6 is generally at the same potential as the n+ substrate 1 on the back side, it suppresses the extension of the depletion layer and prevents the depletion layer from forming at the edge 1 of the device.
I'm trying to keep it from growing.

ガードリング電極10.チャネルストッパ電極11は、
各働きを助けるためにつけられている。
Guard ring electrode 10. The channel stopper electrode 11 is
It is attached to help each work.

このような構造により、プレーナ接合の耐圧保持能力は
大幅に向上してきた。
With such a structure, the withstand voltage holding ability of planar bonding has been significantly improved.

しかしながら、ガードリング5.チャネルストッパ6を
形成したとしても、シリコン−絶縁膜界面や、絶縁膜7
内には一般にプラスの電荷が存在する。この電荷が不均
一であった場合、この電荷により空乏層の伸びに不均一
が生じる(一般に電荷のため空乏層が伸びやすくなる)
。したがって、空乏層の伸びた部分はチャネルストッパ
6に最も近づくので、他の場所より電界が強くなり、ブ
し・クダウンしやすくなる。
However, guard ring 5. Even if the channel stopper 6 is formed, the silicon-insulating film interface and the insulating film 7
There is generally a positive charge inside. If this charge is non-uniform, this charge will cause non-uniform elongation of the depletion layer (in general, the charge makes the depletion layer easier to elongate)
. Therefore, since the extended portion of the depletion layer is closest to the channel stopper 6, the electric field is stronger than in other locations, making it easier to blow up and down.

また、外部から電荷や水分等が表面の主接合周辺の一部
に付着すると、その下の空乏層の伸びに不均一が生しる
。さらに、表面全体に付着すると(特に水分が考えられ
る)空乏層は全体に伸びやすくなり、最外周ガードリン
グ5bのコーナ部をブレークダウンしやすくなる。また
は空乏層の伸びがひどいとチャネルストッパ6に空乏層
が到達し、この部分の電界から強くなり、ブレークダウ
ンすることもある。
Furthermore, if electric charges, moisture, etc. adhere from the outside to a part of the periphery of the main junction on the surface, non-uniformity will occur in the elongation of the depletion layer underneath. Further, if the depletion layer adheres to the entire surface (particularly moisture is considered), the depletion layer tends to extend over the entire surface, making it easier to break down the corner portion of the outermost circumferential guard ring 5b. Alternatively, if the depletion layer is severely elongated, the depletion layer may reach the channel stopper 6, and the electric field at this portion may become stronger, leading to breakdown.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように、従来のプレーナ型接合では、その周辺の
主接合からの空乏層の伸びが不均一になったり、伸びす
ぎたりし、耐圧が低下する等の問題があった。
As described above, in the conventional planar junction, the depletion layer from the main junction around the junction becomes uneven or extends too much, which causes problems such as a decrease in breakdown voltage.

乙の発明は、上記のような問題を解決するためになされ
たもので、空乏層が均一に伸びやすく、また、外部の影
響を受けにくい構造を有するシリコンプレーナ型半導体
装置を提供することを目的とする。
The invention of Party B was made in order to solve the above-mentioned problems, and its purpose is to provide a silicon planar semiconductor device having a structure in which the depletion layer can easily grow uniformly and is less susceptible to external influences. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るシリコンプレーナ型半導体装置は、第1
導電型の第1の半導体層と、この第1の半導体層表面に
形成された第2導電型の第2の半導体層と、この第2の
半導体層の外側の第1の半導体層表面に形成された絶縁
膜と、この絶縁膜内に第2の半導体層を囲むように形成
された導電性リングと、第2の半導体層表面に形成され
た第1の主電極と、第1の半導体層裏面に形成された第
2の主電極とで構成したものである。
The silicon planar semiconductor device according to the present invention has a first
a first semiconductor layer of a conductivity type; a second semiconductor layer of a second conductivity type formed on the surface of the first semiconductor layer; and a second semiconductor layer of the second conductivity type formed on the surface of the first semiconductor layer outside the second semiconductor layer. a conductive ring formed in the insulating film so as to surround the second semiconductor layer, a first main electrode formed on the surface of the second semiconductor layer, and a first semiconductor layer. A second main electrode is formed on the back surface.

〔作用〕[Effect]

この発明においては、絶縁膜−シリコン界面および絶縁
膜内の電荷の不均一に対して、これを解消するように導
電性リング内で電荷の移動が起こる。また、この導電性
リングは、外部表面に付着する電荷等に対してはシール
ドとして機能する。
In this invention, charge movement occurs within the conductive ring so as to eliminate non-uniformity of charge at the insulating film-silicon interface and within the insulating film. Further, this conductive ring functions as a shield against electric charges and the like that adhere to the external surface.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明のシリコンプレーナ型半導体装置の一
実施例の主接合周辺の断面図である。この図において、
第2図と同一符号は同一のものを示し、12は導電性リ
ングである。
FIG. 1 is a sectional view of the vicinity of a main junction of an embodiment of a silicon planar semiconductor device of the present invention. In this diagram,
The same reference numerals as in FIG. 2 indicate the same parts, and 12 is a conductive ring.

すなわち、この発明のシリコンプレーナ型半導体装置で
は、第1図に示すように、従来の構造に加えて導電性リ
ング12が主接合4から素子周辺にかけての絶縁膜7内
に第2の半導体層としてのp領域3を囲むように形成さ
れており、また、各絶縁膜7内で導電性リーンヴ12は
p領域3から等間隔で形成されている。
That is, in the silicon planar semiconductor device of the present invention, as shown in FIG. 1, in addition to the conventional structure, a conductive ring 12 is provided as a second semiconductor layer within the insulating film 7 from the main junction 4 to the periphery of the element. In each insulating film 7, conductive leans 12 are formed at equal intervals from the p region 3.

次に、この発明によるプレーナ型接合の動作について説
明する。
Next, the operation of the planar type joining according to the present invention will be explained.

このような構成において、主電極8,9間に主接合4に
対して逆電圧を加えた場合、前述したように、主接合4
から空乏層が呻び、主接合平坦部4aの逆電圧を保持す
るように、ガードリング5゜チャネルストッパ6が働く
。このとき導電性リング12は、第1の半導体層として
のn−シリコン層2上に絶m膜7を介して位置し、また
、各導電性リング12はp領域3に対して等間隔なので
、ガードリング5.チャネルストッパ6の働きに対して
悪影響を与えない。
In such a configuration, when a reverse voltage is applied to the main junction 4 between the main electrodes 8 and 9, as described above, the main junction 4
The guard ring 5° channel stopper 6 acts so that the depletion layer is depressed and the reverse voltage of the main junction flat portion 4a is maintained. At this time, the conductive rings 12 are located on the n-silicon layer 2 as the first semiconductor layer with the m-layer 7 in between, and each conductive ring 12 is equally spaced with respect to the p region 3. Guard ring 5. It does not adversely affect the function of the channel stopper 6.

次に絶縁膜−シリコン界面や、導電性リング12より下
の絶縁膜7内に不均一な電荷が存在する場合を考える。
Next, consider the case where non-uniform charges exist at the insulating film-silicon interface or within the insulating film 7 below the conductive ring 12.

この場合、各導電性リング12は電位が一定なので、不
均一な電位を打ち消すよう導電性リング12内で電荷の
移動が起こり、不均一な電荷の影響を受けにくくなり、
空乏層が均一に伸びやすくなる。
In this case, since each conductive ring 12 has a constant potential, charge movement occurs within the conductive ring 12 to cancel out the non-uniform potential, making it less susceptible to the effects of non-uniform charge.
This makes it easier for the depletion layer to grow uniformly.

また、導電性リング12より上の絶縁膜7内や、外部表
面に電荷や水分が付着した場合、各導電性リング12は
シールド効果を示すため、外部の影響を受けにくくなる
。さらに、導電性リング12は、それぞれp領域3に対
して等間隔に配置されているので、不均一な電荷や外部
に付着した電荷や水分がなくとも、空乏層が均一に伸び
やすくなる。
Furthermore, if charges or moisture adhere to the inside of the insulating film 7 above the conductive ring 12 or to the external surface, each conductive ring 12 exhibits a shielding effect, making it less susceptible to external influences. Furthermore, since the conductive rings 12 are arranged at regular intervals with respect to the p-region 3, the depletion layer can easily grow uniformly even without uneven charges, externally attached charges, or moisture.

なお、第1図で示した実施例では、ガードリング5.チ
ャネルストッパ6およびガードリング電極10.チャネ
ルストッパ電極11がついた例を示したが、これらがな
くともこの発明の導電性リング12は主接合4の耐圧を
保持する働きをする。
In addition, in the embodiment shown in FIG. 1, the guard ring 5. Channel stopper 6 and guard ring electrode 10. Although an example is shown in which the channel stopper electrode 11 is provided, the conductive ring 12 of the present invention functions to maintain the withstand voltage of the main junction 4 even without these.

また、上記実施例では、n−シリコン層2のプし・−す
型接合について述べたが、p−シリコン層のプレーナ型
接合にもこの発明を適用できることはいうまでもない。
Further, in the above embodiment, a push type junction of the n-silicon layer 2 was described, but it goes without saying that the present invention can also be applied to a planar type junction of the p-silicon layer.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、第1導電型の第1の半
導体層と、この第1の半導体層表面に形成された第2導
電型の第2の半導体層と、この第2の半導体層の外側の
第1の半導体層表面に形成された絶縁膜と、この絶縁膜
内に第2の半導体層を囲むように形成された導電性リン
グと、第2の半導体層表面に形成された第1の主電極と
、第1の半導体層裏面に形成された第2の主電極とで構
成したので、主接合に逆電圧を加えた場合、空乏層が均
一に伸びやすく、また、外部の影響を受けにくいプレー
ナ型接合を得ることができるという効果がある。
As explained above, the present invention includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type formed on the surface of the first semiconductor layer, and a second semiconductor layer of the second conductivity type. an insulating film formed on the surface of the first semiconductor layer on the outside; a conductive ring formed in the insulating film so as to surround the second semiconductor layer; and a first conductive ring formed on the surface of the second semiconductor layer. , and a second main electrode formed on the back surface of the first semiconductor layer. Therefore, when a reverse voltage is applied to the main junction, the depletion layer can easily grow uniformly, and it can be protected from external influences. This has the effect of making it possible to obtain a planar type joint that is less susceptible to susceptibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のシリコンプレーナ型半導体装置の一
実施例の主接合周辺の断面図、第2図は従来のプレーナ
型半導体装置の主接合周辺の断面図である。 図において、1はn+基板、2はn−シリコン層、3は
p領域、4は主接合、5はガードリング、6はチャネル
ストッパ、7は絶縁膜、8,9は主電極、10はガード
リング電極、11はチャネルストッパ電極、12は導電
性リングである。 なお、各図中の同一符号は同一または相当部分をホす。 代理人 大 岩 増 雄   (外2名)頃) 手続補正書く自発) 平成3年7月9日 3、補正をする者 事件との関係  特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者志岐守哉 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書の第9頁4行と5行の間に下記の説明文を挿入す
る。 [さらに、第1図で示した実施例では、導電性リング1
2が主接合4とチャネルストッパ6の間の絶縁W787
内にすべである例を示したが、絶[膜7内に導電性リン
グ12が1本以上あれば、その本数と位置によらず、主
接合4の耐圧を保持する。 しかしながら、より完全な主接合4の耐圧の保持能力を
発揮するには、絶縁膜7内にすべて形成するのが望まし
い。J 以  上
FIG. 1 is a cross-sectional view of the vicinity of the main junction of an embodiment of the silicon planar semiconductor device of the present invention, and FIG. 2 is a cross-sectional view of the vicinity of the main junction of a conventional planar semiconductor device. In the figure, 1 is an n+ substrate, 2 is an n- silicon layer, 3 is a p region, 4 is a main junction, 5 is a guard ring, 6 is a channel stopper, 7 is an insulating film, 8 and 9 are main electrodes, and 10 is a guard A ring electrode, 11 is a channel stopper electrode, and 12 is a conductive ring. Note that the same reference numerals in each figure refer to the same or corresponding parts. Agent Masuo Oiwa (around 2 others) Voluntary to write procedural amendments) July 9, 1991 3, Relationship to the case of the person making the amendments Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name Title (601) Mitsubishi Electric Corporation Representative Moriya Shiki 5, Detailed explanation of the invention column 6 of the specification subject to amendment, page 9 between lines 4 and 5 of the specification of the contents of the amendment as follows: Insert a descriptive text. [Furthermore, in the embodiment shown in FIG.
2 is the insulation W787 between the main junction 4 and the channel stopper 6
Although an example has been shown in which the conductive rings 12 are present within the insulating film 7, the withstand voltage of the main junction 4 is maintained regardless of the number and position of the conductive rings 12. However, in order to more fully demonstrate the ability of the main junction 4 to maintain the withstand voltage, it is desirable to form all of the main junctions within the insulating film 7. J or above

Claims (1)

【特許請求の範囲】[Claims]  第1導電型の第1の半導体層と、この第1の半導体層
表面に形成された第2導電型の第2の半導体層と、この
第2の半導体層の外側の前記第1の半導体層表面に形成
された絶縁膜と、この絶縁膜内に前記第2の半導体層を
囲むように形成された導電性リングと、前記第2の半導
体層表面に形成された第1の主電極と、前記第1の半導
体層裏面に形成された第2の主電極とで構成したことを
特徴とするシリコンプレーナ型半導体装置。
a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type formed on the surface of the first semiconductor layer; and the first semiconductor layer outside the second semiconductor layer. an insulating film formed on the surface, a conductive ring formed in the insulating film so as to surround the second semiconductor layer, and a first main electrode formed on the surface of the second semiconductor layer; A silicon planar semiconductor device comprising a second main electrode formed on the back surface of the first semiconductor layer.
JP2157904A 1990-06-14 1990-06-14 Silicon planar semiconductor device Expired - Fee Related JP2634929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157904A JP2634929B2 (en) 1990-06-14 1990-06-14 Silicon planar semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157904A JP2634929B2 (en) 1990-06-14 1990-06-14 Silicon planar semiconductor device

Publications (2)

Publication Number Publication Date
JPH0448652A true JPH0448652A (en) 1992-02-18
JP2634929B2 JP2634929B2 (en) 1997-07-30

Family

ID=15659981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157904A Expired - Fee Related JP2634929B2 (en) 1990-06-14 1990-06-14 Silicon planar semiconductor device

Country Status (1)

Country Link
JP (1) JP2634929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251553A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169045U (en) * 1988-05-17 1989-11-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169045U (en) * 1988-05-17 1989-11-29

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251553A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Semiconductor device
US9236436B2 (en) 2009-04-16 2016-01-12 Mitsubishi Electric Corporation Semiconductor device

Also Published As

Publication number Publication date
JP2634929B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US6407413B1 (en) Semiconductor device with guard ring and Zener diode layer thereover
US3470390A (en) Integrated back-to-back diodes to prevent breakdown of mis gate dielectric
KR960030438A (en) Semiconductor device and manufacturing method thereof
JPH0448652A (en) Semiconductor device of silicon planar type
JPH06112216A (en) High breakdown strength semiconductor device
JPH07202203A (en) Semiconductor element for high voltage
JP2545953B2 (en) Semiconductor device
JPH0453169A (en) Semiconductor protective device
JPS5831570A (en) Semiconductor device
JPH04162477A (en) Thin film transistor
JPH0621344A (en) Semiconductor device
KR950012739B1 (en) Esd protection device
JPS61228669A (en) Schottky barrier diode
JPH03236284A (en) Semiconductor device
JPH03155659A (en) Semiconductor device
JPH04102374A (en) Insulating gate type effect transistor
JPH01185972A (en) Mis type semiconductor device
KR970053970A (en) Protective element of semiconductor device
JPS5823476A (en) Transistor
JPS57122568A (en) Semiconductor device
JPS55111178A (en) Field-effect semiconductor device
JP2000138383A (en) Semiconductor device
JPS6156431A (en) High-voltage semiconductor integrated circuit
JPS6351374B2 (en)
JPH10190010A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees