JPH0435543Y2 - - Google Patents
Info
- Publication number
- JPH0435543Y2 JPH0435543Y2 JP1984178239U JP17823984U JPH0435543Y2 JP H0435543 Y2 JPH0435543 Y2 JP H0435543Y2 JP 1984178239 U JP1984178239 U JP 1984178239U JP 17823984 U JP17823984 U JP 17823984U JP H0435543 Y2 JPH0435543 Y2 JP H0435543Y2
- Authority
- JP
- Japan
- Prior art keywords
- fluid coupling
- turbine
- energy recovery
- exhaust energy
- crankshaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000008878 coupling Effects 0.000 claims description 35
- 238000010168 coupling process Methods 0.000 claims description 35
- 238000005859 coupling reaction Methods 0.000 claims description 35
- 239000012530 fluid Substances 0.000 claims description 32
- 230000007246 mechanism Effects 0.000 claims description 26
- 238000011084 recovery Methods 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
- One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
この考案は、排気エネルギ回収用エンジンの流
体継手に係わり、更に詳しくは本来の流体継手の
機能を満足しつつ、高伝達効率を得られるように
構成した排気エネルギ回収用エンジンの流体継手
に関するものである。[Detailed description of the invention] [Industrial application field] This invention relates to a fluid coupling for an engine for exhaust energy recovery, and more specifically, it is designed to achieve high transmission efficiency while satisfying the original function of a fluid coupling. The present invention relates to a fluid coupling for an exhaust energy recovery engine configured as follows.
従来、クランクシヤフトと排気エネルギ回収用
タービンとを歯車減速機構により接続したターボ
コンパウンドエンジンにあつては、上記歯車減速
機構に流体継手を介設することが以下の点で不可
欠とされていた。即ち、
(1) エンジンの始動時及び停止時等の過大トルク
の吸収による各部品の保護。
Conventionally, in a turbo compound engine in which a crankshaft and an exhaust energy recovery turbine are connected by a gear reduction mechanism, it has been essential to provide a fluid coupling to the gear reduction mechanism for the following reasons. That is, (1) Protection of various parts by absorbing excessive torque when starting and stopping the engine.
(2) 排気エネルギ回収用タービンとクランクシヤ
フトとの間における捩り振動の吸収。(2) Absorption of torsional vibration between the exhaust energy recovery turbine and the crankshaft.
そこで、従来ではクランクシヤフトと排気エネ
ルギ回収用タービンとを結ぶ歯車減速機構に電磁
クラツチを介設したものが提案されている(実開
昭55−97133号公報)。しかし、このような従来の
クラツチの場合、本来一番伝達効率を高くしたい
所でどうしてもスリツプによる効率の低下が出て
しまい、ここでの効率の低下は即ち、ターボコン
パウンドエンジンの効率を低下させることに繋が
り、従来から高効率の流体継手が要望されてい
た。 Therefore, it has been proposed in the past to provide an electromagnetic clutch in a gear reduction mechanism that connects the crankshaft and the exhaust energy recovery turbine (Japanese Utility Model Publication No. 55-97133). However, in the case of conventional clutches like this, the efficiency inevitably decreases due to slippage at the point where the highest transmission efficiency is desired, and the decrease in efficiency here also reduces the efficiency of the turbo compound engine. As a result, there has been a demand for highly efficient fluid couplings.
そこで、従来ではラバーカツプリングや、各種
のフレツクスカツプリング等が検討されている
が、使用回転数の範囲がその大きさの制限等によ
つて極めて広いため、振動吸収のレベルが大きく
異なり、多数の次数の共振点がある事、また過大
トルクによる各部の保護と言う面での機能が失な
われると言う問題があつた。 Therefore, rubber couplings and various types of flexible couplings have been considered in the past, but because the range of rotation speeds that can be used is extremely wide due to size restrictions, the level of vibration absorption varies greatly. There were problems in that there were resonance points of many orders, and that the protection function of various parts was lost due to excessive torque.
この考案は、係る従来の問題点に着目して案出
されたもので、その目的とするところはクランク
シヤフトと排気エネルギ回収用タービンとを結ぶ
歯車減速機構に介設する液体継手の機能を満足し
つつ、高伝達効率を得ることが出来る排気エネル
ギ回収用エンジンの流体継手を提供するものであ
る。
This invention was devised by focusing on the problems of the conventional technology, and its purpose is to satisfy the function of the liquid coupling installed in the gear reduction mechanism that connects the crankshaft and the exhaust energy recovery turbine. The present invention provides a fluid coupling for an engine for exhaust energy recovery, which can achieve high transmission efficiency.
前記目的を達成するための本考案に係る排気エ
ネルギ回収用エンジンの流体継手は、クランクシ
ヤフトと排気エネルギ回収用タービンとを結ぶ減
速機構中に流体継手を配設するとともに、前記流
体継手の被駆動タービンの背面側部に設けたフラ
ンジに一端を揺動自在に枢着し、他端に慣性マス
を備えた遠心型ロツク機構を複数個設け、前記流
体継手のアウターケースの前記ロツク機構に対向
する内周面に振動吸収用ダンパーを介してクラツ
チ部材を装着してなる構成である。
A fluid coupling for an engine for exhaust energy recovery according to the present invention to achieve the above object includes a fluid coupling disposed in a reduction mechanism that connects a crankshaft and a turbine for exhaust energy recovery, and a fluid coupling for a driven part of the fluid coupling. A plurality of centrifugal lock mechanisms are provided, one end of which is swingably pivoted to a flange provided on the rear side of the turbine, and the other end of which is provided with an inertial mass, and which are opposed to the lock mechanism of the outer case of the fluid coupling. It has a structure in which a clutch member is attached to the inner peripheral surface via a vibration absorbing damper.
以下添付図面に基いて、この考案の実施例を説
明する。
Embodiments of this invention will be described below based on the accompanying drawings.
第1図はこの考案を実施したターボコンパウン
ドエンジンの模式図を示し、1はエンジン、2は
吸気マニホールド、3は排気マニホールド、4は
排気ターボ過給機を示し、前記排気マニホールド
3は排気ターボ過給機4のタービン4aに接続さ
れ、また前記吸気マニホールド2は吸気管2aを
介して排気ターボ過給機4のコンプレツサ4cに
接続されている。 FIG. 1 shows a schematic diagram of a turbo compound engine in which this invention has been implemented. 1 is an engine, 2 is an intake manifold, 3 is an exhaust manifold, and 4 is an exhaust turbo supercharger. The exhaust manifold 3 is an exhaust turbo supercharger. It is connected to a turbine 4a of a feeder 4, and the intake manifold 2 is connected to a compressor 4c of an exhaust turbo supercharger 4 via an intake pipe 2a.
そして、前記タービン4aの下流側は、排気管
5を介して前記タービン4a同様の回転翼を備え
た排気エネルギ回収用タービン6(パワータービ
ン)に接続されており、この排気エネルギ回収用
タービン6の下流側は排気管7によつて図示しな
いサイレンサ等に接続され、排気ガスを大気中に
放出するようになつている。 The downstream side of the turbine 4a is connected via an exhaust pipe 5 to an exhaust energy recovery turbine 6 (power turbine) equipped with rotary blades similar to the turbine 4a. The downstream side is connected to a silencer (not shown) or the like through an exhaust pipe 7, so that the exhaust gas is discharged into the atmosphere.
また、排気エネルギ回収用タービン6の回転軸
6aの回転力は、図示しない動力取出し装置によ
り外部に取出され、そして上記回転駆動力は歯車
減速機構8を介して前記エンジン1のクランクシ
ヤフト9に伝達されるように構成されている。 Further, the rotational force of the rotating shaft 6a of the exhaust energy recovery turbine 6 is extracted to the outside by a power extraction device (not shown), and the rotational driving force is transmitted to the crankshaft 9 of the engine 1 via the gear reduction mechanism 8. is configured to be
前記、歯車減速機構8の途中には、流体継手1
0が介設され、この流体継手10は第2図及び第
3図に示すように、クランクシヤフト9側に接続
する駆動側の歯車機構8aの駆動軸11に、アウ
ターケース12と駆動タービン13aとが接続さ
れ、また排気エネルギ回収用タービン6の回転軸
6aに接続する被駆動側の歯車機構8bの被駆動
軸14に、前記駆動タービン13aと対向して被
駆動タービン13bが配設されて構成されてい
る。前記被駆動タービン13bを覆うアウターケ
ース12の内壁面には、振動吸収用のラバーを装
着したダンパー15とクラツチ部材16とが装着
されている。前記クラツチ部材16のクラツチ面
16aには、前記被駆動タービン13bの側部フ
ランジ17に装着された複数個の遠心型のロツク
機構18が所定の間隔を隔て対面し、このロツク
機構18は、ヒンジ19を支点として揺動自在に
支持された慣性マス20と、この慣性マス20を
常時被駆動タービン13bに付勢するスプリング
21とから構成されている。 In the middle of the gear reduction mechanism 8, there is a fluid coupling 1.
As shown in FIGS. 2 and 3, this fluid coupling 10 connects an outer case 12 and a drive turbine 13a to a drive shaft 11 of a gear mechanism 8a on the drive side connected to the crankshaft 9 side. is connected to the driven shaft 14 of the gear mechanism 8b on the driven side which is also connected to the rotating shaft 6a of the exhaust energy recovery turbine 6, and a driven turbine 13b is disposed facing the driving turbine 13a. has been done. A damper 15 equipped with rubber for vibration absorption and a clutch member 16 are mounted on the inner wall surface of the outer case 12 that covers the driven turbine 13b. A plurality of centrifugal lock mechanisms 18 mounted on the side flange 17 of the driven turbine 13b face the clutch surface 16a of the clutch member 16 at predetermined intervals. The inertial mass 20 is swingably supported about the fulcrum 19, and the spring 21 constantly biases the inertial mass 20 against the driven turbine 13b.
この考案に係る流体継手10は上記のように構
成され、クランクシヤフト9の捩り振動及び速度
変動率の大きな回転域(低速域)、始動、停止、
急加減速等の過大トルクがかかる時は、流体継手
10として作用する。 The fluid coupling 10 according to this invention is configured as described above, and operates in the rotation range (low speed range) where the torsional vibration and speed fluctuation rate of the crankshaft 9 is large, starting, stopping,
When excessive torque is applied such as sudden acceleration/deceleration, it acts as a fluid coupling 10.
また上記以外、つまりターボコンパウンドエン
ジンとして一番効果を発揮したいエンジン1の中
速回転〜高速回転の定常運転範囲においては、ロ
ツク機構18が慣性力により作用して慣性マス2
0がダンパー15の内側に装着したクラツチ部材
16のクラツチ面16aにスリツプしながら弾性
的に接触し、流体継手10をロツクするものであ
る。 In addition to the above, in other words, in the steady operating range of medium to high speed rotation of the engine 1 in which it is desired to exhibit the most effect as a turbo compound engine, the lock mechanism 18 acts by inertial force and the inertial mass 2
0 slips and elastically contacts the clutch surface 16a of the clutch member 16 mounted inside the damper 15, thereby locking the fluid coupling 10.
また過大トルクが入力された場合には、上記ロ
ツク機構18が解除され、本来の流体継手10で
入出力軸の相対滑りを吸収させてやることによ
り、ダンパー15を含めてロツク機構18等を保
護するものである。 Furthermore, when excessive torque is input, the lock mechanism 18 is released and the relative slippage of the input and output shafts is absorbed by the original fluid coupling 10, thereby protecting the lock mechanism 18, etc., including the damper 15. It is something to do.
以上のように、定常運転範囲内の高速側部分に
おいて、流体継手10により駆動側と被駆動側と
を一体化すると共に、ロツク時の振動吸収と過大
トルクの吸収を行うようにしたので、動力伝達機
構の効率を向上させることが出来る。 As described above, in the high-speed side part within the steady operation range, the driving side and the driven side are integrated by the fluid coupling 10, and the vibrations and excessive torque at the time of locking are absorbed, so that the power The efficiency of the transmission mechanism can be improved.
本考案の排気エネルギ回収用エンジンの流体継
手は、クランクシヤフトと排気エネルギ回収用タ
ービンとを結ぶ減速機構中に流体継手を配設する
とともに、前記流体継手の被駆動タービンの背面
側部に設けたフランジに一端を揺動自在に枢着
し、他端に慣性マスを備えた遠心型ロツク機構を
複数個設け、前記流体継手のアウターケースの前
記ロツク機構に対向する内周面に振動吸収用ダン
パーを介してクラツチ部材を装着してなるので、
以下の効果を奏することができる。
The fluid coupling of the exhaust energy recovery engine of the present invention includes a fluid coupling disposed in the reduction mechanism that connects the crankshaft and the exhaust energy recovery turbine, and a fluid coupling provided on the back side of the driven turbine of the fluid coupling. A plurality of centrifugal locking mechanisms each having one end pivotally attached to the flange and having an inertial mass at the other end are provided, and a vibration absorbing damper is provided on the inner circumferential surface of the outer case of the fluid coupling facing the locking mechanism. Since the clutch member is attached through the
The following effects can be achieved.
クランクシヤフトの捩り振動及び速度変動率の
大きな回転域(低速域)、始動、停止、急加減速
等の過大トルクがかかる時は、流体継手として入
出力軸の相対滑りを吸収させることができると共
に、中速回転〜高速回転の定常運転範囲において
は、ロツク機構が慣性力により作用して、この流
体継手をロツクさせることができるので、回収し
た排気エネルギの伝達効率をこの装置を設けてい
ない従来のエンジンに対して約15%向上させるこ
とができる。 When excessive torque is applied such as in the rotation range (low speed range) where the crankshaft has torsional vibration and speed fluctuation rate, starting, stopping, sudden acceleration/deceleration, etc., it can be used as a fluid coupling to absorb the relative slippage of the input and output shafts. In the steady operation range of medium to high speed rotation, the locking mechanism acts by inertia force and can lock this fluid coupling, so the transmission efficiency of the recovered exhaust energy can be improved compared to conventional systems that do not have this device. This can be improved by about 15% compared to other engines.
また、前記クラツチ部材は被駆動タービンの背
面側部においてアウターケースの内周面に振動吸
収用ダンパーを介して装着するのみであるので、
従来型式の流体継手のタービン部等の主要構成部
分に殆んど変更を加えることなく簡単に改良を施
すことができる。 Furthermore, since the clutch member is simply attached to the inner peripheral surface of the outer case at the rear side of the driven turbine via a vibration absorbing damper,
Improvements can be easily made without making any changes to the main components of conventional fluid couplings, such as the turbine section.
第1図は本考案を実施したターボコンパウンド
エンジンの模式図、第2図は流体継手の断面図、
第3図は第2図のロツク機構部分の拡大断面図で
ある。
6……排気エネルギ回収用タービン、8……減
速機構、9……クランクシヤフト、10……流体
継手、12……アウターケース、15……ダンパ
ー、16……クラツチ部材、17……側部フラン
ジ、18……ロツク機構、20……慣性マス。
Figure 1 is a schematic diagram of a turbo compound engine implementing the present invention, Figure 2 is a sectional view of a fluid coupling,
FIG. 3 is an enlarged sectional view of the locking mechanism portion of FIG. 2. 6... Exhaust energy recovery turbine, 8... Speed reduction mechanism, 9... Crankshaft, 10... Fluid coupling, 12... Outer case, 15... Damper, 16... Clutch member, 17... Side flange , 18... lock mechanism, 20... inertial mass.
Claims (1)
ンとを結ぶ減速機構中に流体継手を配設するとと
もに、前記流体継手の被駆動タービンの背面側部
に設けたフランジに一端を揺動自在に枢着し、他
端に慣性マスを備えた遠心型ロツク機構を複数個
設け、前記流体継手のアウターケースの前記ロツ
ク機構に対向する内周面に振動吸収用ダンパーを
介してクラツチ部材を装着してなる排気エネルギ
回収用エンジンの流体継手。 A fluid coupling is disposed in the speed reduction mechanism that connects the crankshaft and the exhaust energy recovery turbine, and one end of the fluid coupling is pivotally attached to a flange provided on the back side of the driven turbine, and the other Exhaust energy recovery in which a plurality of centrifugal lock mechanisms each having an inertial mass at the end are provided, and a clutch member is attached via a vibration absorbing damper to the inner peripheral surface of the outer case of the fluid coupling facing the lock mechanism. Fluid couplings for engines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984178239U JPH0435543Y2 (en) | 1984-11-26 | 1984-11-26 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984178239U JPH0435543Y2 (en) | 1984-11-26 | 1984-11-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6192726U JPS6192726U (en) | 1986-06-16 |
JPH0435543Y2 true JPH0435543Y2 (en) | 1992-08-24 |
Family
ID=30735806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1984178239U Expired JPH0435543Y2 (en) | 1984-11-26 | 1984-11-26 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0435543Y2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4853140A (en) * | 1971-11-06 | 1973-07-26 | ||
JPS5572942A (en) * | 1978-11-22 | 1980-06-02 | Aisin Warner Ltd | Direct coupled clutch mechanism for torque converter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5789828U (en) * | 1980-11-21 | 1982-06-02 |
-
1984
- 1984-11-26 JP JP1984178239U patent/JPH0435543Y2/ja not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4853140A (en) * | 1971-11-06 | 1973-07-26 | ||
JPS5572942A (en) * | 1978-11-22 | 1980-06-02 | Aisin Warner Ltd | Direct coupled clutch mechanism for torque converter |
Also Published As
Publication number | Publication date |
---|---|
JPS6192726U (en) | 1986-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7966817B2 (en) | Compound transmission | |
JPH01257722A (en) | Power transmission for turbo compound engine | |
US20120234131A1 (en) | Dual-mass flywheel lock-out clutch | |
EP2585694A1 (en) | A turbo compound transmission and a method for controlling a turbo compound transmission | |
GB2114707A (en) | Variable capacity flywheel | |
ES2168872A1 (en) | Rotary vibration damping device for damping rotary vibrations in a drive train | |
JP2798383B2 (en) | Vehicle with a torque converter between the internal combustion engine and the transmission | |
JPH0893878A (en) | Motive power transmission mechanism | |
JP3355008B2 (en) | Vibration damping device for fluid transmission | |
JPH0435543Y2 (en) | ||
US6334307B1 (en) | Fluid coupling | |
JPH08260994A (en) | Turbo compound engine | |
JPH0251625A (en) | Spring clutch | |
JP2504007B2 (en) | Turbo compound engine | |
JPH04101844U (en) | variable inertia flywheel | |
EP1488124B1 (en) | Hydrodynamic coupling | |
JPS59187158A (en) | Lockup clutch for automatic speed change gear | |
KR102581054B1 (en) | Vehicle Generator | |
JPS6027786Y2 (en) | turbo compound engine | |
JPH039532Y2 (en) | ||
US6443284B1 (en) | Torsion bar isolator | |
JPS61286531A (en) | Power turbine output recovery device of turbocompound engine | |
JPH11108118A (en) | Clutch device for flywheel | |
JPH026285Y2 (en) | ||
JPH0248666Y2 (en) |