JPH043328B2 - - Google Patents
Info
- Publication number
- JPH043328B2 JPH043328B2 JP59169841A JP16984184A JPH043328B2 JP H043328 B2 JPH043328 B2 JP H043328B2 JP 59169841 A JP59169841 A JP 59169841A JP 16984184 A JP16984184 A JP 16984184A JP H043328 B2 JPH043328 B2 JP H043328B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- vehicle body
- sensor
- filled
- longitudinal direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 51
- 239000000725 suspension Substances 0.000 claims description 19
- 230000001133 acceleration Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/26—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
- F16F13/28—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions specially adapted for units of the bushing type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G7/00—Pivoted suspension arms; Accessories thereof
- B60G7/006—Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/10—Mounting of suspension elements
- B60G2204/14—Mounting of suspension arms
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vehicle Body Suspensions (AREA)
Description
(産業上の利用分野)
本発明は車両用のサスペンシヨン制御装置に関
する。
(従来の技術)
車両のサスペンシヨンを構成するラジアスロツ
ド等のサスペンシヨンリンクの両端に流体封入ブ
ツシユを設けることが行われる。
(発明が解決しようとする問題点)
斯かる流体封入ブツシユにおいて、車体前後方
向のばね定数を大きく設定すると、ステアリング
操作時の応答性は良いが、乗心地が若干犠牲にな
り、逆にばね定数を小さく設定すると、乗心地は
良いが、ステアリング操作時の応答遅れが大き
く、サスペンシヨン形式によつてはトー変化が大
きくなる。
そこで、両流体封入ブツシユの車体前後方向に
対するばね定数を流体圧を制御して大、小の2段
階に同時に可変制御することが考えられる。
本発明の目的は、サスペンシヨンリンクの両端
に設けた流体封入ブツシユの車体前後方向に対す
るばね定数を流体圧を制御して大、小の2段階以
上に同時に可変制御するようにした車両におい
て、ステアリング操作及びブレーキ状態に基づく
走行状態並びに路面状態の変化に追従してサスペ
ンシヨンリンク両端の流体封入ブツシユのばね定
数を自動的に同時に可変制御することができ、特
にステアリング操作状態、ブレーキ状態及びうね
りがある比較的悪い路面を走行している状態の何
れの場合にも操安性を重視してばね定数が大きく
なるようにしたサスペンシヨン制御装置を提供す
るにある。
(問題点を解決するための手段)
以上の問題を解決して目的を達成すべく本発明
は、車体前後方向に延出したサスペンシヨンリン
クと、このサスペンシヨンリンクの前後端に設け
た流体封入ブツシユとを備え、この両流体封入ブ
ツシユの車体前後方向に対するばね定数を、流体
圧を制御して大、小の2段階以上に同時に可変制
御するようにした車両のサスペンシヨン制御装置
であつて、ステアリング操作状態を検出するセン
サと、ブレーキ状態を検出するセンサと、車体の
上下振動加速度センサからの信号を入力して車体
のばね上共振周波数付近の加速度の信号を出力す
る処理回路と、これら3種の信号を入力して走行
及び路面状態に応じた2段階以上の信号を出力す
る制御回路と、この制御回路からの信号を受けて
前記両流体封入ブツシユ間の各流体室における車
体前後方向の力の作用で縮小変形する流体室と拡
大変形する流体室とを相互に結ぶ流体通路を連
通・遮断可能として、前記両流体封入ブツシユの
ばね定数を自動的に同時に切換えるアクチエータ
とを備え、前記3種の検出信号の何れかを検出し
たときは、前記アクチユエーエにより前記両流体
封入ブツシユのばね定数を大の方へ自動的に可変
制御するよう構成したことを特徴とする。
(実施例)
以下に本発明の好適一実施例を添付図面に基づ
いて詳述する。
第5図はサスペンシヨン形式の一例を示す斜視
図で、51はハブ、52はロアアーム、53はダ
ンパ、54はラジアスロツドであり、ラジアスロ
ツド54前後端に第2図に示す如き流体封入ブツ
シユ31,41が備えられる。
両ブツシユ31,41は、車体側またはナツク
ル側の支持ピンが挿通される内筒32,42とラ
ジアスロツド54前後端に固着される外筒33,
43とを径方向のゴム壁34,44にて結合し、
これにより各内・外筒32,33,42,43間
に車体前後方向に位置する流体室35,36,4
5,46を形成して成る。
そして両ブツシユ31,41のともに前部流体
室35,45を連通する通路25と、後部流体室
36,46を連通する通路26とを設け、更に両
通路25,26を同時に開閉する切換弁21を設
ける。切換弁21はソレノイド22,23によつ
て作動し、一方のソレノイド22の通電で図示の
如く通路25,26を開状態とし、他方のソレノ
イド23の通電で閉状態とする。第2図はラジア
スロツド54に外力が作用しない自由状態を示
す。
第3図はラジアスロツド54に引張力が作用し
た状態で、この場合、通路25,26が図示の如
く開状態にあれば、外力が作用する前方ブツシユ
31の前部流体室35から通路25を通つて後方
ブツシユ41の前部流体室45に流体が流れ、ま
た後方ブツシユ41の後部流体室46から通路2
5を通つて前方ブツシユ31の後部流体室36に
液体が流れる。従つて車体前後方向に対するばね
定数は小さい。逆にソレノイド23を通電して通
路25,26を遮断すると液体の流れが阻止さ
れ、車体前後方向に対するばね定数が大きくな
る。
第4図はラジアスロツド54に圧縮力が作用し
た状態で、液体の流れは第3図と逆になる。
次に第1図を基に制御回路を説明する。
1は路面状態と車速変化に対応する車体の上下
振動加速|G|を検出するセンサ(以下Gセンサ
という)、2はステアリング角|S|を検出する
センサ(以下Sセンサという)、3はブレーキス
イツチのON・OFF状態を検出するセンサ(以下
Bセンサという)である。
Gセンサ1からの出力信号|G|をバンドパス
フイルタ4に入力し、車体のばね上共振周波数付
近の周波数成分の信号Gfを出力し、これをコン
パレータ5に入力し、この出力信号Gfがある定
められた値Gf1以上のときは[1]、未満のとき
は[0]の信号にし、デイレイ回路6に入力し、
この入力信号にある一定のデイレイタイムを設け
てロジツク回路7のOR回路8に入力する。ここ
でデイレイ回路6は継目のある路面に対して遅延
させるためにある。
Sセンサ2からの出力信号|S|はある定めら
れた値|S1|以上を[1]、未満を[0]の信号
にし、Bセンサ3からの出力信号Bはブレーキス
イツチON状態を[1]、OFF状態を[0]の信
号にし、斯かる両信号を前記OR回路8に入力す
る。
そしてOR回路8の出力端子にはばね定数
[大]を表す[H]の信号を出力し、この信号
[H]が出力されるとタイマー13を経て通路2
5,26を閉状態とするソレノイド23を通電し
て両流体封入ブツシユ31,41のばね定数を
[大]に自動制御する。
またOR回路8からの信号を分岐してNOT回路
9に入力し、このNOT回路9の出力端子にはば
ね定数[小]を表す[L]の信号を出力し、この
信号[L]が出力されると通路25,26を開状
態とするソレノイド22を通電してばね定数を
[小]に自動制御する。
以上において、車体のばね上共振周波数付近の
周波数成分の信号Gfが設定値Gf1以上、ステアリ
ング角信号|S|が設定値|S1|以上、ブレーキ
信号BがON状態のときの何れの場合にもロジツ
ク回路7の出力信号を[H]とする。
その真理値表を路面及び走行状態、つまり環境
条件とともに下記に示す。
(Industrial Application Field) The present invention relates to a suspension control device for a vehicle. (Prior Art) Fluid-filled bushes are provided at both ends of a suspension link such as a radius slot that constitutes the suspension of a vehicle. (Problem to be solved by the invention) In such a fluid-filled bushing, if the spring constant in the longitudinal direction of the vehicle body is set to a large value, the response during steering operation is good, but the riding comfort is slightly sacrificed, and conversely, the spring constant If it is set to a small value, the ride quality is good, but there is a large response delay during steering operation, and depending on the suspension type, the toe change becomes large. Therefore, it is conceivable to simultaneously variably control the spring constants of both fluid-filled bushes in the longitudinal direction of the vehicle body in two stages, large and small, by controlling the fluid pressure. An object of the present invention is to provide a steering wheel in a vehicle in which the spring constant of fluid-filled bushes provided at both ends of a suspension link in the longitudinal direction of the vehicle body is simultaneously variably controlled in two or more stages of large and small by controlling fluid pressure. The spring constant of the fluid-filled bushings at both ends of the suspension link can be automatically and variably controlled at the same time in accordance with changes in driving conditions and road surface conditions based on steering operation and braking conditions. To provide a suspension control device in which a spring constant is increased with emphasis on steering stability even when driving on a relatively bad road surface. (Means for Solving the Problems) In order to solve the above-mentioned problems and achieve the objects, the present invention has a suspension link extending in the longitudinal direction of the vehicle body, and a fluid seal provided at the front and rear ends of the suspension link. A suspension control device for a vehicle, comprising a bushing, and capable of simultaneously variable controlling the spring constant of both fluid-filled bushings in the longitudinal direction of the vehicle body in two or more stages, large and small, by controlling fluid pressure, A sensor that detects the steering operation state, a sensor that detects the brake state, and a processing circuit that inputs signals from the vertical vibration acceleration sensor of the vehicle body and outputs a signal of acceleration near the sprung resonance frequency of the vehicle body; a control circuit that inputs various signals and outputs signals of two or more stages according to driving and road surface conditions; an actuator for automatically and simultaneously switching the spring constants of both the fluid-filled bushings, the actuator being capable of communicating and blocking a fluid passage connecting the fluid chamber that shrinks and deforms with the fluid chamber that expands and deforms with the action of force; The present invention is characterized in that, when any of the species detection signals is detected, the spring constants of the two fluid-filled bushes are automatically variably controlled to a larger value by the actuator. (Embodiment) A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 5 is a perspective view showing an example of a suspension type, in which reference numeral 51 is a hub, 52 is a lower arm, 53 is a damper, and 54 is a radius rod. At the front and rear ends of the radius rod 54 are fluid-filled bushings 31, 41 as shown in FIG. will be provided. Both bushes 31 and 41 have inner cylinders 32 and 42 into which support pins on the vehicle body side or the nuticle side are inserted, and outer cylinders 33 and 42 which are fixed to the front and rear ends of the radius rod 54, respectively.
43 with radial rubber walls 34, 44,
As a result, fluid chambers 35, 36, 4 are located between the inner and outer cylinders 32, 33, 42, 43 in the longitudinal direction of the vehicle body.
5,46. Both bushes 31 and 41 are provided with a passage 25 that communicates with the front fluid chambers 35 and 45 and a passage 26 that communicates with the rear fluid chambers 36 and 46, and a switching valve 21 that opens and closes both passages 25 and 26 at the same time. will be established. The switching valve 21 is operated by solenoids 22 and 23. When one solenoid 22 is energized, the passages 25 and 26 are opened as shown in the figure, and when the other solenoid 23 is energized, the passages 25 and 26 are closed. FIG. 2 shows a free state in which no external force acts on the radius rod 54. FIG. 3 shows a state in which a tensile force is applied to the radius rod 54. In this case, if the passages 25 and 26 are in the open state as shown, the passage 25 is passed from the front fluid chamber 35 of the front bushing 31 to which an external force is applied. As a result, fluid flows into the front fluid chamber 45 of the rear bushing 41 and from the rear fluid chamber 46 of the rear bushing 41 to the passage 2.
5 to the rear fluid chamber 36 of the front bushing 31. Therefore, the spring constant in the longitudinal direction of the vehicle body is small. Conversely, when the solenoid 23 is energized to block the passages 25 and 26, the flow of liquid is blocked and the spring constant in the longitudinal direction of the vehicle increases. FIG. 4 shows a state in which compressive force is applied to the radius rod 54, and the flow of liquid is opposite to that in FIG. 3. Next, the control circuit will be explained based on FIG. 1 is a sensor that detects vertical vibration acceleration |G| of the vehicle body corresponding to changes in road surface conditions and vehicle speed (hereinafter referred to as G sensor), 2 is a sensor that detects steering angle |S| (hereinafter referred to as S sensor), and 3 is a brake This is a sensor (hereinafter referred to as B sensor) that detects the ON/OFF state of the switch. The output signal |G| from the G sensor 1 is input to a bandpass filter 4, which outputs a signal Gf with a frequency component near the sprung resonance frequency of the vehicle body, which is input to a comparator 5, and this output signal Gf is generated. When the predetermined value Gf is greater than or equal to 1 , the signal is set to [1], and when it is less than the set value, the signal is set to [0], and is input to the delay circuit 6.
This input signal is provided with a certain delay time and is input to the OR circuit 8 of the logic circuit 7. Here, the delay circuit 6 is provided to delay the road surface with joints. The output signal from the S sensor 2 |S| is set to a certain predetermined value |S 1 1], the OFF state is set to the signal [0], and both of these signals are input to the OR circuit 8. Then, a signal [H] representing the spring constant [large] is output to the output terminal of the OR circuit 8, and when this signal [H] is output, it passes through the timer 13 to the path 2.
By energizing the solenoid 23 that closes the valves 5 and 26, the spring constants of both the fluid-filled bushes 31 and 41 are automatically controlled to [large]. Also, the signal from the OR circuit 8 is branched and input to the NOT circuit 9, and a signal [L] representing the spring constant [small] is output to the output terminal of this NOT circuit 9, and this signal [L] is output. When this happens, the solenoid 22 that opens the passages 25 and 26 is energized to automatically control the spring constant to be small. In the above, the signal Gf of the frequency component near the sprung resonance frequency of the vehicle body is greater than or equal to the set value Gf 1 , the steering angle signal |S| is greater than or equal to the set value |S 1 |, and the brake signal B is in the ON state. Also, the output signal of the logic circuit 7 is set to [H]. The truth table is shown below along with the road surface and driving conditions, that is, the environmental conditions.
【表】
次に各環境条件について説明する。
先ず条件1はうねりが殆ど無い比較的良い路面
上を直進走行しており、ノーブレーキのため、乗
心地を重視して前後のブツシユ31,41の車体
前後方向に対するばね定数を[小]にする。
そして条件2は大きなうねりのある比較的悪い
路面を走行しているときで、条件3はコーナリン
グ状態、また条件4はブレーキング状態のため、
何れの場合も操安性を重視してばね定数を[大]
にする。
尚、流体封入ブツシユ装置は、切換弁に流路面
積の異なる複数組の流路を更に設け、機械作動式
等のアクチユエータで多段階に制御してばね定数
の可変段数を3段以上とすることも可能である。
(発明の効果)
以上のように本発明のサスペンシヨン制御装置
によれば、ステアリングセンサと、ブレーキセン
サと、車体の上下振動加速度センサからの信号を
入力して車体のばね上共振周波数付近の加速度の
信号を出力する処理回路と、これらの信号を入力
して走行及び路面状態に応じた2段階以上の信号
を出力する制御回路と、その出力信号を受けてサ
スペンシヨンリンクの両端の流体封入ブツシユの
車体前後方向に対するばね定数を流体圧を制御し
て大、小の2段階以上に同時に切換えるアクチユ
エータとから成るため、ステアリング操作角、ブ
レーキ並びに路面情報に基づく環境条件の変化に
対応して両流体封入ブツシユの車体前後方向ばね
定数を自動的に同時に可変制御することができ、
特にステアリング操作状態、ブレーキ状態及びう
ねりがある比較的悪い路面を走行している状態の
何れの場合にも操安性を重視して大の方のばね定
数に自動制御することができる。
しかもサスペンシヨンリンクは車体前後方向に
延出し、その前後端に設けた両流体封入ブツシユ
の間には各流体室における車体前後方向の力の作
用で縮小変形する流体室と拡大変形する流体室と
を相互に結ぶ流体通路があるため、この流体通路
が遮断されていない場合において、タイヤ等に車
体前後方向の力が加えられて流体室が変形して
も、縮小する流体室から拡大する流体室へと流体
が流れるので、大きなコンプライアンスを確保し
て、乗心地を向上できる。[Table] Next, each environmental condition will be explained. First, in condition 1, the vehicle is traveling straight on a relatively good road surface with almost no undulations, and since there are no brakes, the spring constant of the front and rear bushings 31 and 41 in the longitudinal direction of the vehicle body is set to [small] with emphasis on ride comfort. . Condition 2 is when you are driving on a relatively bad road surface with large undulations, condition 3 is when you are cornering, and condition 4 is when you are braking.
In either case, the spring constant is set to [large] with emphasis on maneuverability.
Make it. In addition, in the fluid-filled bushing device, the switching valve is further provided with multiple sets of channels with different flow channel areas, and the spring constant is controlled in multiple stages by a mechanically actuated actuator or the like, so that the number of stages in which the spring constant can be varied is three or more stages. is also possible. (Effects of the Invention) As described above, according to the suspension control device of the present invention, signals from the steering sensor, the brake sensor, and the vertical vibration acceleration sensor of the vehicle body are inputted to calculate acceleration near the sprung mass resonance frequency of the vehicle body. A processing circuit that outputs signals of An actuator that simultaneously switches the spring constant in the longitudinal direction of the vehicle body to two or more levels (large and small) by controlling fluid pressure. The spring constant of the enclosed bushing in the longitudinal direction of the vehicle body can be automatically and variably controlled at the same time.
Particularly, the spring constant can be automatically controlled to a larger value with emphasis on steering stability in any of the following situations: steering operation, braking, and driving on a relatively rough road surface with undulations. In addition, the suspension link extends in the longitudinal direction of the vehicle body, and between the two fluid-filled bushings provided at the front and rear ends of each fluid chamber, there are a fluid chamber that shrinks and deforms due to the action of force in the longitudinal direction of the vehicle body, and a fluid chamber that expands and deforms. Because there is a fluid passage that connects the fluid chambers with each other, if this fluid passage is not blocked, even if the fluid chamber is deformed due to force applied to the tire, etc. in the longitudinal direction of the vehicle body, the fluid chamber will change from contracting to expanding. Fluid flows to the front, ensuring greater compliance and improving riding comfort.
第1図は制御回路を示すブロツク図、第2図は
流体封入ブツシユ装置の断面図でロツド部材に外
力が作用しない自由状態の図、第3図は引張力作
用状態の図、第4図は圧縮力作用状態の図、第5
図はサスペンシンヨン形式の一例を示す斜視図で
ある。
尚、図中21は切換弁、25,26は通路、3
1,41は流体封入ブツシユ、32,42は内
筒、33,43は外筒、34,44はゴム壁、3
5,36,45,46は流体室、54はサスペン
シヨンリンク、4,5は処理回路、7はロジツク
回路である。
Fig. 1 is a block diagram showing the control circuit, Fig. 2 is a sectional view of the fluid-filled bushing device in a free state where no external force is applied to the rod member, Fig. 3 is a drawing in a state where a tensile force is applied, and Fig. 4 is a sectional view of the fluid-filled bushing device. Diagram of compressive force acting state, 5th
The figure is a perspective view showing an example of a suspension type. In the figure, 21 is a switching valve, 25 and 26 are passages, and 3
1 and 41 are fluid-filled bushes; 32 and 42 are inner cylinders; 33 and 43 are outer cylinders; 34 and 44 are rubber walls;
5, 36, 45, and 46 are fluid chambers, 54 is a suspension link, 4 and 5 are processing circuits, and 7 is a logic circuit.
Claims (1)
クと、このサスペンシヨンリンクの前後端に設け
た流体封入ブツシユとを備え、この両流体封入ブ
ツシユの車体前後方向に対するばね定数を、流体
圧を制御して大、小の2段階以上に同時に可変制
御するようにした車両のサスペンシヨン制御装置
であつて、 ステアリング操作状態を検出するセンサと、ブ
レーキ状態を検出するセンサと、車体の上下振動
加速度センサからの信号を入力して車体のばね上
共振周波数付近の加速度の信号を出力する処理回
路と、これら3種の信号を入力して走行及び路面
状態に応じた2段階以上の信号を出力する制御回
路と、この制御回路からの信号を受けて前記両流
体封入ブツシユ間の各流体室における車体前後方
向の力の作用で縮小変形する流体室と拡大変形す
る流体室とを相互に結ぶ流体通路を連通・遮断可
能として、前記両流体封入ブツシユのばね定数を
自動的に同時に切換えるアクチユエータとを備
え、 前記3種の検出信号の何れかを検出したとき
は、前記アクチユエータにより前記両流体封入ブ
ツシユのばね定数を大の方へ自動的に可変制御す
るよう構成したことを特徴とするサスペンシヨン
制御装置。[Claims] 1. A suspension link extending in the longitudinal direction of the vehicle body, and a fluid-filled bushing provided at the front and rear ends of the suspension link, and a spring constant of both fluid-filled bushings in the longitudinal direction of the vehicle body, This is a suspension control device for a vehicle that simultaneously controls fluid pressure in two or more levels, large and small, and includes a sensor that detects the steering operation state, a sensor that detects the brake state, and a sensor that detects the braking state of the vehicle body. A processing circuit that inputs the signal from the vertical vibration acceleration sensor and outputs a signal of acceleration near the sprung resonance frequency of the vehicle body, and a processing circuit that inputs these three types of signals and generates two or more levels of signals depending on the driving and road surface conditions. and a control circuit that receives signals from the control circuit to mutually connect a fluid chamber that shrinks and deforms and a fluid chamber that expands and deforms by the action of a force in the longitudinal direction of the vehicle body in each fluid chamber between the two fluid-filled bushes. and an actuator that automatically and simultaneously switches the spring constants of the two fluid-filled bushings so that the connecting fluid passages can be communicated and shut off, and when any of the three types of detection signals is detected, the actuator causes the two fluids to A suspension control device characterized in that the spring constant of the enclosed bushing is automatically variably controlled toward a larger value.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16984184A JPS6146704A (en) | 1984-08-14 | 1984-08-14 | Suspension control device |
US06/765,341 US4616846A (en) | 1984-08-14 | 1985-08-13 | Control device for a suspension |
DE19853529178 DE3529178A1 (en) | 1984-08-14 | 1985-08-14 | CONTROL DEVICE FOR A WHEEL SUSPENSION |
GB08520340A GB2163104B (en) | 1984-08-14 | 1985-08-14 | Control device for a suspension |
FR858512407A FR2569144B1 (en) | 1984-08-14 | 1985-08-14 | DEVICE FOR ADJUSTING A SUSPENSION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16984184A JPS6146704A (en) | 1984-08-14 | 1984-08-14 | Suspension control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6146704A JPS6146704A (en) | 1986-03-07 |
JPH043328B2 true JPH043328B2 (en) | 1992-01-22 |
Family
ID=15893915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16984184A Granted JPS6146704A (en) | 1984-08-14 | 1984-08-14 | Suspension control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6146704A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5326021A (en) * | 1976-08-19 | 1978-03-10 | Honda Motor Co Ltd | Adjustable suspension for vehicle |
JPS5950807A (en) * | 1982-09-17 | 1984-03-24 | Kayaba Ind Co Ltd | Suspension device for vehicle |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5798909U (en) * | 1980-12-10 | 1982-06-17 |
-
1984
- 1984-08-14 JP JP16984184A patent/JPS6146704A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5326021A (en) * | 1976-08-19 | 1978-03-10 | Honda Motor Co Ltd | Adjustable suspension for vehicle |
JPS5950807A (en) * | 1982-09-17 | 1984-03-24 | Kayaba Ind Co Ltd | Suspension device for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JPS6146704A (en) | 1986-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4616846A (en) | Control device for a suspension | |
JPH04163220A (en) | Vehicular suspension device | |
JPS61169310A (en) | Rear suspension control device | |
JP2515364B2 (en) | Wheel camber angle control device | |
JP3682933B2 (en) | Roll control device for vehicle | |
JPH043326B2 (en) | ||
JPH043328B2 (en) | ||
JPH043327B2 (en) | ||
JPS6092977A (en) | Tack-in controller | |
US5263737A (en) | Device for stabilizing the attitude of an automobile | |
JPH0747366B2 (en) | Suspension device for automobile | |
JPS611512A (en) | Suspension control device | |
JPS611510A (en) | Suspension control device | |
JPS59186708A (en) | Suspension for automobile | |
JP2757336B2 (en) | Automotive suspension equipment | |
JPS611511A (en) | Suspension control device | |
JP3555323B2 (en) | Electronically controlled suspension | |
JPH0514645B2 (en) | ||
JPH0431114A (en) | Suspension control device | |
JPS6320210A (en) | Stabilizer device | |
JP2506423B2 (en) | Active suspension device | |
JP3035317B2 (en) | Vehicle suspension device | |
JPS63145113A (en) | Suspension device for automobile | |
JPS6234860A (en) | Steering device for car | |
JPS611513A (en) | Suspension control device |