[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3555323B2 - Electronically controlled suspension - Google Patents

Electronically controlled suspension Download PDF

Info

Publication number
JP3555323B2
JP3555323B2 JP11126096A JP11126096A JP3555323B2 JP 3555323 B2 JP3555323 B2 JP 3555323B2 JP 11126096 A JP11126096 A JP 11126096A JP 11126096 A JP11126096 A JP 11126096A JP 3555323 B2 JP3555323 B2 JP 3555323B2
Authority
JP
Japan
Prior art keywords
lateral acceleration
predetermined value
hydraulic shock
valve
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11126096A
Other languages
Japanese (ja)
Other versions
JPH09272321A (en
Inventor
文昭 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP11126096A priority Critical patent/JP3555323B2/en
Publication of JPH09272321A publication Critical patent/JPH09272321A/en
Application granted granted Critical
Publication of JP3555323B2 publication Critical patent/JP3555323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両の走行状態の変化に対応して油圧緩衝器の減衰力と空気ばねのばね定数を加減し、車体のロールを効果的に抑止する電子制御式懸架装置に関するものである。
【0002】
【従来の技術】
従来の電子制御式懸架装置では、ロール制御の中止条件が満たされると、直ちに空気ばねのばね定数を加減する電磁開閉弁と、油圧緩衝器の減衰力を加減する制御弁とがソフトに切り換わる。しかし、上述の制御では、スラローム走行のように操舵方向が連続して変化する時は、空気ばねのばね定数を切り換える電磁開閉弁は、ロール制御中の閉位置から開位置を経て閉位置になるために、電磁開閉弁の動作回数が増し、耐久性が低下する。また、電磁開閉弁の動作音が連続するために、乗客などに不快感を与える恐れがある。一方、油圧緩衝器の減衰力を高めたままにしておくと、ゴツゴツ感が出て乗心地が悪化することからも、油圧緩衝器の減衰力を高くする必要がない時にはできるだけ低くするのが望ましい。
【0003】
特公平2−34803号公報に開示される電子制御式懸架装置では、車両の走行条件に応じて油圧緩衝器だけの減衰力を加減するものであるから、特にロール制御を中断する時の、乗心地や車体姿勢の安定性について十分なものとはいえない。
【0004】
【発明が解決しようとする課題】
本発明の課題は上述の問題に鑑み、油圧緩衝器の減衰力と空気ばねのばね定数を可変制御する電子制御式懸架装置において、ロール制御の解除条件が満された時、油圧緩衝器よりも遅れて空気ばねを通常のソフトに戻すようにした電子制御式懸架装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の構成は油圧緩衝器の減衰力と空気ばねのばね定数を可変制御する電子制御式懸架装置において、ロール制御の終了条件が整つたとき、油圧緩衝器の減衰力を直ちにソフトにし、空気ばねのばね定数は所定時間のほ経過後にソフトにし、次いでロール制御を解除するようにしたものである。
【0006】
【発明の実施の形態】
本発明による電子制御式懸架装置は、空気ばねの容積を加減することにより空気ばねのばね定数を加減する電磁開閉弁と、油圧緩衝器の減衰力を多段階に加減する制御弁と、車速と横加速度と操舵速度を検出する検出手段と、前記検出手段からの信号に基づき走行状態を判断して電磁開閉弁と制御弁とを制御し、走行中の車体のロールを抑える電子制御装置とを備えている。
【0007】
通常は車体のロール制御を行わず、車速と横加速度と操舵速度が予め定められた条件(ロール制御条件)を満たした時、走行中の車体のロール制御を開始し、車速と横加速度と操舵速度が予め定められた条件を満たさなくなつた時、車体のロール制御を中止する。
【0008】
車速VがV0 よりも大きく、操舵速度Wが所定値WO よりも大きく、横加速度Gの向きと操舵方向との関係が正常(ハンドルが右切りならば横加速度は左方向)であり、かつ横加速度Gの絶対値が所定値G0 よりも大きい時、ロール制御1またはロール制御2を行う。つまり、上述の条件を満す場合に、横加速度の変化率ΔGが所定値gよりも小さい時にはロール制御1を行い、横加速度の変化率ΔGが所定値gよりも大きいか、横加速度Gの絶対値が所定値G1 (ただし、G0 <G1 )よりも大きい時にはロール制御2を行う。
【0009】
ロール制御1では、例えばハンドルの右切り時、右側前後輪の空気ばねのばね定数をソフトに、左側前後輪の空気ばねのばね定数をハードにし、全車輪の油圧緩衝器の減衰力をミデアムにする。ロール制御2では、全車輪の空気ばねのばね定数をハードにし、全車輪の油圧緩衝器の減衰力をハードにする。
【0010】
横加速度の向きと操舵方向との関係が異常(ハンドルが右切りならば横加速度は右方向)でなつたか、横加速度Gの絶対値が所定値G0 よりも小さくなつた時、ロール制御を中止する。ロール制御の中止条件が満された時、全車輪の油圧緩衝器の減衰力を直ちにソフトに切り換える一方、全車輪の空気ばねのばね定数は所定時間(テーリング時間、1.5〜2秒程度)遅れてソフトに切り換える。ロール制御の中止条件に、車速、横加速度、操舵速度をそれぞれ検出するセンサが故障した時を加えることが好ましい。
【0011】
【実施例】
図1,2に示すように、前輪2の空気ばね式懸架装置は懸架腕3aを空気ばね3により車枠8に支持され、空気ばね3は電磁開閉弁5を経て副空気槽4に接続される。また、空気ばね3は図示してない主空気槽から加圧空気が公知のレベリング弁、電磁切換弁を経て供給されるか、空気ばね3の空気がレベリング弁を経て外部へ排出されるようになつている。後輪12の空気ばね式懸架装置は後輪12を支持する前後方向のビーム13aの端部を、前後1対の空気ばね13により車枠8に支持される。1対の空気ばね13は電磁開閉弁15を経て副空気槽14に接続される。また、空気ばね13は図示してない主空気槽から加圧空気がレベリング弁を経て供給されるか、空気ばね13の空気がレベリング弁を経て外部へ排出されるようになつている。前輪2を支持する懸架腕3aと車枠8の間に油圧緩衝器10が接続され、同様に後輪12を支持するビーム13aの各端部と車枠8の間に油圧緩衝器10が接続される。各油圧緩衝器10は減衰力をソフト、ミデアム、ハードの3段階に加減する回転型の減衰力制御弁50を一体に備えている。
【0012】
図3に示すように、本発明は車速センサ22、操舵速度センサ23、横加速度センサ24、横加速度センサ24から求まる横加速度変化率の各信号に基づき、電子制御装置21の出力により電磁開閉弁5,15を駆動して空気ばねのばね定数を加減し、また、電子制御装置21の出力により制御弁51を駆動して油圧緩衝器10の減衰力を加減する。
【0013】
図4,5に示すように、各車輪を懸架する油圧緩衝器10はシリンダ41にピストン44を嵌挿して室43と室45を区画し、ピストン44から上方外部へ突出するロツド42を車枠8に、シリンダ41を懸架部材にそれぞれ連結して構成される。油圧緩衝器10はピストン44の内部に制御弁51を備えられる。即ち、ピストン44の内部に弁室46が設けられ、弁室46の内部に逆カツプ形の弁体47が嵌挿される。弁体47は上方へ突出するロツド42aを結合される。ロツド42aは中空のロツド42に嵌挿され、かつロツド42の上端部に配設した公知の電磁アクチユエータまたは電動機により回動される時、室43と室45を結ぶ通路48の面積を加減し、油圧緩衝器10の減衰力を加減するように構成される。
【0014】
このため、図5に示すように、制御弁51の弁室46は径外方へ延びる1対の通路48を室43へ連通される一方、弁室46の下端を室45へ連通される。弁室46に嵌挿される弁体47は、周壁に通路48と連通可能の大孔径の通孔sと中程度の孔径の通孔mと小孔径の通孔hとを備えており、通孔sが通路48に連通する図示の状態から、弁体47を反時計方向へ回動すると通孔mが通路48に連通し、逆に弁体47を時計方向へ回動すると通孔hが通路48に連通する。
【0015】
本発明では、車速VがV0 (例えば20km/h)よりも小さいか、操舵速度Wが所定値WO よりも小さいか、横加速度Gの向きと操舵方向との関係が異常(ハンドルが右切りならば横加速度は右方向)であるか、横加速度Gの絶対値が所定値G0 よりも小さい時は、車体にロールが殆ど生じないものと判断してロール制御を行わず、全車輪の空気ばねのばね定数をソフトに、全車輪の油圧緩衝器の減衰力をソフトにする。この時、制御弁51は図5に示すように、大孔径の通孔sが通路48に連通する状態にする。
【0016】
車速VがV0 よりも大きく、操舵速度Wが所定値WO よりも大きく、横加速度Gの向きと操舵方向との関係が正常(ハンドルが右切りならば横加速度は左方向)であり、かつ横加速度Gの絶対値が所定値G0 よりも大きい時、ロール制御1またはロール制御2を行う。つまり、上述の条件を満す場合に、横加速度Gが第1の所定値G0 よりも大きく第2の所定値G1 よりも小さく、横加速度の変化率ΔGが所定値gよりも小さい時にはロール制御1を行い、横加速度の変化率ΔGが所定値gよりも大きいか、横加速度Gの絶対値が所定値G1 (ただし、G0 <G1 )よりも大きい時にはロール制御2を行う。
【0017】
横加速度の向きと操舵方向との関係が異常(ハンドルが右切りならば横加速度は右方向)であるか、横加速度Gの絶対値が所定値G0 よりも小さくなつた時、ロール制御を中止する。この時、全車輪の油圧緩衝器の減衰力を直ちにソフトに切り換える一方、全車輪の空気ばねのばね定数は所定時間(テーリング時間、1.5〜2秒程度)遅れてソフトに切り換える。
【0018】
図6は上述の制御をマイクロコンピユータからなる電子制御装置21により実行する制御プログラムの流れ図である。図6において、p08〜p31は制御プログラムの各ステツプを表し、p13〜p16でロール制御保持状態を解除するか否かを判断し、p17〜p21でロール制御を開始するか否かを判断し、p27〜p30でロール制御を解除し、p23〜p26でロール制御が必要な場合にロール制御モードを選択する。本制御プログラムは所定時間ごとに繰り返し実行する。本制御プログラムはp08で開始し、p09で演算部を初期化し、p10で車速V、舵角速度W、横加速度Gを読み込み、p11で横加速度の変化率ΔGを求める。
【0019】
p12でフラグが1か否かを判別する。フラグが1の場合は、p13で横加速度Gが第1の所定値G0 よりも小さいか否かを判別する。横加速度Gが第1の所定値G0 よりも小さい場合は、p16でフラグを0にし、p22へ進む。p13で横加速度Gが第1の所定値G0 よりも大きい場合は、p14で車速Vが0か否か(停車中か否か)を判別する。車速Vが0の場合はp16へ進み、車速Vが0でない場合は、p15で横加速度Gの向きが前回検出したものと異なるか否かを判別する。横加速度Gの向きが前回検出したものと異なる場合はp16へ進み、横加速度Gの向きが前回検出したものと同じ場合はp22へ進む。
【0020】
p12でフラグが1でない場合は、p17で車速Vが所定値V0 よりも小さいか否かを判別する。車速Vが所定値V0 よりも小さい場合はp22へ進み、車速Vが所定値V0 よりも大きい場合は、p18で操舵速度Wが所定値W0 より0も小さいか否かを判別する。操舵速度Wが所定値W0 よりも小さい場合はp22へ進み、操舵速度Wが所定値W0 よりも大きい場合は、p19で横加速度Gの向きが操舵方向と同じか否か(異常か否か)を判別する。横加速度Gの向きが操舵方向と同じ場合はp22へ進み、横加速度Gの向きが操舵方向と逆の場合は、p20で横加速度Gが第1の所定値G0 よりも小さいか否かを判別する。横加速度Gが第1の所定値G0 よりも小さい場合はp22へ進み、横加速度Gが第1の所定値G0 よりも大きい場合は、p21でフラグを1にしてp22へ進む。
【0021】
p22でフラグが1か否かを判別する。フラグが1でない場合はp27で油圧緩衝器10の減衰力をソフトにし、p28で所定時間Tをカウントし、p29で所定時間Tの経過後に空気ばね5のばね定数をソフトにする。p30でロール制御モードを解除し、p31で終了する。
【0022】
p22でフラグが1の場合は、p23で横加速度Gが第2の所定値G1 よりも大きいか否かを判別する。横加速度Gが第2の所定値G1 よりも大きい場合は、p24でロール制御モードを2にする。つまり、全車輪の空気ばねのばね定数をハードにし、油圧緩衝器10の減衰力をハードにし、p31で終了する。
【0023】
p23で横加速度Gが第2の所定値G1 よりも小さい場合は、p25で横加速度の変化率ΔGが所定値gよりも大きいか否かを判別する。横加速度の変化率ΔGが所定値gよりも大きい場合はp24へ進み、横加速度の変化率ΔGが所定値gよりも小さい場合は、p26でロール制御モードを1にする。つまり、所定の車輪の空気ばねのばね定数をハードにし、油圧緩衝器10の減衰力をミデアムにし、p31で終了する。
【0024】
上述の実施例では、車両の旋回方向に関係なく、左右の油圧緩衝器10の減衰力を同じように切り換えているが、旋回方向に応じて一方の油圧緩衝器10のみの減衰力を切り換えるようにしてもよい。
【0025】
【発明の効果】
本発明は上述のように、油圧緩衝器の減衰力と空気ばねのばね定数を可変制御する電子制御式懸架装置において、ロール制御の中止条件が整つたとき、油圧緩衝器の減衰力を直ちにハードまたはミデアムからソフトにするようにしたから、乗心地がよくなり、また空気ばねのばね定数は所定時間経過後にハードからソフトにするようにしたから車体姿勢の安定性が向上し、電磁開閉弁の動作頻度を低減し、耐久性を向上できる。
【図面の簡単な説明】
【図1】本発明に係る車両の電子制御式懸架装置を備えた大型バスの斜視図である。
【図2】同電子制御式懸架装置の概略構成図である。
【図3】同電子制御式懸架装置のブロツク図である。
【図4】同電子制御式懸架装置における油圧緩衝器の側面断面図である。
【図5】同油圧緩衝器に内蔵される制御弁の平面断面図である。
【図6】本発明に係る電子制御式懸架装置の制御プログラムを表す流れ図である。
【符号の説明】
h,m,s:弁孔 2:前輪 3,13:空気ばね 3a:懸架腕 4,14:副空気槽 5,15:電磁開閉弁 10:油圧緩衝器 12:後輪 13a:ビーム 21:電子制御装置 22:車速センサ 23:操舵速度センサ 24:横加速度センサ 41:シリンダ 42:ロツド 44:ピストン 46:弁室
47:弁体 48:通路 51:制御弁
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronically controlled suspension system that effectively controls a roll of a vehicle body by adjusting a damping force of a hydraulic shock absorber and a spring constant of an air spring in response to a change in a running state of a vehicle.
[0002]
[Prior art]
In the conventional electronically controlled suspension system, when the condition for stopping the roll control is satisfied, the solenoid on-off valve for adjusting the spring constant of the air spring and the control valve for adjusting the damping force of the hydraulic shock absorber are switched to software immediately. . However, in the above-described control, when the steering direction continuously changes as in slalom running, the electromagnetic on-off valve that switches the spring constant of the air spring changes from the closed position during roll control to the closed position via the open position. Therefore, the number of times of operation of the solenoid on-off valve increases, and the durability decreases. Further, since the operation sound of the electromagnetic on-off valve is continuous, there is a possibility that passengers and the like may feel uncomfortable. On the other hand, if the damping force of the hydraulic shock absorber is kept high, a rugged feeling appears and the ride comfort deteriorates. Therefore, it is desirable to reduce the damping force of the hydraulic shock absorber as low as possible when it is not necessary to increase the damping force. .
[0003]
In the electronically controlled suspension disclosed in Japanese Patent Publication No. 2-34803, the damping force of only the hydraulic shock absorber is adjusted according to the running conditions of the vehicle. The comfort and stability of the body posture are not enough.
[0004]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to provide an electronically controlled suspension that variably controls a damping force of a hydraulic shock absorber and a spring constant of an air spring. It is an object of the present invention to provide an electronically controlled suspension that returns the air spring to normal softness with a delay.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the configuration of the present invention is an electronically controlled suspension that variably controls the damping force of a hydraulic shock absorber and the spring constant of an air spring. The damping force is made soft immediately, the spring constant of the air spring is made soft after a lapse of a predetermined time, and then the roll control is released.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
An electronically controlled suspension system according to the present invention includes an electromagnetic on-off valve for adjusting the spring constant of the air spring by adjusting the volume of the air spring, a control valve for adjusting the damping force of the hydraulic shock absorber in multiple stages, and a vehicle speed. Detecting means for detecting the lateral acceleration and the steering speed, and an electronic control device that determines the running state based on a signal from the detecting means, controls the electromagnetic on-off valve and the control valve, and suppresses the roll of the running vehicle body. Have.
[0007]
Normally, the roll control of the vehicle body is not performed, and when the vehicle speed, the lateral acceleration, and the steering speed satisfy predetermined conditions (roll control conditions), the roll control of the running vehicle body is started, and the vehicle speed, the lateral acceleration, and the steering are controlled. When the speed does not satisfy the predetermined condition, the roll control of the vehicle body is stopped.
[0008]
The vehicle speed V is higher than V0, the steering speed W is higher than the predetermined value WO, the relationship between the direction of the lateral acceleration G and the steering direction is normal (if the steering wheel is turned right, the lateral acceleration is leftward), and When the absolute value of the acceleration G is larger than the predetermined value G0, roll control 1 or roll control 2 is performed. That is, when the above condition is satisfied, the roll control 1 is performed when the lateral acceleration change rate ΔG is smaller than the predetermined value g, and the lateral acceleration change rate ΔG is larger than the predetermined value g, When the absolute value is larger than a predetermined value G1 (where G0 <G1), the roll control 2 is performed.
[0009]
In the roll control 1, for example, when the steering wheel is turned to the right, the spring constants of the air springs of the right and left front wheels are set to be soft, the spring constants of the air springs of the left and right front wheels are set to be hard, and the damping force of the hydraulic shock absorber of all the wheels is set to medium. I do. In the roll control 2, the spring constants of the air springs of all the wheels are made hard, and the damping forces of the hydraulic shock absorbers of all the wheels are made hard.
[0010]
Roll control is stopped when the relationship between the direction of the lateral acceleration and the steering direction is abnormal (the lateral acceleration is rightward if the steering wheel is turned right) or the absolute value of the lateral acceleration G becomes smaller than a predetermined value G0. I do. When the condition for stopping the roll control is satisfied, the damping forces of the hydraulic shock absorbers of all the wheels are immediately switched to software, while the spring constants of the air springs of all the wheels are a predetermined time (tailing time, about 1.5 to 2 seconds). Switch to software with a delay. It is preferable to add a time when sensors for detecting the vehicle speed, the lateral acceleration, and the steering speed respectively fail to the condition for stopping the roll control.
[0011]
【Example】
As shown in FIGS. 1 and 2, in the air-spring suspension system for the front wheel 2, a suspension arm 3 a is supported on a vehicle frame 8 by an air spring 3, and the air spring 3 is connected to a sub air tank 4 via an electromagnetic on-off valve 5. . The air spring 3 is configured such that pressurized air is supplied from a main air tank (not shown) via a known leveling valve and a solenoid-operated switching valve, or air from the air spring 3 is discharged to the outside via the leveling valve. I'm familiar. In the air spring type suspension device for the rear wheel 12, the end of the beam 13 a in the front-rear direction supporting the rear wheel 12 is supported by the vehicle frame 8 by a pair of front and rear air springs 13. The pair of air springs 13 is connected to a sub air tank 14 via an electromagnetic on-off valve 15. The air spring 13 is configured such that pressurized air is supplied from a main air tank (not shown) via a leveling valve, or air from the air spring 13 is discharged to the outside via the leveling valve. A hydraulic shock absorber 10 is connected between the suspension arm 3a supporting the front wheel 2 and the vehicle frame 8, and a hydraulic shock absorber 10 is similarly connected between each end of the beam 13a supporting the rear wheel 12 and the vehicle frame 8. . Each hydraulic shock absorber 10 is integrally provided with a rotary damping force control valve 50 that adjusts the damping force in three stages of soft, medium, and hard.
[0012]
As shown in FIG. 3, the present invention provides an electromagnetic on-off valve based on signals from a vehicle speed sensor 22, a steering speed sensor 23, a lateral acceleration sensor 24, and a rate of change in lateral acceleration obtained from the lateral acceleration sensor 24. 5 and 15 are driven to increase or decrease the spring constant of the air spring, and the control valve 51 is driven by the output of the electronic control unit 21 to increase or decrease the damping force of the hydraulic shock absorber 10.
[0013]
As shown in FIGS. 4 and 5, in the hydraulic shock absorber 10 for suspending each wheel, a piston 44 is inserted into a cylinder 41 to define a chamber 43 and a chamber 45. In addition, a cylinder 41 is connected to each of the suspension members. The hydraulic shock absorber 10 is provided with a control valve 51 inside the piston 44. That is, a valve chamber 46 is provided inside the piston 44, and an inverted cup-shaped valve body 47 is inserted into the valve chamber 46. The valve body 47 is connected with a rod 42a projecting upward. The rod 42a is inserted into the hollow rod 42 and, when rotated by a known electromagnetic actuator or electric motor disposed at the upper end of the rod 42, adjusts the area of the passage 48 connecting the chamber 43 and the chamber 45, It is configured to increase or decrease the damping force of the hydraulic shock absorber 10.
[0014]
Therefore, as shown in FIG. 5, the valve chamber 46 of the control valve 51 communicates with the chamber 43 through a pair of passages 48 extending radially outward, while the lower end of the valve chamber 46 communicates with the chamber 45. The valve body 47 fitted into the valve chamber 46 has a large-diameter through hole s, a medium-diameter through-hole m, and a small-diameter through-hole h that can communicate with the passage 48 on the peripheral wall. When the valve body 47 is rotated in the counterclockwise direction from the state shown in the drawing in which s communicates with the passage 48, the through hole m communicates with the passage 48, and when the valve body 47 is rotated clockwise, the through hole h becomes the passage. Connect to 48.
[0015]
In the present invention, the vehicle speed V is lower than V0 (for example, 20 km / h), the steering speed W is lower than the predetermined value WO, or the relationship between the direction of the lateral acceleration G and the steering direction is abnormal (if the steering wheel is turned right). If the lateral acceleration is in the right direction) or the absolute value of the lateral acceleration G is smaller than a predetermined value G0, it is determined that there is almost no roll in the vehicle body and roll control is not performed, and the air springs of all wheels are And the damping forces of the hydraulic shock absorbers of all wheels are made soft. At this time, as shown in FIG. 5, the control valve 51 is set so that the large-diameter through hole s communicates with the passage 48.
[0016]
The vehicle speed V is higher than V0, the steering speed W is higher than the predetermined value WO, the relationship between the direction of the lateral acceleration G and the steering direction is normal (if the steering wheel is turned right, the lateral acceleration is leftward), and When the absolute value of the acceleration G is larger than the predetermined value G0, roll control 1 or roll control 2 is performed. That is, when the above condition is satisfied, the roll control is performed when the lateral acceleration G is larger than the first predetermined value G0 and smaller than the second predetermined value G1, and the lateral acceleration change rate ΔG is smaller than the predetermined value g. The roll control 2 is performed when the change rate ΔG of the lateral acceleration is larger than a predetermined value g or when the absolute value of the lateral acceleration G is larger than a predetermined value G1 (G0 <G1).
[0017]
Roll control is stopped when the relationship between the direction of the lateral acceleration and the steering direction is abnormal (the lateral acceleration is rightward if the steering wheel is turned right) or the absolute value of the lateral acceleration G becomes smaller than a predetermined value G0. I do. At this time, the damping forces of the hydraulic shock absorbers of all wheels are immediately switched to soft, while the spring constants of the air springs of all wheels are switched to soft after a predetermined time (tailing time, about 1.5 to 2 seconds).
[0018]
FIG. 6 is a flow chart of a control program for executing the above-mentioned control by the electronic control unit 21 composed of a microcomputer. In FIG. 6, p08 to p31 represent each step of the control program, and it is determined whether to release the roll control holding state from p13 to p16, and whether to start the roll control from p17 to p21. Roll control is released in p27 to p30, and the roll control mode is selected when roll control is required in p23 to p26. This control program is repeatedly executed at predetermined time intervals. This control program starts at p08, initializes the calculation unit at p09, reads the vehicle speed V, the steering angular velocity W, and the lateral acceleration G at p10, and obtains the lateral acceleration change rate ΔG at p11.
[0019]
It is determined whether or not the flag is 1 at p12. If the flag is 1, it is determined at p13 whether the lateral acceleration G is smaller than a first predetermined value G0. If the lateral acceleration G is smaller than the first predetermined value G0, the flag is set to 0 at p16, and the process proceeds to p22. If the lateral acceleration G is greater than the first predetermined value G0 at p13, it is determined at p14 whether the vehicle speed V is 0 (stop or not). If the vehicle speed V is 0, the process proceeds to p16. If the vehicle speed V is not 0, it is determined at p15 whether the direction of the lateral acceleration G is different from that detected previously. If the direction of the lateral acceleration G is different from that detected last time, the process proceeds to p16, and if the direction of the lateral acceleration G is the same as that detected last time, the process proceeds to p22.
[0020]
If the flag is not 1 at p12, it is determined at p17 whether the vehicle speed V is lower than a predetermined value V0. If the vehicle speed V is lower than the predetermined value V0, the process proceeds to p22. If the vehicle speed V is higher than the predetermined value V0, it is determined at p18 whether the steering speed W is lower than the predetermined value W0. If the steering speed W is lower than the predetermined value W0, the process proceeds to p22. If the steering speed W is higher than the predetermined value W0, the process determines whether the direction of the lateral acceleration G is the same as the steering direction at p19 (whether or not there is an abnormality). Is determined. If the direction of the lateral acceleration G is the same as the steering direction, the process proceeds to p22. If the direction of the lateral acceleration G is opposite to the steering direction, it is determined at p20 whether the lateral acceleration G is smaller than the first predetermined value G0. I do. When the lateral acceleration G is smaller than the first predetermined value G0, the process proceeds to p22. When the lateral acceleration G is larger than the first predetermined value G0, the flag is set to 1 at p21 and the process proceeds to p22.
[0021]
It is determined whether or not the flag is 1 in p22. If the flag is not 1, the damping force of the hydraulic shock absorber 10 is made soft at p27, the predetermined time T is counted at p28, and the spring constant of the air spring 5 is made soft after the predetermined time T has elapsed at p29. The roll control mode is released at p30, and the process ends at p31.
[0022]
If the flag is 1 at p22, it is determined at p23 whether the lateral acceleration G is greater than the second predetermined value G1. If the lateral acceleration G is larger than the second predetermined value G1, the roll control mode is set to 2 at p24. That is, the spring constants of the air springs of all the wheels are made hard, the damping force of the hydraulic shock absorber 10 is made hard, and the process ends at p31.
[0023]
If the lateral acceleration G is smaller than the second predetermined value G1 in p23, it is determined whether or not the change rate ΔG of the lateral acceleration is larger than the predetermined value g in p25. When the change rate ΔG of the lateral acceleration is larger than the predetermined value g, the process proceeds to p24, and when the change rate ΔG of the lateral acceleration is smaller than the predetermined value g, the roll control mode is set to 1 at p26. That is, the spring constant of the air spring of the predetermined wheel is set to be hard, the damping force of the hydraulic shock absorber 10 is set to be medium, and the process ends at p31.
[0024]
In the above embodiment, the damping force of the left and right hydraulic shock absorbers 10 is switched in the same manner regardless of the turning direction of the vehicle, but the damping force of only one hydraulic shock absorber 10 is switched according to the turning direction. It may be.
[0025]
【The invention's effect】
As described above, the present invention provides an electronically controlled suspension that variably controls the damping force of a hydraulic shock absorber and the spring constant of an air spring. Alternatively, the vehicle is made softer from a medium, which improves ride comfort.The spring constant of the air spring is changed from harder to softer after a lapse of a predetermined time, so that the stability of the vehicle body posture is improved, and the electromagnetic on-off valve is improved. Operation frequency can be reduced and durability can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view of a large bus having an electronically controlled suspension system for a vehicle according to the present invention.
FIG. 2 is a schematic configuration diagram of the electronically controlled suspension device.
FIG. 3 is a block diagram of the electronically controlled suspension.
FIG. 4 is a side sectional view of a hydraulic shock absorber in the electronically controlled suspension.
FIG. 5 is a plan sectional view of a control valve incorporated in the hydraulic shock absorber.
FIG. 6 is a flowchart showing a control program of the electronically controlled suspension system according to the present invention.
[Explanation of symbols]
h, m, s: valve hole 2: front wheel 3, 13: air spring 3a: suspension arm 4, 14: auxiliary air tank 5, 15: solenoid on-off valve 10: hydraulic shock absorber 12: rear wheel 13a: beam 21: electronic Control device 22: Vehicle speed sensor 23: Steering speed sensor 24: Lateral acceleration sensor 41: Cylinder 42: Rod 44: Piston 46: Valve chamber 47: Valve body 48: Passage 51: Control valve

Claims (1)

油圧緩衝器の減衰力と空気ばねのばね定数を可変制御する電子制御式懸架装置において、ロール制御の終了条件が整つたとき、油圧緩衝器の減衰力を直ちにソフトにし、空気ばねのばね定数は所定時間経過後にソフトにし、次いでロール制御を解除するようにしたことを特徴とする電子制御式懸架装置。In an electronically controlled suspension that variably controls the damping force of a hydraulic shock absorber and the spring constant of an air spring, when the conditions for terminating roll control are met, the damping force of the hydraulic shock absorber is immediately softened, and the spring constant of the air spring becomes An electronically controlled suspension system wherein the suspension is made soft after a predetermined time has elapsed, and then the roll control is released.
JP11126096A 1996-04-08 1996-04-08 Electronically controlled suspension Expired - Fee Related JP3555323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11126096A JP3555323B2 (en) 1996-04-08 1996-04-08 Electronically controlled suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11126096A JP3555323B2 (en) 1996-04-08 1996-04-08 Electronically controlled suspension

Publications (2)

Publication Number Publication Date
JPH09272321A JPH09272321A (en) 1997-10-21
JP3555323B2 true JP3555323B2 (en) 2004-08-18

Family

ID=14556697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11126096A Expired - Fee Related JP3555323B2 (en) 1996-04-08 1996-04-08 Electronically controlled suspension

Country Status (1)

Country Link
JP (1) JP3555323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110248A1 (en) * 2009-03-25 2010-09-30 株式会社エクォス・リサーチ Vehicle control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2618369B (en) * 2022-05-05 2024-09-11 Jaguar Land Rover Ltd Suspension system with hold control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110248A1 (en) * 2009-03-25 2010-09-30 株式会社エクォス・リサーチ Vehicle control device
JP2010228474A (en) * 2009-03-25 2010-10-14 Equos Research Co Ltd Controller for vehicle

Also Published As

Publication number Publication date
JPH09272321A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
US4669749A (en) Vehicle suspension apparatus
EP0988210A1 (en) Controllable cab suspension
JPH04163220A (en) Vehicular suspension device
US6471218B1 (en) Vehicle suspensions
JPH0573602B2 (en)
JP3555323B2 (en) Electronically controlled suspension
US4856813A (en) Vehicle suspension apparatus
JP3518066B2 (en) Electronically controlled suspension
JP2002331816A (en) Suspension characteristic control device for vehicle
JPH0747366B2 (en) Suspension device for automobile
JPH0939535A (en) Electronically-controlled pneumatic spring suspension device
JPS6240204B2 (en)
JP3308413B2 (en) Vehicle electronically controlled suspension
JP3127735B2 (en) Suspension control device
JPS59156813A (en) Suspension for car
JPH0733923Y2 (en) Electronically controlled suspension system
JP2514219B2 (en) Fluid suspension system
JP3826597B2 (en) Shock absorber control device
JP3270646B2 (en) Vehicle electronically controlled suspension
JP2757336B2 (en) Automotive suspension equipment
JPH05238435A (en) Cab suspension device for vehicle
KR920001345B1 (en) Vehicle suspension apparatus
JP2522844B2 (en) Vehicle drive controller
JP3366474B2 (en) Vehicle electronically controlled suspension
JPH03217310A (en) Suspension device for vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees