JPH0433266A - Oxide solid solution and mixed body suitable for electrode material for solid electrolyte fuel cell - Google Patents
Oxide solid solution and mixed body suitable for electrode material for solid electrolyte fuel cellInfo
- Publication number
- JPH0433266A JPH0433266A JP2138738A JP13873890A JPH0433266A JP H0433266 A JPH0433266 A JP H0433266A JP 2138738 A JP2138738 A JP 2138738A JP 13873890 A JP13873890 A JP 13873890A JP H0433266 A JPH0433266 A JP H0433266A
- Authority
- JP
- Japan
- Prior art keywords
- solid solution
- oxide
- mgo
- electrode
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006104 solid solution Substances 0.000 title claims abstract description 104
- 239000000446 fuel Substances 0.000 title claims abstract description 27
- 239000007772 electrode material Substances 0.000 title claims description 15
- 239000007784 solid electrolyte Substances 0.000 title claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 74
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 71
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 46
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims abstract description 34
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract description 18
- 239000010987 cubic zirconia Substances 0.000 claims abstract description 14
- 229910000480 nickel oxide Inorganic materials 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims description 19
- 230000007774 longterm Effects 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 7
- 239000003054 catalyst Substances 0.000 abstract description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 49
- 238000011282 treatment Methods 0.000 description 21
- 239000000843 powder Substances 0.000 description 17
- 230000008859 change Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 230000010287 polarization Effects 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000011195 cermet Substances 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229940097364 magnesium acetate tetrahydrate Drugs 0.000 description 2
- XKPKPGCRSHFTKM-UHFFFAOYSA-L magnesium;diacetate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].CC([O-])=O.CC([O-])=O XKPKPGCRSHFTKM-UHFFFAOYSA-L 0.000 description 2
- 229940078487 nickel acetate tetrahydrate Drugs 0.000 description 2
- OINIXPNQKAZCRL-UHFFFAOYSA-L nickel(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Ni+2].CC([O-])=O.CC([O-])=O OINIXPNQKAZCRL-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910002642 NiO-MgO Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000005260 alpha ray Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007572 expansion measurement Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は固体電解質型燃料電池用電極材料に適した酸化
物固溶体及び混合体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to oxide solid solutions and mixtures suitable for electrode materials for solid oxide fuel cells.
[従来の技術]
従来、固体電解質型燃料電池(以下、5OFCという)
の燃料側電極(以下、燃料極という)の材料には、ニッ
ケル(Ni)やニッケルと酸化ジルコニウム(ZrO2
)のサーメット(以下Ni−ZrO2サーメットという
)が使用されていた。[Conventional technology] Conventionally, solid oxide fuel cells (hereinafter referred to as 5OFC)
The material of the fuel side electrode (hereinafter referred to as fuel electrode) is nickel (Ni) or nickel and zirconium oxide (ZrO2).
) cermet (hereinafter referred to as Ni-ZrO2 cermet) was used.
[発明が解決しようとする課題]
しかし、これらの材料により製造された燃料極は長期安
定性が充分ではない。さらに、電池作動初期に酸化ニッ
ケル(Nip)の還元により生成するNiの粒子径が還
元前のNiOの粒子径に依存し、かつ還元前のNiOの
粒子径の微細化には限界があるため、還元により生成す
るNi粒子をより微細化し、その結果として触媒作用を
高めることが困難である。[Problems to be Solved by the Invention] However, fuel electrodes manufactured using these materials do not have sufficient long-term stability. Furthermore, the particle size of Ni produced by reduction of nickel oxide (Nip) at the beginning of battery operation depends on the particle size of NiO before reduction, and there is a limit to the miniaturization of the particle size of NiO before reduction. It is difficult to make the Ni particles produced by reduction more fine and, as a result, to enhance the catalytic action.
従って、本発明の課題は5OFC用電極材料に適した酸
化物固溶体及び混合体を提供することにあり、該酸化物
固溶体又は混合体を材料として製造した5OFC用電極
は、従来の5OFC用電極よりも長期安定性に優れ、か
つ電池作動初期にNiOの還元により生成するNiの粒
子径を従来のものに比べてより微細化することが可能で
あり、その結果としてより高められた触媒作用を期待し
得るものである。Therefore, an object of the present invention is to provide an oxide solid solution and a mixture suitable as an electrode material for 5OFC. It also has excellent long-term stability, and it is possible to make the particle size of Ni produced by reduction of NiO during the initial stage of battery operation smaller than that of conventional products, and as a result, it is expected to have an even higher catalytic effect. It is possible.
[課題を解決するための手段]
上記課題を解決するために、請求項1の発明は、酸化マ
グネシウム及び酸化ニッケルより主としてなり、それら
の総モル量に対して酸化マグネシウムは5モル%以上4
0モル%以下であり、残部が酸化ニッケルであることを
特徴とする5OFC用電極材料に適した酸化物固溶体と
される。[Means for Solving the Problems] In order to solve the above problems, the invention of claim 1 mainly consists of magnesium oxide and nickel oxide, and the magnesium oxide content is 5 mol% or more with respect to the total molar amount thereof.
It is an oxide solid solution suitable for an electrode material for 5OFC, characterized in that the content is 0 mol % or less, and the remainder is nickel oxide.
ここで、酸化マグネシウム(MgO)及び酸化ニッケル
(Nip)の総モル量に対してMgOが5モル%以上含
まれていなければならないのは、MgOが5モル%未満
で残部がNiOである酸化物固溶体を材料として5OF
C用電極を製造した場合には、電池作動初期の収縮が大
きく、該電極と電解質との剥離が生じてしまうためであ
る。またMgOが40モル%以下でなければならないの
は、MgOが40モル%以上であり、残部がNiOであ
る酸化物固溶体を材料として5OFC用電極を製造した
場合には、Niの析出量が減少し、その結果十分な触媒
作用が期待できず、かつNiによる導電が期待できなく
なり、電極性能が低下するためである。Here, the oxide that must contain 5 mol% or more of MgO with respect to the total molar amount of magnesium oxide (MgO) and nickel oxide (Nip) is an oxide in which MgO is less than 5 mol% and the balance is NiO. 5OF using solid solution as material
This is because when an electrode for C is manufactured, the shrinkage is large at the initial stage of battery operation, resulting in separation between the electrode and the electrolyte. In addition, the MgO content must be 40 mol% or less, because if the 5OFC electrode is manufactured using an oxide solid solution containing 40 mol% or more and the balance being NiO, the amount of Ni precipitated will decrease. However, as a result, sufficient catalytic action cannot be expected and conductivity due to Ni cannot be expected, resulting in a decrease in electrode performance.
前記固溶体とはニッケル原子(Ni)、マグネシウム原
子(Mg)及び酸素原子(0)が原子オーダーで均一に
混合されているものを意味する。この様にNi、Mg及
びO原子が原子オーダーで均一に混合されていることに
より、NiOの還元によって析出するNi粒子を微細化
しつる。The solid solution refers to one in which nickel atoms (Ni), magnesium atoms (Mg), and oxygen atoms (0) are uniformly mixed on the atomic order. By uniformly mixing Ni, Mg, and O atoms on the atomic order in this way, the Ni particles precipitated by the reduction of NiO are made finer.
請求項1の酸化物固溶体を製造する方法としては、Ni
の及びMgの酢酸塩水溶液の熱分解法又はNiの及びM
gの硝酸塩水溶液の熱分解法等のウェット・プロセス(
wet process)やNiO粉末とMgO粉末を
混合し、仮焼する方法又はNi塩粉末とMg塩粉末を混
合し仮焼する方法等のドライ・プロセス(drypro
cess)など通常の方法を用い得る。The method for producing the oxide solid solution according to claim 1 includes Ni
Thermal decomposition of an acetate aqueous solution of Ni and Mg
Wet processes such as thermal decomposition of nitrate aqueous solutions (
dry process (wet process), method of mixing NiO powder and MgO powder and calcining method, method of mixing Ni salt powder and Mg salt powder and calcining method, etc.
Conventional methods such as cess) can be used.
請求項2の発明は5OFC用電極材料に適した混合体を
提供するものであって、該混合体は主として請求項1の
酸化物固溶体と立方晶酸化ジルコニウムとからなり、前
記立方晶酸化ジルコニウムはその混合量が前記混合体の
総体積に対して60体積%以下であることを特徴とする
。The invention of claim 2 provides a mixture suitable for an electrode material for 5OFC, and the mixture mainly consists of the oxide solid solution of claim 1 and cubic zirconium oxide, and the cubic zirconium oxide is It is characterized in that the amount of the mixture is 60% by volume or less based on the total volume of the mixture.
ここで、立方晶酸化ジルコニウムとは立方晶系に結晶系
を安定化した酸化ジルコニウム(ZrOz)を意味する
。結晶系を安定化する方法としては、例えば、イツトリ
ア(ytoz)を用いて安定化したり又は酸化カルシウ
ム(Cab)を用いて安定化するなど種々の方法を用い
得る。この様にZrO2を立方晶系に安定化する必要が
あるのは、温度変化によってZrO,の結晶系が変化す
ると、その体積が大きく変化してしまい、そのために電
極作成時に電極と電解質との剥離が生じてしまうからで
ある。Here, cubic zirconium oxide means zirconium oxide (ZrOz) whose crystal system is stabilized to a cubic system. Various methods can be used to stabilize the crystal system, such as stabilization using ytoz or calcium oxide (Cab). The reason why it is necessary to stabilize ZrO2 into a cubic system is that when the crystal system of ZrO changes due to temperature changes, its volume changes significantly, and as a result, separation between the electrode and the electrolyte occurs during electrode creation. This is because it will occur.
そして立方晶系酸化ジルコニウムの混合量を前記混合体
の総体積に対して60体積%以下としたのは、これ以上
混合した混合体を5OFC用電極材料として用いた場合
には、該混合体中に含まれるNiOが少なくなるために
Niの析出量が少なくなり、従って十分な触媒作用が期
待できないとともにNiによる導電が期待できなくなる
ためである。The reason why the amount of cubic zirconium oxide mixed is set to 60% by volume or less based on the total volume of the mixture is that when a mixture containing more than this amount is used as an electrode material for 5OFC, This is because the amount of Ni precipitated decreases because the amount of NiO contained in the metal decreases, and therefore, sufficient catalytic action cannot be expected and conductivity due to Ni cannot be expected.
請求項2における混合体とは請求項1の酸化物固溶体の
粉末と立方晶酸化ジルコニウムの粉末を単に混合したも
のを特徴する
請求項1の酸化物固溶体又は請求項2の混合体を材料と
して5OFC用電極を製造する方法としては電解買上に
印刷して焼成する方法、電解買上にディッピングして焼
成する方法、化学蒸着法(CVD)又は電解質上に溶射
する方法等、通常の種々の方法を用いつる。The mixture in claim 2 is a simple mixture of the oxide solid solution powder of claim 1 and the cubic zirconium oxide powder, and 5OFC made from the oxide solid solution of claim 1 or the mixture of claim 2 as a material. Various conventional methods are used to manufacture the electrodes, including printing on an electrolytic surface and firing, dipping on an electrolytic surface and firing, chemical vapor deposition (CVD), or thermal spraying on an electrolyte. Vine.
また、請求項1の酸化物固溶体及び請求項2の混合体は
5OFC用電極材料として用いるのに適しているが、そ
れ以外の用途もあり、例えば触媒としても用いつる。Furthermore, although the oxide solid solution of claim 1 and the mixture of claim 2 are suitable for use as electrode materials for 5OFC, they also have other uses, for example, as catalysts.
[実施例]
次に本発明の実施例について説明する。以下の記述にお
いてNio−Mgo固溶体とはNi原子、Mg原子及び
0原子が均一に混合された固溶体を意味する。[Example] Next, an example of the present invention will be described. In the following description, the Nio-Mgo solid solution means a solid solution in which Ni atoms, Mg atoms, and 0 atoms are uniformly mixed.
[実施例1]
Ni0−MgO固溶体の製造とその評価(1−A )
Ni0−MgO固溶体の製造酢酸ニッケル4水和物(N
i(C1bCOO)z 4 H2O、特級、和光純薬工
業製)及び酢酸マグネシウム4水和物(Mg(CHaC
OO)t・4H20、特級、キシダ化学製)をモル数1
00:0.80:20.60:40.40 : 60.
20:80、O:100に秤量し、純水を加えた後、マ
グネティックスターラーで攪拌し、0.5規定水溶液を
作製した。これらの水溶液を750〜850℃に保った
石英管中に約2cc/分の速度で滴下し、熱分解を行っ
た。その後1000℃にて24時間、空気中で熱処理を
施し、所定の粉末を得た。得られた粉末のX線チャート
をX線発生源として銅のにαの線を用いて調べると、す
べての粉末において岩塩型結晶の回折ピークのみが存在
し、この回折ピークがMgOの添加量増加につれて連続
的に低角度側にシフトしていること、各々の回折ピーク
が分離せずに1本であること、かつ回折ピークがシャー
プであることから、上記製造方法で得られた粉末はNi
O成分とMgO成分か充分に固溶していることがわかっ
た。[Example 1] Production of Ni0-MgO solid solution and its evaluation (1-A)
Production of Ni0-MgO solid solution Nickel acetate tetrahydrate (N
i(C1bCOO)z 4 H2O, special grade, Wako Pure Chemical Industries, Ltd.) and magnesium acetate tetrahydrate (Mg(CHaC
OO) t・4H20, special grade, manufactured by Kishida Chemical), number of moles is 1
00:0.80:20.60:40.40:60.
The mixture was weighed to a ratio of 20:80 and O:100, and pure water was added thereto, followed by stirring with a magnetic stirrer to prepare a 0.5N aqueous solution. These aqueous solutions were dropped into a quartz tube maintained at 750 to 850°C at a rate of about 2 cc/min to perform thermal decomposition. Thereafter, heat treatment was performed in air at 1000° C. for 24 hours to obtain a desired powder. When examining the X-ray charts of the obtained powders using the alpha ray of copper as the X-ray source, only the diffraction peak of rock salt-type crystals was present in all powders, and this diffraction peak was due to the increase in the amount of MgO added. The powder obtained by the above manufacturing method was found to have a continuous shift to lower angles as the Ni
It was found that the O component and the MgO component were sufficiently dissolved in solid solution.
以後の記述においては(1−A)における固溶体の製造
時に用いた酢酸ニッケル4水和物及び酢酸マグネシウム
4水和物のモル数比が100:0.80:20.60:
40.40:60.20:80及び0:100である場
合の製造物を各々、NiO単独の酸化物、Mg020%
固溶体及びMg040%固溶体、Mg060%固溶体、
Mg080%固溶体及びMgO単独の酸化物と表す。こ
の内でMgO20,40,60及び80%固溶体がNi
0−MgO固溶体に相当するものである。そして、例え
ばMg020%固溶体においてはMgOの固溶量が20
モル%であり、NiOの固溶量が80モル%であるとい
う様に表す。他のNjO−MgO固溶体についても同様
に表すこととする。In the following description, the molar ratio of nickel acetate tetrahydrate and magnesium acetate tetrahydrate used during the production of the solid solution in (1-A) is 100:0.80:20.60:
40.40:60.20:80 and 0:100, the products were respectively NiO oxide and Mg020%.
Solid solution and Mg040% solid solution, Mg060% solid solution,
It is expressed as an 80% Mg0 solid solution and an oxide of MgO alone. Among these, MgO20, 40, 60 and 80% solid solution is Ni
This corresponds to a 0-MgO solid solution. For example, in a Mg020% solid solution, the amount of MgO solid solution is 20%.
It is expressed as mol%, and the solid solution amount of NiO is 80 mol%. Other NjO-MgO solid solutions are expressed in the same manner.
(1−B ) Ni0−MgO固溶体とイツトリア安定
化ジルコニアとの反応性
イツトリア安定化ジルコニア(以下YSZと称する)は
電解質として用いられていることの多い物質である。N
i0−MgO固溶体を用いてYSZの電解質上に燃料極
を形成する場合に、該固溶体とYSZとが他相を析出す
ると高抵抗が生じてしまうので該固溶体を5OFC用電
極材料として用いることはできない、従って以下の実験
によってNi0Mg0固溶体とYSZが電極作成条件に
おいて他相を析出するか否かを調べた。(1-B) Reactivity of Ni0-MgO solid solution and yttria-stabilized zirconia Ittria-stabilized zirconia (hereinafter referred to as YSZ) is a substance often used as an electrolyte. N
When forming a fuel electrode on a YSZ electrolyte using an i0-MgO solid solution, high resistance will occur if the solid solution and YSZ precipitate another phase, so the solid solution cannot be used as an electrode material for 5OFC. Therefore, the following experiment was conducted to investigate whether Ni0Mg0 solid solution and YSZ precipitate other phases under the electrode fabrication conditions.
すなわち、実施例(1−A)にて製造したMg020%
、MgO40%、Mg060%及び、Mg080%固溶
体粉末の各々についてのYSZ粉末との等モル混合物を
1400℃にて4時間熱処理した前後におけるX線チャ
ートを実施例(1−A)と同様の方法で調べた。その結
果、調べた全てのNi0Mg0固溶体において、熱処理
後の回折ピークは、熱処理前と変わらず、Ni0−Mg
O固溶体とYSZのピークのみであった。すなわちNi
0−MgO固溶体は、YSZと反応して他の相を析出し
ないので、該固溶体5OFCの燃料極に適用しても問題
のないことがわかった。That is, Mg020% produced in Example (1-A)
, MgO40%, Mg060%, and Mg080% solid solution powder, the X-ray charts before and after heat-treating equimolar mixtures with YSZ powder at 1400°C for 4 hours in the same manner as in Example (1-A). Examined. As a result, in all the Ni0Mg0 solid solutions investigated, the diffraction peaks after heat treatment were the same as before heat treatment, and Ni0-Mg0
There were only O solid solution and YSZ peaks. That is, Ni
Since the 0-MgO solid solution does not react with YSZ to precipitate other phases, it has been found that there is no problem when it is applied to the fuel electrode of the solid solution 5OFC.
(1−C)熱膨張率測定
(1−A)で製造したNiO単独の酸化物、MgO単独
の酸化物、及び各種Ni0−MgO固溶体の熱膨張率を
通常の方法を用いて空気中、室温から1200℃まで昇
温速度10°C/分の条件にて測定した。(1-C) Coefficient of thermal expansion measurement The coefficient of thermal expansion of the oxide of NiO alone, the oxide of MgO alone, and various Ni0-MgO solid solutions produced in (1-A) was measured in air at room temperature using a conventional method. The measurement was carried out at a heating rate of 10°C/min from 1200°C to 1200°C.
熱膨張率は、NiO単独又はMgO単独の酸化物に比べ
てNi0−MgO固溶体ではより小さくなった。Ni0
−MgO固溶体の熱膨張率は、13.7〜14.3X
10−’/℃で、Ni−ZrO2サーメットの10〜1
5×10−’/ ℃と同等の値であり、従って本固溶体
をZrO。The coefficient of thermal expansion was smaller for the NiO-MgO solid solution compared to the oxides of NiO alone or MgO alone. Ni0
-The coefficient of thermal expansion of MgO solid solution is 13.7 to 14.3X
10-1 of Ni-ZrO2 cermet at 10-'/℃
The value is equivalent to 5 × 10−′/°C, and therefore the present solid solution is compared to ZrO.
と混合せず単独で5OFC燃料極に適用しても、問題な
いものと考えられた。It was thought that there would be no problem even if it was applied alone to a 5OFC fuel electrode without being mixed with.
[実施例2 ] Ni0−MgO固溶体焼成体の作製及
び該焼成体の水素(H2)雰囲気処理による特性変化(
2−A ) Ni0−MgO固溶体粉末の焼成及び水素
雰囲気処理の方法。[Example 2] Preparation of Ni0-MgO solid solution fired body and change in properties due to hydrogen (H2) atmosphere treatment of the fired body (
2-A) Method of firing and hydrogen atmosphere treatment of Ni0-MgO solid solution powder.
(1−A)で製造した各種Ni0−MgO固溶体を材料
として製造した5OFC用電極の各性質を調べるために
、前記各種Ni0−MgO固溶体について後記の様に焼
成及び、H2雰囲気処理を行った。又参考のためにNi
O単独の酸化物、MgO単独の酸化物についても同様の
処理を行った。In order to examine the properties of the 5OFC electrodes manufactured using the various Ni0-MgO solid solutions manufactured in (1-A), the various Ni0-MgO solid solutions were fired and treated in an H2 atmosphere as described below. Also for reference, Ni
Similar treatments were performed on oxides containing O alone and oxides containing MgO alone.
すなわち(1−A)で製造した固溶体粉末を金型プレス
することにより5X5X15mmの角棒を予備成形した
後、3トン/ crlで静水圧プレス(CIF)L、焼
結体を作製した。焼成は1400°Cにて2時間、空気
中で行った。得られた焼結体についてH!雰囲気処理を
行った。このH3雰囲気処理の温度スケジュールとして
は炉内をH1雰囲気に置換後、60分で室温から100
0℃にまで昇温し、所定時間1000℃を保持した後、
炉冷した。炉冷は、5分で300℃以下に達した。10
00℃の保持時間は、0.15.60又は300分の4
水準とした。That is, a square bar of 5 x 5 x 15 mm was preformed by mold pressing the solid solution powder produced in (1-A), and then a sintered body was produced by isostatic pressing (CIF) L at 3 tons/crl. Firing was performed at 1400°C for 2 hours in air. Regarding the obtained sintered body, H! Atmosphere treatment was performed. The temperature schedule for this H3 atmosphere treatment is as follows: After replacing the inside of the furnace with H1 atmosphere, the temperature will rise from room temperature to 100% in 60 minutes.
After raising the temperature to 0°C and maintaining it at 1000°C for a predetermined time,
Furnace cooled. Furnace cooling reached 300°C or less in 5 minutes. 10
Holding time at 00℃ is 0.15.60 or 4/300
It was set as a standard.
(2−B)微構造観察
(2−A)に記載の如く焼成し、H2雰囲気処理した各
種Ni0−MgO固溶体、NiO単独の酸化物及びMg
O単独の酸化物の微構造を走査型電子顕微鏡(SEM)
及びエネルギー分散型X線分析装置(E D X)を用
いて観察した。(2-B) Microstructural observation Various Ni0-MgO solid solutions, NiO oxides and Mg fired as described in (2-A) and treated in H2 atmosphere
Scanning electron microscopy (SEM) of the microstructure of an oxide of O alone
and observed using an energy dispersive X-ray spectrometer (EDX).
体の場合約0.5μmの微細な球状Ni粒子(写真中白
く見える粒子)を、MgOリッチな固溶体(写真中天色
に見える部分)が取り囲んだ多孔体を形成しており、N
i粒子同志の焼結による粗大化を抑制していることがわ
かった。そしてMg040%固溶体においても同様の傾
向がSEM−EDX写真から観察された。一方、NiO
単独の酸化物においてはNi0−MgO固溶体とは異な
り、保持時間の延長により急速にNi粒子が焼結し、粗
大化して全体として緻密化してしまう傾向がSEM写真
から観察された。In the case of a body, a porous body is formed in which fine spherical Ni particles of approximately 0.5 μm (particles that appear white in the photo) are surrounded by an MgO-rich solid solution (parts that appear blue in the photo).
It was found that coarsening due to sintering of i-particles was suppressed. A similar tendency was observed from the SEM-EDX photograph in the Mg040% solid solution. On the other hand, NiO
In the case of a single oxide, unlike the Ni0-MgO solid solution, it was observed from the SEM photograph that the Ni particles tended to rapidly sinter, coarsen, and become denser as a whole as the holding time was extended.
すなわちNi0−MgO固溶体においてはNiOの還元
によりNiが生成する際にNi粒子同志の焼結による粗
大化がMgOリッチな固溶体によって抑制され、非常に
微細なNi粒子が生成する。従って、Nip−MgO固
溶体を材料として製造した電極においては高い触媒活性
が期待される。また、Ni粒子同志の焼結による電解買
上からの剥離を防止しうると考えられる。。That is, in the Ni0-MgO solid solution, when Ni is produced by reduction of NiO, coarsening of Ni particles due to sintering is suppressed by the MgO-rich solid solution, and very fine Ni particles are produced. Therefore, high catalytic activity is expected in electrodes manufactured using the Nip-MgO solid solution as a material. It is also believed that peeling off from electrolytic purchase due to sintering of Ni particles together can be prevented. .
(2−C)比表面積測定
(2−A)にて作成した焼結体を(2−A)に記載の如
くにH2雰囲気処理した際における比表面積変化をN2
吸着法(B、E、T、法)を用いて調べた。その結果を
第1図に示す。なお比表面積は、通常、単位質量当りの
表面積(rrr/g)で表わすが、今回はMgO固溶量
が異なると密度が異なり、データ間の比較が困難となる
ため、単位体積当りの表面積(rd / cc )で表
わした。(2-C) Specific surface area measurement When the sintered body prepared in (2-A) was treated with H2 atmosphere as described in (2-A), the change in specific surface area was measured with N2
It was investigated using the adsorption method (Method B, E, T). The results are shown in FIG. Note that the specific surface area is usually expressed as the surface area per unit mass (rrr/g), but in this case, the density differs when the amount of solid solution of MgO differs, making it difficult to compare data, so it is expressed as the surface area per unit volume (rrr/g). rd/cc).
第1図のシンボルにおいて○はNiO単独の酸化物、・
はMg020%固溶体、△はMg040%固溶体、 ム
はMgO60%固溶体、口はMg080%固溶体及び■
はMgO単独の酸化物についての結果を各々示している
。また縦軸は単位体積当りの表面積を示し、その数値単
位はrd / ccである。横軸はH2雰囲気処理後の
時間であり数値単位は分である。横軸の下方において横
軸の60分を0分としているもう1本の横軸は1000
°Cの保持時間を表し、その数値単位は分である。In the symbols in Figure 1, ○ is NiO alone oxide,
is Mg020% solid solution, △ is Mg040% solid solution, m is Mg060% solid solution, mouth is Mg080% solid solution, and ■
shows the results for an oxide of MgO alone. The vertical axis indicates the surface area per unit volume, and its numerical unit is rd/cc. The horizontal axis represents the time after H2 atmosphere treatment, and the numerical unit is minutes. Below the horizontal axis, 60 minutes on the horizontal axis is set to 0 minutes, and the other horizontal axis is 1000 minutes.
It represents the holding time in °C and its numerical unit is minutes.
第1図に示される様にNiO単独及びMgO単独の酸化
物においては(シンボル○及び■)■(2雰囲気処理前
後のいずれにおいても比表面積は非常に小さい。それに
比べてNi0−MgO固溶体については、H2雰囲気処
理によって比表面積は増大した。そしてNiO固溶量が
多い固溶体程、その増大の程度はより大きくなった。す
なわち、Mg080%、Mg060%、Mg040%、
Mg020%固溶体の順でHt雰囲気処理による比表面
積の増大の程度が大きくなり、特にMg020%固溶体
においては、保持時間60分において、比表面積は17
.5rrr / ccという非常に大きな値となった。As shown in Figure 1, the specific surface area of the oxides of NiO alone and MgO alone (symbols ○ and ■) is very small both before and after treatment in two atmospheres.In comparison, for the Ni0-MgO solid solution, , the specific surface area increased by H2 atmosphere treatment.The degree of increase was greater for solid solutions with a larger amount of NiO solid solution.That is, Mg080%, Mg060%, Mg040%,
The degree of increase in specific surface area due to Ht atmosphere treatment increases in the order of Mg020% solid solution, and in particular, in Mg020% solid solution, the specific surface area is 17% at a holding time of 60 minutes.
.. It was a very large value of 5rrr/cc.
そして保持時間300分後には15.4rd/ccと若
干減少したものの、依然として高い値を保った。従って
Ni0−MgO固溶体を材料として製造した電極は高い
触媒活性を有していることが期待できる。After a holding time of 300 minutes, it slightly decreased to 15.4rd/cc, but still maintained a high value. Therefore, it can be expected that electrodes manufactured using the Ni0-MgO solid solution have high catalytic activity.
(2−D)形状変化率の測定
(2−A)にて、作成した焼結体である角棒の厚さ、幅
及び長さを(2−A)に記載の如くにH2雰囲気処理し
た前後においてマイクロメーターを用いて測定し、H2
雰囲気処理による厚さ、幅及び長さの各々の変化率%の
平均値を求めて形状変化率とした。(2-D) Measurement of shape change rate In (2-A), the thickness, width and length of the square bar, which is the sintered body, was treated in H2 atmosphere as described in (2-A). Measured with a micrometer before and after, H2
The average value of the percent change in thickness, width, and length due to the atmosphere treatment was calculated and used as the shape change rate.
その結果を第2図に示す。第2図中のシンボルの意味は
第1図と同様である。横軸は第1図と同様であり、縦軸
は前記形状変化率を示し、プラスはH2雰囲気処理によ
って膨張したことを、マイナスは収縮したことを、それ
ぞれ表わす。The results are shown in FIG. The meanings of the symbols in FIG. 2 are the same as in FIG. The horizontal axis is the same as in FIG. 1, and the vertical axis represents the rate of shape change, with a positive value representing expansion due to the H2 atmosphere treatment and a negative value representing contraction.
第2図に示される様にNiO単独の酸化物は1000℃
昇温度に既に9.2%収縮し、300分、1000℃を
保持したことにより15.7%収縮した。As shown in Figure 2, the temperature of NiO alone is 1000℃.
It had already shrunk by 9.2% due to the increased temperature, and by holding the temperature at 1000°C for 300 minutes, it shrunk by 15.7%.
一方、各種Ni0−MgO固溶体は、H2雰囲気処理に
よって極僅かの形状変化を示しただけであった。On the other hand, various Ni0-MgO solid solutions showed only slight changes in shape due to H2 atmosphere treatment.
例えばMgO20%固溶体では300分、100°Cを
保持した後においても0.5%膨張したのみであった。For example, a 20% MgO solid solution expanded by only 0.5% even after being maintained at 100°C for 300 minutes.
そしてMgO固溶量が増加するにつれて、この膨張量は
小さくなった。すなわちMg080%固溶体、MgO単
独の酸化物においては形状変化が認められなかった。As the MgO solid solution amount increased, this expansion amount became smaller. That is, no change in shape was observed in the 80% Mg0 solid solution and the oxide of MgO alone.
以上の結果より、NiOに対するMgOの固溶が、H2
雰囲気中での焼結による収縮防止に有効であることがわ
かった。From the above results, the solid solution of MgO in NiO is
It was found to be effective in preventing shrinkage due to sintering in an atmosphere.
Ni0−MgO固溶体に固溶させるMgOの量と形状変
化率との関係をさらに詳しく調べるために、保持時間6
0分後における酸化マグネシウム固溶量(モル%)と形
状変化率との関係を同様の方法で調べた。その結果を第
3図に示す。In order to investigate in more detail the relationship between the amount of MgO dissolved in the Ni0-MgO solid solution and the rate of shape change, the holding time was 6.
The relationship between the amount of magnesium oxide solid solution (mol %) and the rate of shape change after 0 minutes was investigated in the same manner. The results are shown in FIG.
第3図中、縦軸は前記形状変化率を示し、数値単位は%
である。横軸はNi0−MgO固溶体中に含まれるMg
O固溶量を示し、その数値単位はモル%である。In Figure 3, the vertical axis indicates the shape change rate, and the numerical unit is %.
It is. The horizontal axis is Mg contained in the Ni0-MgO solid solution.
It shows the amount of O solid solution, and its numerical unit is mol%.
第3図に示されるように、MgO固溶量が5モル%未満
の場合、H!雰囲気中での焼結によりNi0−MgO固
溶体は太き(収縮する。従ってMgO固溶量が5モル%
未満であるNi0−MgO固溶体を電極材料とする場合
には電池作動初期に大きく収縮し、電解質との剥離が生
じるため電極材料として不適であることがわかる。As shown in FIG. 3, when the MgO solid solution amount is less than 5 mol%, H! The Ni0-MgO solid solution thickens (shrinks) due to sintering in the atmosphere. Therefore, the amount of MgO solid solution becomes 5 mol%.
When using a Ni0-MgO solid solution as an electrode material, it is found that it is unsuitable as an electrode material because it shrinks greatly in the early stages of battery operation and peels off from the electrolyte.
(1−E)ニッケルの析出量の測定
(2−A)におけるH22雰囲気処理後における試料の
重量を測定し、その重量変化率を調べた。(1-E) Measurement of the amount of nickel precipitation The weight of the sample after the H22 atmosphere treatment in (2-A) was measured, and the weight change rate was investigated.
その結果、保持時間が長い程重量は減少するが、MgO
固溶量が増加するにつれてH2雰囲気処理による重量減
少率は小さくなった。そしてMgO単独の酸化物につい
ては300分保持後にも重量変化が認められなかった。As a result, the longer the retention time, the lower the weight, but the MgO
As the amount of solid solution increased, the weight reduction rate due to H2 atmosphere treatment became smaller. Regarding the oxide of MgO alone, no weight change was observed even after holding for 300 minutes.
一方、H22雰囲気処理後における各試料のX線回折の
結果から、H2雰囲気処理後においてはNiOの還元に
よるNiの析出が認められ、さらにこのNiの析出量は
、保持時間が長いものほど多く、かつ、MgO固溶量が
増加するにつれて少なくなることがわかった。すなわち
以上のX線回折の結果より、H2雰囲気処理による重量
減少はNiOの還元と対応していることがわかったため
、この重量減少率からNiの析出量を算出した。On the other hand, from the results of X-ray diffraction of each sample after H22 atmosphere treatment, it was observed that Ni was precipitated due to the reduction of NiO after H22 atmosphere treatment, and the amount of Ni precipitated increased as the holding time was longer. Moreover, it was found that the amount of MgO solid solution decreased as the amount of MgO solid solution increased. That is, from the above X-ray diffraction results, it was found that the weight reduction due to the H2 atmosphere treatment corresponded to the reduction of NiO, so the amount of Ni precipitation was calculated from this weight reduction rate.
例えばMg020%固溶体について保持時間60分後の
結果はH2雰囲気処理前は1.2486 g、処理後は
1.0824 gであり、13.3%減少している。従
って、Mg020%固溶体1モルの重量は約67.83
gであるから、その13.3%に相当する9、02g
を酸素原子1モルの重量である16gで除すると0.5
64となるので、この場合には56.4モル%がNiの
析出量である。For example, the result for Mg020% solid solution after a holding time of 60 minutes is 1.2486 g before H2 atmosphere treatment and 1.0824 g after treatment, a decrease of 13.3%. Therefore, the weight of 1 mole of Mg020% solid solution is approximately 67.83
g, so 9.02 g, which is equivalent to 13.3% of that.
divided by 16g, which is the weight of 1 mole of oxygen atoms, is 0.5
64, so in this case, the amount of Ni precipitated is 56.4 mol%.
保持時間60分についての酸化マグネシウム固溶量とニ
ッケル析出量との関係を表わすグラフを第4図に示す。FIG. 4 shows a graph showing the relationship between the amount of solid solution of magnesium oxide and the amount of nickel precipitation for a holding time of 60 minutes.
第4図において縦軸は前記の如くに求めたニッケル析出
量を示し、その数値単位はモル%である。In FIG. 4, the vertical axis indicates the amount of nickel precipitation determined as described above, and the numerical unit is mol%.
横軸はMgO固溶量を示し、その数値単位はモル%であ
る。The horizontal axis indicates the amount of solid solution of MgO, and its numerical unit is mol%.
第4図に示される様にNi0−MgO固溶体のMgO固
溶量が40モル%を越えるとNiの析出量が著しく減少
する。従ってMgO固溶量が40モル%以上であるNi
0−MgO固溶体を電極材料とする場合には、Niの析
出量が少ないため十分な電極活性及びNiによる導電が
期待できず、電極性能が低下するので電極材料として不
適であることがわかる。As shown in FIG. 4, when the amount of MgO solid solution in the Ni0-MgO solid solution exceeds 40 mol %, the amount of Ni precipitated decreases significantly. Therefore, Ni with MgO solid solution amount of 40 mol% or more
When a 0-MgO solid solution is used as an electrode material, sufficient electrode activity and conductivity due to Ni cannot be expected due to the small amount of Ni precipitated, and the electrode performance deteriorates, so it is found to be unsuitable as an electrode material.
(実施例3)燃料極セルの製造とその評価(3−A)燃
料極セルの製造
(1−A)にてPJi(CHsCOO)2 ・4 H
2OとMg(C)I3Coo)z ・4H70をモル
数80:20に秤量して製造したMg020%固溶体粉
末を1400℃において4時間仮焼し、仮焼粉末を得た
。この仮焼粉末にバインダーと分散剤を添加し、15分
、自動乳鉢で攪拌した後、日本化学陶業社製YSZペレ
ット(直径13閣、厚さ1鴫)上にスクリーン(#(メ
ツシュ)200)印刷した。これを、1400°C12
時間で焼き付けた。この場合の燃料極肉厚は15μmで
あった。次に、YSZペレットの裏面に空気極((La
o、 5sro2L、 eMnos)をスクリーン印刷
し、1200℃、4時間で焼付けた。最後に参照極を1
000℃、2時間で焼付け、性能評価用セルを得た。焼
付けの際の昇降温速度は、すべて200℃/時間とした
。バインダー及び分散剤としては、ポリエチレングリコ
ール、エタノールを用いた。(Example 3) Manufacture of fuel electrode cell and its evaluation (3-A) Manufacture of fuel electrode cell (1-A) PJi(CHsCOO)2 4 H
A Mg020% solid solution powder produced by weighing 2O and Mg(C)I3Coo)z.4H70 in a molar ratio of 80:20 was calcined at 1400° C. for 4 hours to obtain a calcined powder. A binder and a dispersant were added to this calcined powder, and after stirring in an automatic mortar for 15 minutes, a screen (# (mesh) 200) was placed on YSZ pellets (diameter 13, thickness 1) made by Nippon Kagaku Togyo Co., Ltd. Printed. This is heated to 1400°C12
Baked in time. The thickness of the fuel electrode in this case was 15 μm. Next, an air electrode ((La
o, 5sro2L, eMnos) were screen printed and baked at 1200°C for 4 hours. Finally, set the reference pole to 1
A cell for performance evaluation was obtained by baking at 000°C for 2 hours. The temperature increase/decrease rate during baking was all set to 200°C/hour. Polyethylene glycol and ethanol were used as the binder and dispersant.
(3−B)初期性能の評価
(3−A)にて製造した燃料極セルについて電流密度と
燃料極分値との関係を測定し、その初期性能の評価を行
った。測定は電流遮断法により、分極値をIR酸成分η
成分に分離して測定した。(3-B) Evaluation of initial performance The relationship between current density and fuel electrode polarization value was measured for the fuel electrode cell manufactured in (3-A), and its initial performance was evaluated. The measurement was carried out using the current interruption method, and the polarization value was determined based on the IR acid component η.
The components were separated and measured.
その結果を第5図に示す。The results are shown in FIG.
第5図において縦軸は分極値を示し、その数値単位はm
Vである。横軸は電流密度を示し、その数値単位はmA
/cfである。第5図中のシンボルはムは全体の分極値
を示し、IR酸成分びη成分の合計値に相当する。一方
、△は全体の分極値のうちの抵抗成分の値を示し、IR
酸成分値に相当する。In Figure 5, the vertical axis shows the polarization value, whose numerical unit is m
It is V. The horizontal axis shows the current density, whose numerical unit is mA
/cf. The symbols in FIG. 5 indicate the overall polarization value, which corresponds to the total value of the IR acid component and the η component. On the other hand, △ indicates the value of the resistance component of the overall polarization value, and IR
Corresponds to the acid component value.
従って両者の値の差がη成分の値となる。ここでIR酸
成分、固体電解質の抵抗分極、燃料極の抵抗分極及び固
体電解質と燃料極との界面の抵抗分極を合わせたもので
ある。そしてη成分は、燃料極の活性化分極、及び燃料
極の濃度分極からなるものであり、第5図に示される様
に、電流密度が200 mA/ cy!の場合において
は約70mVであった。Therefore, the difference between the two values becomes the value of the η component. Here, the IR acid component, the resistance polarization of the solid electrolyte, the resistance polarization of the fuel electrode, and the resistance polarization of the interface between the solid electrolyte and the fuel electrode are combined. The η component consists of the activation polarization of the fuel electrode and the concentration polarization of the fuel electrode, and as shown in FIG. 5, the current density is 200 mA/cy! In this case, it was about 70 mV.
このη成分の値は、塗布焼結法で得られる高性能なNi
−ZrO2サーメット燃料極についての同条件下におけ
るη成分の値と同等の値である。The value of this η component is based on the high performance Ni obtained by the coating sintering method.
- This value is equivalent to the value of the η component under the same conditions for the ZrO2 cermet fuel electrode.
従って本発明に係る酸化物固溶体を材料として製造した
燃料極は従来の高性能なNi−ZrO2サーメット燃料
極と同等の初期性能を有することがわかった。Therefore, it has been found that the fuel electrode manufactured using the oxide solid solution according to the present invention has an initial performance equivalent to that of the conventional high-performance Ni-ZrO2 cermet fuel electrode.
(3−C)長期安定性の評価
(3−A)にて製造した燃料極セルについてその長期安
定性を評価するために該セルの連続通電試験を行った。(3-C) Evaluation of long-term stability In order to evaluate the long-term stability of the fuel electrode cell manufactured in (3-A), a continuous current test was conducted on the fuel electrode cell.
試験の条件としては燃料ガスはHlを用い、空気極には
コンプレッサーにより空気を導入した。H3及び空気の
流量は、マスフローコントローラーで各50cc/分に
制御した。そして電流遮断法により、200 mA/
cr1通電時の分極値を、電池作動時及び100時間通
電後において測定し、燃料極の分極増加率を求めた。そ
の結果を第1表に示す。比較例としてNi−Zr0*サ
ーメツトの同条件における測定結果も併せて示す。As for the test conditions, Hl was used as the fuel gas, and air was introduced into the air electrode by a compressor. The flow rates of H3 and air were each controlled at 50 cc/min using a mass flow controller. Then, by current interruption method, 200 mA/
The polarization value during cr1 energization was measured during battery operation and after 100 hours of energization, and the rate of increase in polarization of the fuel electrode was determined. The results are shown in Table 1. As a comparative example, measurement results of Ni-Zr0* cermet under the same conditions are also shown.
第 1 表
第1表に示される様に従来のNi−ZrO2サーメット
を用いた電極に比べ、本発明の酸化物固溶体を用いた電
極は、その長期安定性が著しく向上していることがわか
る。Table 1 As shown in Table 1, it can be seen that the long-term stability of the electrode using the oxide solid solution of the present invention is significantly improved compared to the conventional electrode using Ni-ZrO2 cermet.
また、本発明に係る酸化物固溶体と立方晶酸化ジルコニ
ウムとの混合体も、本発明の酸化物固溶体と同様の性質
を有するので、5OFC用電極材料として適している。Furthermore, the mixture of the oxide solid solution and cubic zirconium oxide according to the present invention has properties similar to those of the oxide solid solution according to the present invention, and is therefore suitable as an electrode material for 5OFC.
前記混合体においては立方晶酸化ジルコニウムの混合量
を60体積%以下としたが、これは、立方晶酸化ジルコ
ニウムの混合量を60体積%を越えると、ニッケルの析
出量が少なくなり、十分な電極活性及び導電性が期待で
きなくなるためである。実際にMg020%固溶体と立
方晶酸化ジルコニウムの混合体において、立方晶酸化ジ
ルコニウムの混合量を60体積%とした場合には、直流
四端子法で1000℃においてH2ガス中にて測定した
導電率はlXl0’Ω国であった。In the above mixture, the mixing amount of cubic zirconium oxide was set to 60% by volume or less, but this is because if the mixing amount of cubic zirconium oxide exceeds 60% by volume, the amount of nickel precipitated decreases, and a sufficient electrode cannot be obtained. This is because activity and conductivity cannot be expected. Actually, in a mixture of Mg020% solid solution and cubic zirconium oxide, when the mixing amount of cubic zirconium oxide is 60% by volume, the electrical conductivity measured in H2 gas at 1000°C by the DC four-terminal method is It was lXl0'Ω country.
[発明の効果]
本発明に係る酸化物固溶体又は混合体を材料として5O
FCの燃料極を製造すると長期安定性に優れ、かつ良好
な触媒作用を期待し得る電極が得られる。[Effect of the invention] Using the oxide solid solution or mixture according to the present invention as a material, 5O
When an FC fuel electrode is manufactured, an electrode that has excellent long-term stability and can be expected to have good catalytic action can be obtained.
第1図はH2雰囲気処理時間と(2−A)で作成した焼
成体の単位体積あたりの表面積との関係を表すグラフで
あり、第2図はH2雰囲気処理時間と前記焼成体の形状
変化率との関係を表すグラフであり、第3図は1000
℃保持時間60分における前記形状変化率とMgO固溶
量との関係を表すグラフであり、第4図は1000°C
保持時間60分におけるニッケル析出量とMgO固溶量
との関係を表すグラフであり、第5図は(3−A)で製
造したセルについて、電流密度と分極値との関係を表す
グラフであり、分極値はIR酸成分η成分とに分離して
示されている。鴛6 fed 12 M、0201/。
固j容イネl−,フいτのイ朱特叫間 3ooケf隻9
55関−EDX写17′ある。Figure 1 is a graph showing the relationship between the H2 atmosphere treatment time and the surface area per unit volume of the fired body prepared in (2-A), and Figure 2 is a graph showing the relationship between the H2 atmosphere treatment time and the shape change rate of the fired body. This is a graph showing the relationship between 1000 and Fig. 3.
FIG. 4 is a graph showing the relationship between the shape change rate and the amount of MgO solid solution at 60 minutes of holding time at 1000°C.
FIG. 5 is a graph showing the relationship between the amount of nickel precipitation and the amount of MgO solid solution at a holding time of 60 minutes, and FIG. 5 is a graph showing the relationship between current density and polarization value for the cell manufactured in (3-A). , the polarization values are shown separately for the IR acid component and the η component.雛6 fed 12 M, 0201/. 30 ke f ship 9
There is 55 Seki-EDX photo 17'.
Claims (2)
なり、それらの総モル量に対して酸化マグネシウムは5
モル%以上40モル%以下であり、残部が酸化ニッケル
であることを特徴とする固体電解質型燃料電池用電極材
料に適した酸化物固溶体。(1) Mainly composed of magnesium oxide and nickel oxide, with 5% of the total molar amount of magnesium oxide being
An oxide solid solution suitable for an electrode material for a solid electrolyte fuel cell, characterized in that the content is mol % or more and 40 mol % or less, and the remainder is nickel oxide.
とからなる混合体であって、 前記酸化物固溶体は酸化マグネシウム及び酸化ニッケル
より主としてなり、それらの総モル量に対して酸化マグ
ネシウムは5モル%以上40モル%以下であり、残部が
酸化ニッケルである一方、前記立方晶ジルコニウムはそ
の混合量が前記混合体の総体積に対して60体積%以下
であることを特徴とする固体電解質型燃料電池用電極材
料に適した混合体。(2) A mixture mainly consisting of an oxide solid solution and cubic zirconium oxide, the oxide solid solution mainly consisting of magnesium oxide and nickel oxide, and the magnesium oxide content is 5 mol% or more with respect to the total molar amount thereof. 40 mol% or less, and the balance is nickel oxide, while the amount of the cubic zirconium mixed is 60 vol% or less based on the total volume of the mixture. Mixture suitable for electrode materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2138738A JPH07107854B2 (en) | 1990-05-29 | 1990-05-29 | Solid oxide solutions and mixtures for solid oxide fuel cell electrode materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2138738A JPH07107854B2 (en) | 1990-05-29 | 1990-05-29 | Solid oxide solutions and mixtures for solid oxide fuel cell electrode materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0433266A true JPH0433266A (en) | 1992-02-04 |
JPH07107854B2 JPH07107854B2 (en) | 1995-11-15 |
Family
ID=15229021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2138738A Expired - Fee Related JPH07107854B2 (en) | 1990-05-29 | 1990-05-29 | Solid oxide solutions and mixtures for solid oxide fuel cell electrode materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07107854B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010044966A (en) * | 2008-08-13 | 2010-02-25 | Toshiba Corp | Solid oxide electrochemical cell and method for manufacturing the same |
WO2016136111A1 (en) * | 2015-02-27 | 2016-09-01 | 住友電気工業株式会社 | Method for manufacturing ceramic, capacitor, solid oxide fuel cell, water electrolysis device, and hydrogen pump |
-
1990
- 1990-05-29 JP JP2138738A patent/JPH07107854B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010044966A (en) * | 2008-08-13 | 2010-02-25 | Toshiba Corp | Solid oxide electrochemical cell and method for manufacturing the same |
WO2016136111A1 (en) * | 2015-02-27 | 2016-09-01 | 住友電気工業株式会社 | Method for manufacturing ceramic, capacitor, solid oxide fuel cell, water electrolysis device, and hydrogen pump |
JP2016160111A (en) * | 2015-02-27 | 2016-09-05 | 住友電気工業株式会社 | Method for producing ceramic, capacitor, solid oxide type fuel cell, water electrolytic device and hydrogen pump |
Also Published As
Publication number | Publication date |
---|---|
JPH07107854B2 (en) | 1995-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4971187B2 (en) | Method for controlling shrinkage and porosity during sintering of multilayered structures. | |
US9871259B2 (en) | Method for manufacturing composite ceramic material | |
JP5306726B2 (en) | Fuel cell electrode-electrolyte composite powder and preparation method thereof | |
JP5163122B2 (en) | Nickel oxide powder material for solid oxide fuel cell, method for producing the same, raw material composition used therefor, and fuel electrode material using the same | |
JP2007200693A (en) | Manufacturing method of material for solid oxide fuel cell | |
JPH05255796A (en) | Nickel-cermet and its production | |
JP3121982B2 (en) | Conductive ceramics | |
JPH0433266A (en) | Oxide solid solution and mixed body suitable for electrode material for solid electrolyte fuel cell | |
JP3121993B2 (en) | Method for producing conductive ceramics | |
JP4889166B2 (en) | Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same | |
JPH07249414A (en) | Solid electrolytic fuel cell | |
JP2003323903A (en) | Zirconia material containing scandia in form of solid solution, and solid electrolyte fuel cell using the same | |
JPH0773891A (en) | Highly sintering solid electrolyte material | |
JP3301199B2 (en) | Method for producing conductive ceramic sintered body | |
JP3561008B2 (en) | Method for producing high specific surface area composite oxide | |
JP3342571B2 (en) | Solid oxide fuel cell | |
JP3359412B2 (en) | Solid oxide fuel cell | |
JPH0785875A (en) | Solid electrolytic fuel cell | |
JP3389407B2 (en) | Conductive ceramics and fuel cells | |
JP3339936B2 (en) | Method for producing conductive ceramics | |
JPH06302326A (en) | Cell material for solid electrolyte fuel cell | |
JPH09302438A (en) | Nickel/ysz cermet and its manufacture | |
JP3325388B2 (en) | Conductive ceramics and fuel cell using the same | |
JPH10321239A (en) | Electrode of fuel cell | |
JP3370446B2 (en) | Method for producing conductive ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S631 | Written request for registration of reclamation of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313631 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |