JPH0433865B2 - - Google Patents
Info
- Publication number
- JPH0433865B2 JPH0433865B2 JP60183288A JP18328885A JPH0433865B2 JP H0433865 B2 JPH0433865 B2 JP H0433865B2 JP 60183288 A JP60183288 A JP 60183288A JP 18328885 A JP18328885 A JP 18328885A JP H0433865 B2 JPH0433865 B2 JP H0433865B2
- Authority
- JP
- Japan
- Prior art keywords
- tin
- ticn
- coated
- thickness
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 239000010410 layer Substances 0.000 claims description 11
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 239000011247 coating layer Substances 0.000 claims description 5
- 239000011195 cermet Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 claims 1
- 239000012495 reaction gas Substances 0.000 claims 1
- 238000005229 chemical vapour deposition Methods 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910003074 TiCl4 Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- -1 titanium halide Chemical class 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Description
〔産業上の利用分野〕
本発明は硬質物質を被覆した工具、特に耐摩耗
性、耐欠損性に有効な表面被覆工具の製造方法に
関する。
〔従来技術及びその問題点〕
WC基超硬合金、サーメツト等に硬質物質を被
覆して、耐摩耗性、耐欠損性を向上させる事は従
来より行なわれてきた。しかし、継続切削となる
フライス用途に関しては、CVD法(化学蒸着法)
による被覆では、母材と皮膜の境界に生ずる脱炭
層や皮膜粒子の異常成長などの問題により十分な
性能を発揮出来なかつた。
そのため、フライス用としてはPVD法(物理
蒸着法)が適用されている。しかし、PVD法は
密着性に問題があり皮膜の剥離、脱落などにより
十分な性能を発揮出来ない。
本発明は以上の観点より、耐欠損性、特にフラ
イス工具として使用される場合の機械的衝撃に優
れた表面被覆工具を提供する事を目的とし、具体
的な方法としてCVD法の低温化を計つた被覆方
法を提供するものである。
〔問題点を解決するための手段〕
すなわち、本発明は脱炭層の低減、皮膜粒子の
異常成長の防止などの問題がある従来のHT−
CVD法(蒸着温度1000℃前後の化学蒸着法)に
比較して、低温で被覆が可能なMT−CVD法
(蒸着温度800℃前後の化学蒸着法)を適用するこ
と、及び皮膜をTiCN及びTiNの多層被覆層の厚
さ1〜5μm、かつ各層の厚さを2μm以下とする
ことによりフライス工具として優れた耐摩耗性、
耐欠損性を確保する事ができるという知見を得た
のである。
本発明は以上の知見に基づいてなされたもので
あり、TiCNの被覆層はアセトニトリル(シアン
化メチル)と4塩化チタン及び水素間に次のよう
な反応を生じさせ、その表面に被覆する。
2TiCl4+2CH3(CN)+3H2→2Ti(CN)+
6HCl+2CH3Cl
また、TiNの被覆は、ガス系を窒素ガスに切
り換え、次のような反応を生じさせ、その表面に
被覆する。
2TiCl4+N2+4H2→2TiN+8HCl
蒸着温度は、TiCNは750度、TiNは800度前後
で行なう。尚、TiNの被覆する場合のガス系は
従来技術で述べたHT−CVD法と同一であるが、
蒸着温度を800℃前後まで低温化してもTiNは生
成温度の巾が広く、充分成膜出来、かつ粒度の微
細化が計れる。
この結果得られたTiCN、TiNの多層皮膜は、
従来の1000℃前後で蒸着されるHT−CVD法の皮
膜に比較し、粒子が微細で、さらに皮膜と母材の
境界に脱炭層が少ないのが特徴である。その理由
として、第1に200℃前後低温化したことにより、
成膜時の拡散移動が減少し脱炭層が低減でき、第
2に低温化により皮膜の粒度が微細となる為であ
る。
さらに本願では、TiCN、TiN層はその各層の
厚さを2μm以下とし、同一の膜を2μmを越えて
被覆すると、皮膜の結晶が徐々に粗粒化してくる
ため、靭性が低下し表面が荒れて凹凸が激しくな
り、フライス工具として欠損を生じ易くなる等の
欠点となるためである。
また多層被覆層の厚さを1〜5μmとしたのは
1μm以下では所望の耐摩耗性を維持することが
できず、一方5μmを超えた層厚になると密着性
が低下し、機械的衝撃により剥離しやすくなるた
めである。
〔実施例〕
次に、本発明の表面被覆工具を実施例により具
体的に説明する。
実施例 1
94%WC−6%Co(重量パーセント、以下同
じ)、超硬合金(チツプ型番 SNMA432 JIS−
B4120)上にTiCN(C/N=7/3)、TiN皮膜
を交互に各層1μm、合計4μm被覆した。窒素源、
炭素源としてアセトニトリル、Ti源としてハロ
ゲン化チタンの各ガスを使用する。CVD反応炉
中にセツトし、H2ガスを流しながら、750℃まで
昇温した。750℃よりTiCl42%、CH3CN2%、H2
残からなる混合気体を流量7リツトル/min 圧
力72mmHgの条件で供給し0.5時間反応させ基体上
にTiCNを1μm被覆する。さらに800℃まで昇温
し、混合気体をTiCl42%、N22%の組成に変え
0.5時間反応させ基体上にTiNを0.5μm形成させ
た。この試料をAとする。
同時に比較のため、上記超硬合金上にTiCを4μ
m被覆した。この試料をBとする。TiCの被覆は
上記ガス系をCH4とし、HT−CVDの温度である
1000℃で実施した。これら2種の試料を旋盤にて
以下の切削条件、
被削材 SCM440
切削温度 200m/min
送り 0.3mm/rev
切り込み 2mm
にて試験した。
比較品の試料Bは15分で摩耗により寿命に到つ
たのに対し、本発明による試料Aは30分間の切削
でも良好な切削性能を示した。
実施例 2
TiCN基サーメツト(65%TiCN−10%WC−
10%TaC−15%Ni)を基体としSNMN432(JIS
−B4120)に加工し、実施例1と同様な方法によ
るMT−CVD法により表1のような皮膜を被覆
した。その試料を6インチカツター(ダブルネガ
型)で継続試験を下記の条件で行なつた。
被削材 SCM440
切削温度 200m/min
送り 0.15mm/刃
切り込み 2mm
その結果も表1に併記する。次に送りのみ0.05
mm/刃に変更して、寿命試験を実施した。その結
果も表1に示す。表1の結果より多層被覆による
皮膜の密着性が向上し、優れた耐摩耗性、耐欠損
性を示すことが明らかである。
[Industrial Field of Application] The present invention relates to a method for manufacturing a tool coated with a hard material, particularly a surface coated tool that is effective in wear resistance and chipping resistance. [Prior art and its problems] Conventionally, WC-based cemented carbide, cermet, etc. have been coated with hard substances to improve wear resistance and chipping resistance. However, for milling applications that involve continuous cutting, CVD (chemical vapor deposition)
However, coating with 200% carbon dioxide could not provide sufficient performance due to problems such as a decarburized layer formed at the boundary between the base material and the coating and abnormal growth of coating particles. Therefore, the PVD method (physical vapor deposition method) is used for milling. However, the PVD method has problems with adhesion and cannot exhibit sufficient performance due to peeling and falling off of the film. In view of the above, the present invention aims to provide a surface-coated tool that has excellent fracture resistance, especially mechanical impact when used as a milling tool, and specifically aims to reduce the temperature of the CVD method. A method for covering ivy is provided. [Means for Solving the Problems] That is, the present invention solves the problems of conventional HT-
Compared to the CVD method (chemical vapor deposition method with a deposition temperature of around 1000°C), the MT-CVD method (chemical vapor deposition method with a deposition temperature of around 800°C), which can be coated at a lower temperature, is applied, and the coating is made of TiCN and TiN. The thickness of the multilayer coating layer is 1 to 5 μm, and the thickness of each layer is 2 μm or less, resulting in excellent wear resistance as a milling tool.
We obtained the knowledge that fracture resistance can be ensured. The present invention has been made based on the above findings, and the TiCN coating layer is coated on the surface by causing the following reaction between acetonitrile (methyl cyanide), titanium tetrachloride, and hydrogen. 2TiCl 4 +2CH 3 (CN) + 3H 2 →2Ti(CN)+
6HCl+2CH 3 Cl In addition, for TiN coating, the gas system is switched to nitrogen gas, the following reaction occurs, and the surface is coated. 2TiCl 4 +N 2 +4H 2 →2TiN+8HCl The deposition temperature is 750 degrees for TiCN and around 800 degrees for TiN. The gas system for TiN coating is the same as the HT-CVD method described in the conventional technology, but
Even if the deposition temperature is lowered to around 800°C, TiN has a wide range of formation temperatures, allowing sufficient film formation and fine grain size. The resulting multilayer film of TiCN and TiN is
Compared to the conventional HT-CVD film, which is deposited at around 1000℃, this film has finer particles and has fewer decarburized layers at the boundary between the film and the base material. The reason for this is firstly that the temperature has been lowered by around 200℃,
This is because the diffusion movement during film formation is reduced and the decarburized layer can be reduced, and secondly, the particle size of the film becomes finer due to lowering the temperature. Furthermore, in this application, the thickness of each TiCN and TiN layer is 2 μm or less, and if the same film is coated with a thickness exceeding 2 μm, the crystals in the film will gradually become coarser, resulting in a decrease in toughness and a rough surface. This is because the unevenness becomes severe and the milling tool becomes prone to breakage, which is a drawback. In addition, the thickness of the multilayer coating layer was set to 1 to 5 μm.
This is because if the layer thickness is less than 1 μm, the desired abrasion resistance cannot be maintained, whereas if the layer thickness exceeds 5 μm, the adhesion decreases and it becomes easy to peel off due to mechanical impact. [Example] Next, the surface-coated tool of the present invention will be specifically explained with reference to Examples. Example 1 94% WC-6% Co (weight percentage, same below), cemented carbide (chip model number SNMA432 JIS-
B4120) was coated with TiCN (C/N=7/3) and TiN films alternately with each layer having a thickness of 1 μm and a total thickness of 4 μm. nitrogen source,
Acetonitrile gas is used as a carbon source, and titanium halide gas is used as a Ti source. It was set in a CVD reactor and heated to 750°C while flowing H 2 gas. From 750℃ TiCl4 2%, CH3CN2 %, H2
A mixed gas consisting of the residue was supplied at a flow rate of 7 liters/min and a pressure of 72 mmHg, and the reaction was allowed to proceed for 0.5 hours to coat the substrate with TiCN to a thickness of 1 μm. The temperature was further increased to 800℃, and the gas mixture was changed to a composition of 2% TiCl4 and 2 % N2.
The reaction was carried out for 0.5 hours to form 0.5 μm of TiN on the substrate. This sample is designated as A. At the same time, for comparison, 4μ of TiC was placed on the above cemented carbide.
m coated. This sample is designated as B. For TiC coating, the gas system is CH 4 and the temperature is HT-CVD.
It was carried out at 1000℃. These two types of samples were tested on a lathe under the following cutting conditions: work material: SCM440, cutting temperature: 200 m/min, feed: 0.3 mm/rev, and depth of cut: 2 mm. While the comparison sample B reached the end of its life due to wear after 15 minutes, the sample A according to the present invention showed good cutting performance even after cutting for 30 minutes. Example 2 TiCN-based cermet (65%TiCN-10%WC-
SNMN432 (JIS
-B4120) and coated with a film as shown in Table 1 by the MT-CVD method in the same manner as in Example 1. A continuous test was conducted on the sample using a 6-inch cutter (double negative type) under the following conditions. Work material SCM440 Cutting temperature 200m/min Feed 0.15mm/blade depth of cut 2mm The results are also listed in Table 1. Next, feed only 0.05
A life test was conducted by changing to mm/blade. The results are also shown in Table 1. From the results in Table 1, it is clear that the multilayer coating improves the adhesion of the film and exhibits excellent wear resistance and chipping resistance.
【表】
示す。
〔発明の効果〕
上述のように、本発明の表面被覆工具は、多層
被覆及びMT−CVD法を適用する事により、膜
質の改善−特に微粒化、低温化により脱炭層の低
減をはかり、工具として優れた耐摩耗性、耐欠損
性を示し、超硬合金は勿論のことTiCN基サーメ
ツトへの被覆にも適するものである。[Table] Shown.
[Effects of the Invention] As described above, the surface-coated tool of the present invention improves the film quality by applying multilayer coating and MT-CVD method, and in particular reduces the decarburized layer by making the particles finer and lowering the temperature. It exhibits excellent wear resistance and chipping resistance, and is suitable for coating not only cemented carbide but also TiCN-based cermet.
Claims (1)
TiCN及びTiNを多層被覆する工具の製造方法に
おいて、TiCNの被覆は、反応ガスとしてシアン
化メチルをTiの炭窒素源と成し、TiNの被覆は、
反応ガスとして窒素ガスをTiの窒素源と成し、
700〜900℃の中温化学蒸着法で行い、前記TiCN
及びTiNより成る多層被覆層の厚さは1〜5μm
であり、またTiCN及びTiNの各層の厚さは2μm
以下であり、かつTiCN及びTiNは交互に少なく
とも2層以上被覆された被覆層を形成することを
特徴とする表面被覆工具の製造方法。1 On the surface of WC-based cemented carbide or cermet
In the method for manufacturing a tool multilayer coated with TiCN and TiN, the TiCN coating uses methyl cyanide as a reactive gas as the Ti carbon nitrogen source, and the TiN coating uses
Nitrogen gas is used as a reaction gas as a nitrogen source for Ti,
The TiCN
The thickness of the multilayer coating layer consisting of TiN and TiN is 1 to 5 μm.
and the thickness of each layer of TiCN and TiN is 2μm
A method for manufacturing a surface-coated tool, which is as follows and is characterized in that TiCN and TiN are alternately coated in at least two layers to form a coating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18328885A JPS6244572A (en) | 1985-08-21 | 1985-08-21 | Surface coated tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18328885A JPS6244572A (en) | 1985-08-21 | 1985-08-21 | Surface coated tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6244572A JPS6244572A (en) | 1987-02-26 |
JPH0433865B2 true JPH0433865B2 (en) | 1992-06-04 |
Family
ID=16133029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18328885A Granted JPS6244572A (en) | 1985-08-21 | 1985-08-21 | Surface coated tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6244572A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144574A1 (en) | 2011-04-20 | 2012-10-26 | 株式会社タンガロイ | Coated cutting tool |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2590130B2 (en) * | 1987-08-22 | 1997-03-12 | 住友電気工業株式会社 | Manufacturing method of coated cutting tool |
JP2645340B2 (en) * | 1989-09-08 | 1997-08-25 | 日立ツール 株式会社 | Manufacturing method of coated cemented carbide tool |
JPH0397867A (en) * | 1989-09-08 | 1991-04-23 | Hitachi Tool Eng Ltd | Coated wear resistant tool |
JPH0819525B2 (en) * | 1989-09-26 | 1996-02-28 | 日立ツール株式会社 | Method for manufacturing coated ceramic tool |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5072805A (en) * | 1973-10-31 | 1975-06-16 | ||
JPS5124982A (en) * | 1974-08-24 | 1976-02-28 | Tdk Electronics Co Ltd | Dengensochino anteikakairo |
JPS526695A (en) * | 1975-07-01 | 1977-01-19 | Oriental Yeast Co Ltd | Method of supplying baits to fishes |
JPS5434189A (en) * | 1977-08-22 | 1979-03-13 | Toshiba Tungaloy Co Ltd | Cutting tool provided with coating of multiilayer more than three layers |
JPS5558365A (en) * | 1978-10-27 | 1980-05-01 | Hitachi Metals Ltd | Coating method for titanium compound |
JPS58157965A (en) * | 1982-03-12 | 1983-09-20 | Hitachi Metals Ltd | Multiply coated material and its manufacture |
-
1985
- 1985-08-21 JP JP18328885A patent/JPS6244572A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5072805A (en) * | 1973-10-31 | 1975-06-16 | ||
JPS5124982A (en) * | 1974-08-24 | 1976-02-28 | Tdk Electronics Co Ltd | Dengensochino anteikakairo |
JPS526695A (en) * | 1975-07-01 | 1977-01-19 | Oriental Yeast Co Ltd | Method of supplying baits to fishes |
JPS5434189A (en) * | 1977-08-22 | 1979-03-13 | Toshiba Tungaloy Co Ltd | Cutting tool provided with coating of multiilayer more than three layers |
JPS5558365A (en) * | 1978-10-27 | 1980-05-01 | Hitachi Metals Ltd | Coating method for titanium compound |
JPS58157965A (en) * | 1982-03-12 | 1983-09-20 | Hitachi Metals Ltd | Multiply coated material and its manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144574A1 (en) | 2011-04-20 | 2012-10-26 | 株式会社タンガロイ | Coated cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JPS6244572A (en) | 1987-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6093479A (en) | Coated hard alloy blade member | |
EP1947213B1 (en) | Process for producing an oxide coated cutting tool | |
EP0816531B1 (en) | Alumina coated tool and production method thereof | |
IL182344A (en) | Cutting insert having ceramic coating | |
JPH06158325A (en) | Cutting tool made of surface-coated cermet having enhanced wear resistance of hard coating layer | |
JPH09174304A (en) | Surface coated cemented carbide-made cutting tool excellent in pitching resistance | |
EP1471165A2 (en) | Coating with controlled grain size and morphology for enhanced wear resistance and toughness | |
JP3768136B2 (en) | Coated tool | |
JP3962300B2 (en) | Aluminum oxide coated tool | |
JPH068008A (en) | Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property | |
JP3291775B2 (en) | Surface coated cutting tool | |
JP2876132B2 (en) | Coated cutting tool | |
JP4761335B2 (en) | Method for producing TiZr carbonitride coated tool | |
JPH0433865B2 (en) | ||
JP4351521B2 (en) | Surface coated cutting tool | |
JP4114741B2 (en) | Titanium chromium compound coating tool | |
JP2876130B2 (en) | Coated cutting tool | |
JPH08269719A (en) | Production of cutting tool surface-coated with titanium oxycarbonitride layer | |
JPS6354495B2 (en) | ||
JPH08187607A (en) | Cutting tool of surface coated wc based cemented carbide | |
JPH05220604A (en) | Surface coated cutting tool having superior adhesiveness of hard coating layer | |
JP4484500B2 (en) | Surface coated cutting tool | |
JPS6112029B2 (en) | ||
JP2648718B2 (en) | Manufacturing method of coated cemented carbide tool | |
JP2657235B2 (en) | Coated super hard alloy tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |